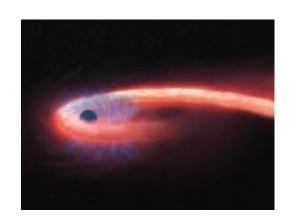


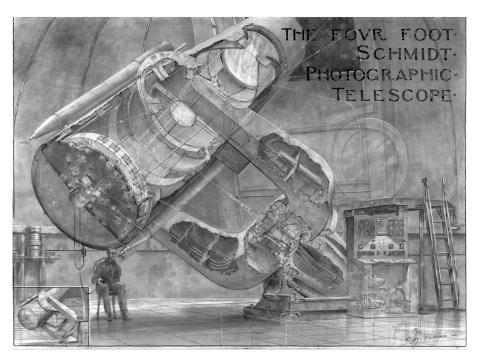
October 19th, 2025 Astro-Colibri 4 Orsay, France (virtual)


"LSST is just ZTF 2.0" – Ž. Ivezić

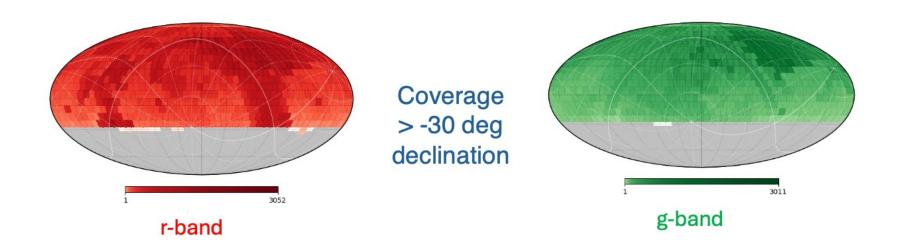
ZTF: seeding and interoperating with LSST

Matthew J. Graham mjg@caltech.edu

with contributions from Theo du Laz, Michael Coughlin


ZTF: the first industrial astronomical stream

- The Palomar Oschin 48" telescope took its first image on Sept 30, 1948
- ZTF is its latest instrument: a 47 deg² field of view camera with > 660M pixels
- It can cover 3750 deg² / hr to 20.5-21 mag (30s exposures)
- It carries out a full northern sky every two nights in g, r (and i)
- First light was Oct 2017; survey started Mar 2018; first alerts issued Jun 2018
- Supports ToO programs for MMA
- ZTF is LSST 0.1



ZTF by the numbers

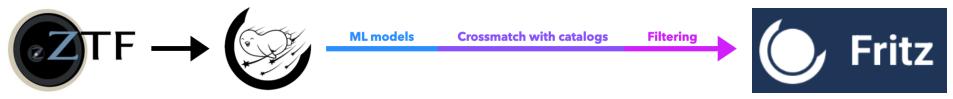
- Total sky area covered is > 50 million $deg^2 = ^2x$ LSST 10-year total
- > 930 million photometric measurements for 4.9 billion sources
- ~1750 observations per source for ~2 billion sources
- Up to 1 million alerts per night
- Over 800 million alerts (>65 TB) published

Transients (alerts)

- ZTF has generated >800 million alerts (5 σ difference image detection)
- Switched to forced photometry light curves in ZTF alerts (summer 2024)
- ~500,000 of these are interesting (have passed a filter)

Pre-LSST:

Kowalski:


- Receive alerts from ZTF
- Add spatial cross-matches with archival catalogs
- Update full light curve for each object
- Run ML models on the alerts, e.g. BTSBot
- Run user-defined filters and send filtered data to SkyPortal/Fritz

Transients (alerts)

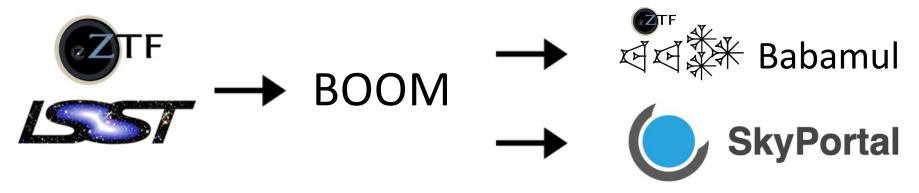
- ZTF has generated >800 million alerts (5 σ difference image detection)
- Switched to forced photometry light curves in ZTF alerts (summer 2024)
- ~500,000 of these are interesting (have passed a filter)

Pre-LSST:

Kowalski

Automated systems:

- BTSBot: 1 hr from detection to TNS reporting
- BTSBot-nearby: SWIFT observations 6 min after detection


Kowalski:

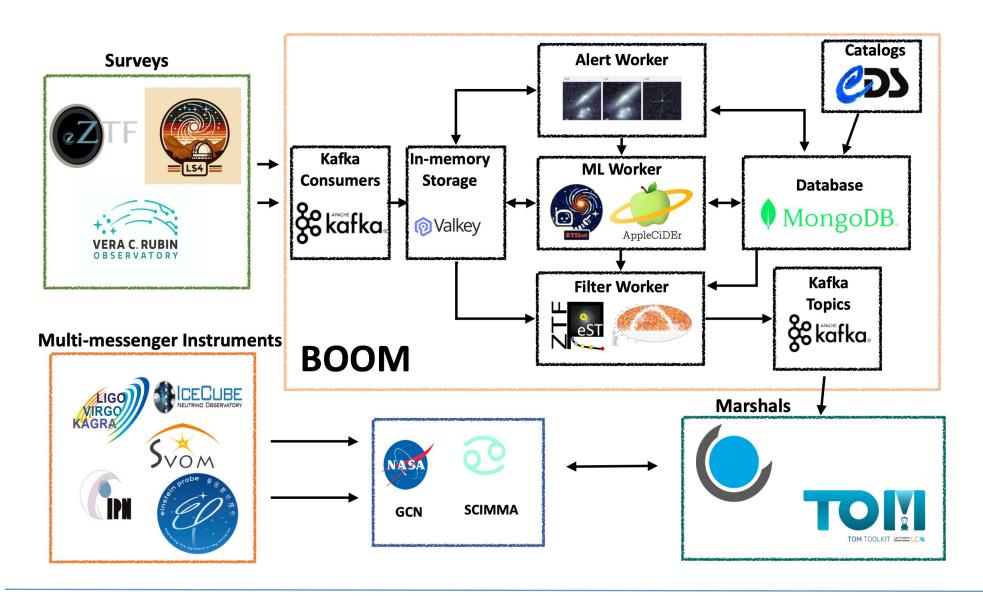
- Receive alerts from ZTF
- Add spatial cross-matches with archival catalogs
- Update full light curve for each object
- Run ML models on the alerts, e.g. BTSBot
- Run user-defined filters and send filtered data to SkyPortal/Fritz

Transients (alerts)

With LSST:

Why reimplement:

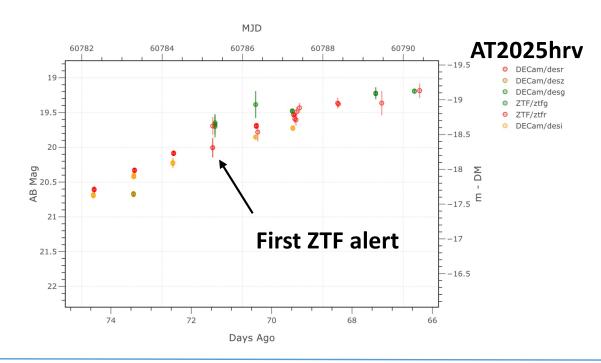
- Designed for ZTF volume (<1M alerts/night)
- Constant crossmatching
- Current filter building is not user friendly


Benefits:

- RUST-based code lowers memory and CPU usage,
- Greater parallelization, lower latency
- Modularity
- Distributed

Burst & Outburst Observations Manager (BOOM)

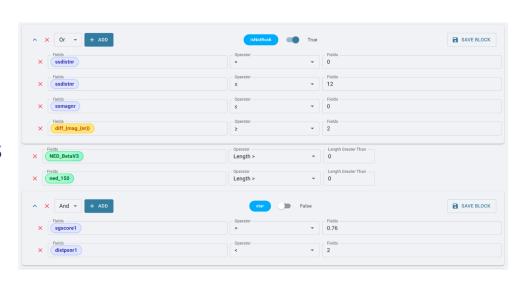
BOOM: Multistream alert architecture



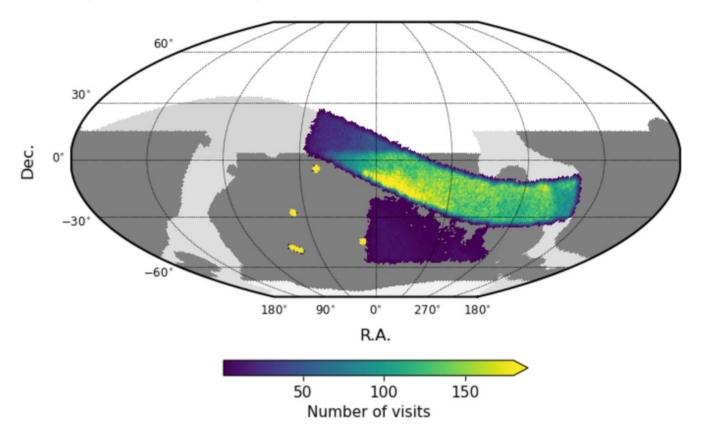
Multisurvey support:

- We can successfully process the ZTF and Rubin alert stream
- Every new ZTF alert is crossmatched with the LSST alert-based object collection
- Future iterations will crossmatch by position, time, and brightness

Preview with ZTF+DECAM:


Sources with DECAM pre-detection

BOOM: Filtering

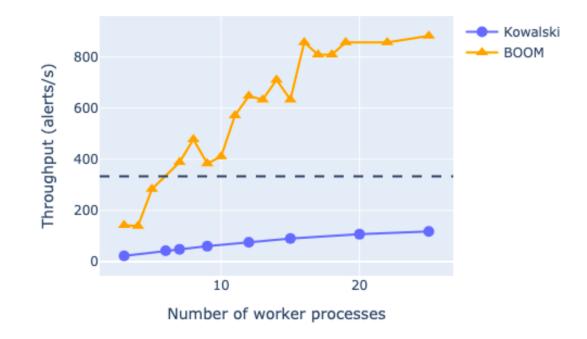

- Most brokers offer one of:
 - Static filters that users can read from for further downstream filtering
 - Limited filtering from a web app
 - Run user-provided Python filtering code
- Most users do not want to learn complex (non-Python) syntax
- Developing a UI/web-based no-code tool only requiring familiarity with the data product
 - Share blocks between users
 - Precompute common blocks
- BABAMUL will offer a number of phenomenological filters on alerts
 - Aim to serve a number of community-driven

ZTF/LSST synergy already happening

- June Sept 2025, ZTF shadowed the SV region every night in *gri*
- ZTF alerts released in real time
- Imaging data and light curves will be part of DR24 (Jan 2026)

ZTF Plan for 2026

Summary: Nightly gri coverage of Rubin footprint

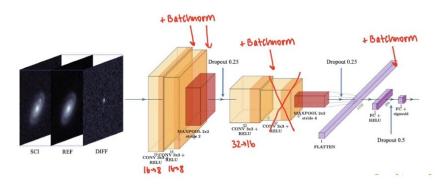

Details (TBC):

 Once LSST is fully operational, ZTF public time (50%) will do a nightly gri coverage of LSST footprint visible from Palomar

(ZTF grid #1)

 Joint alert stream for alerts in ZTF and LSST

 A base set of filters characterizing events: blue, large amplitude, etc.

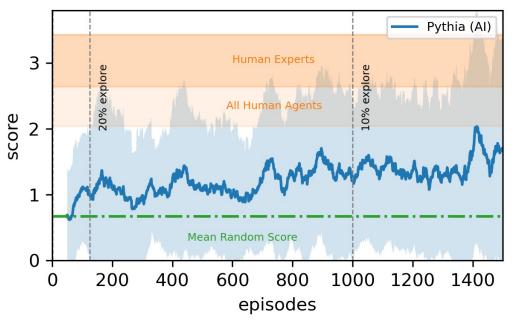


Fast inferencing

- faster_braai (Deng+, in prep.)
 - FPGA deployment
 - Reduced CNN model using 6k parameters:

- 16-bit quantization-aware training:
 - quantized weights in forward pass
 - full-precision weights in backward pass and weight update

- Ported to PYNQ-Z2 FPGA using hls4ml:
 - optimized for latency and streaming data


 Recent FGPA support for transformers, decision trees, and symbolic regression

Pythia vs humans

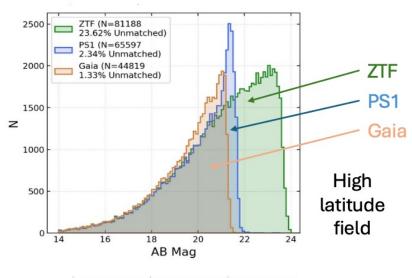
Sravan+ 2023

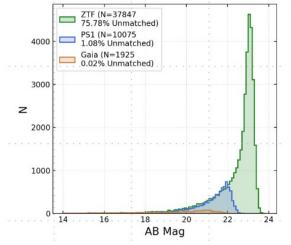
agent	score	frac KN > 1 follow-up
Pythia	1.84	0.81
Non-expert 1	2.04	0.54
Non-expert 2	3.15	0.86
Expert 1	2.64	0.76
Expert 2	2.74	0.78
Expert 3	2.94	0.72
Expert 4	3.43	0.9

Pythia

- Linear VFA hypothesis class not sufficiently rich representation of true Q function
 - Benefit is theoretical convergence guarantee. Demonstrates problem learnable!
- Shifting to deep Q networks:
 - Will remove two-step learning, one for x(s,a) in supervised/unsupervised learning and one for Q via Bellman updates in RL
 - Efficient evaluation of realistic large action space, can have vector instead of scalar output
- SARSA is known to be the weaker of the simple policies, specifically for short horizons with low penaties: QL is expected to perform better
- Use GNN instead of CNN for permutation invariance
- Shifting to deep Q networks:
 - Will remove two-step learning: one for x(s,a) in ((un)supervised learning and one for Q via Bellman update in RL
 - Efficient evaluation of realistic large action space with vector output instead of scala

ZVAR: ZTF Variability and Periodicity





Goal: Produce a *definitive* ZTF variability and periodicity data set open to the astronomical community

Phase 1 (Now) - 2027 release
1.5 billion sources (2/3 of sky)
 m < 22 (essentially all Gaia sources)
Image difference forced photometry
Photometric errors ~ 1 - 2% (m < 18)
> 1750 observations per source (median)
Periodicity detection down to < 5 min</pre>

Phase 2 ("ZForce") - 2028 release
3 billion sources
 m < 24 (New ZTF Deep Catalog)
Science image forced photometry
 Proper motion compensated
 Detrended (co-trending analysis)
Photometric errors ~0.5% (m < 18)</pre>

Crowded field