
Particules et Interactions

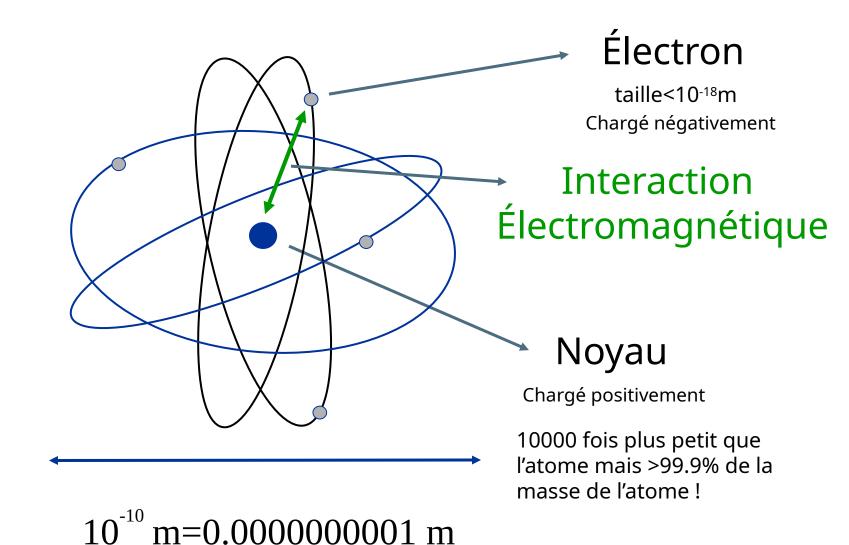
Frédéric Machefert

IJCLab Laboratoire de Physique des deux infinis CNRS/IN2P3, Université Paris-Saclay

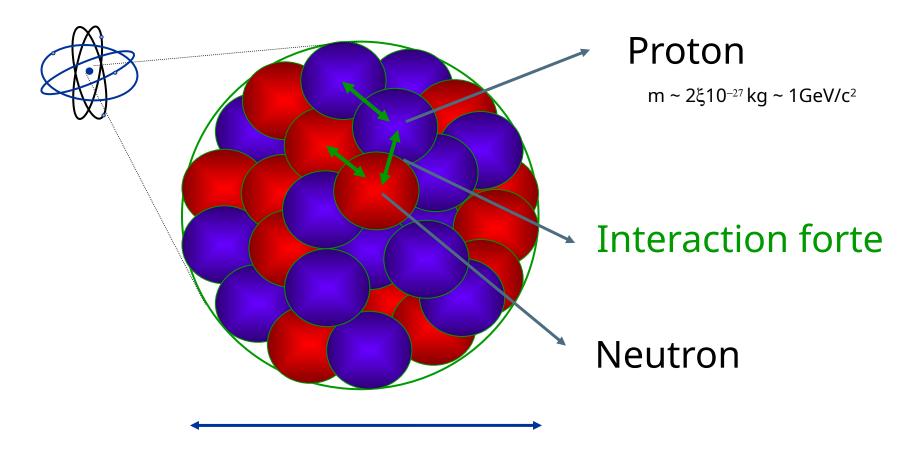
Masterclasses 2024

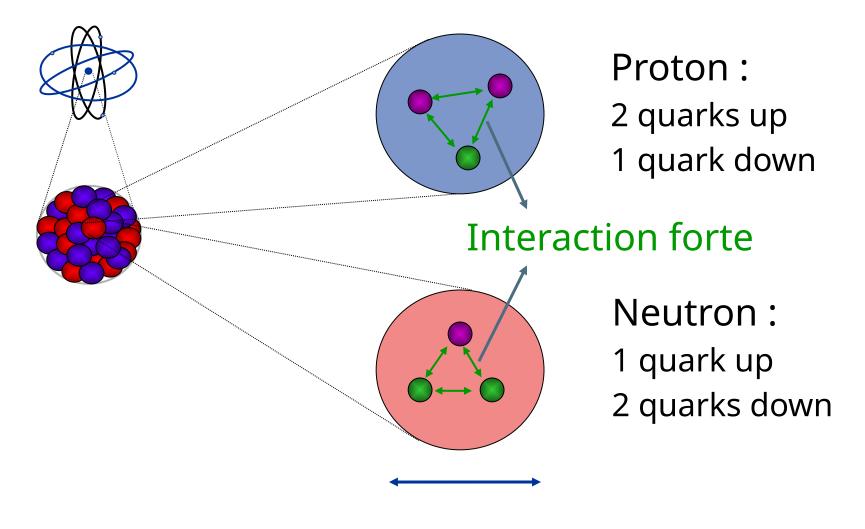
Les particules élémentaires : des blocs fondamentaux (sans structure interne) qui constituent l'ensemble de la matière

L'atome



Taille d'un atome: 10⁻¹⁰ m=0.000000001m

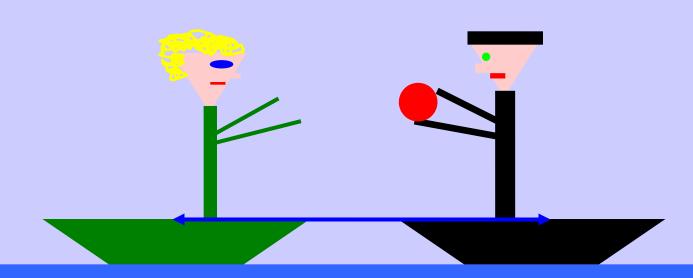

10 millions de fois plus petit qu'une fourmi Entre 10 et 100 mille fois plus petit qu'une bactérie



Structure du noyau

 $10^{-14} \, \text{m} = 0.000000000001 \, \text{m}$

Structure des protons et des neutrons



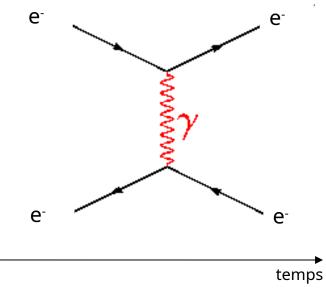
 $10^{-15} \, \text{m} = 0.00000000000001 \, \text{m}$

Les interactions

Interagir = échanger une particule

- Les ballons sont les médiateurs de la force qui écarte les 2 bateaux.
- La portée dépend de la masse du ballon

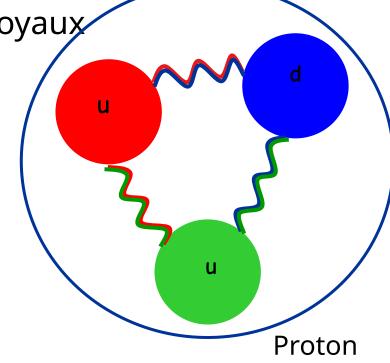
Bosons de jauge : mediateurs des interactions fondamentales


L'interaction électromagnétique

Responsable des phénomènes électriques et magnétiques: aimantation, lumière, cohésion des atomes,...

Médiateur : photon

m=0 (vitesse=c) portée infinie

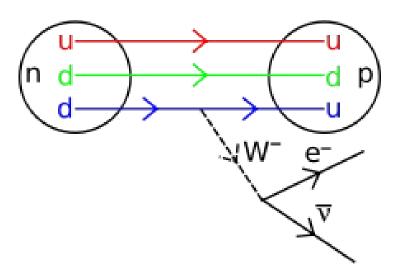

L'interaction nucléaire forte

Responsable de la stabilité des noyaux ainsi que du proton

Médiateurs: 8 gluons

m=0

Portée : 10⁻¹⁵ m



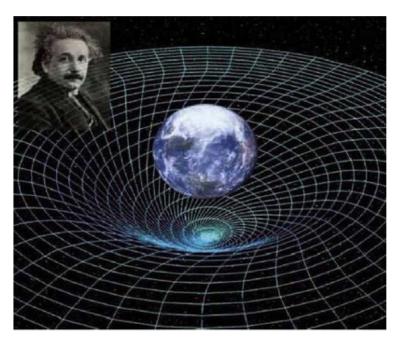
Les quarks n'existent pas à l'état libre: ils sont confinés à l'intérieur de **hadrons** (assemblages de quarks) collés par les **gluons**

L'interaction nucléaire faible

- Responsable de:
 - Radioactivité β
 - Participe aux réactions nucléaires au coeur du Soleil

Médiateurs : W+,W- et Zº

- 10 000 fois plus faible que l'interaction forte
- Portée: 10⁻¹⁸ m
 - Expliquée par la grande masse des bosons de jauge de l'interaction faible.

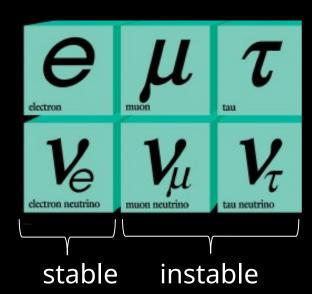


La gravitation

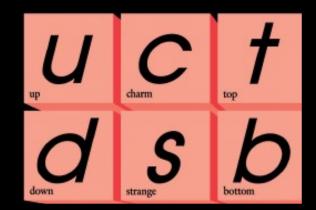
- Responsable de la pesanteur, des marées, des mouvements des astres,
- Force complètement négligeable à l'échelle du noyau
 - 10⁻³³ fois plus faible que l'interaction faible
 - Mais portée infinie et interaction uniquement attractive
 - → dominante à grande échelle
- Décrite par la relativité générale
 - La gravitation est issue d'une déformation de l'espace temps

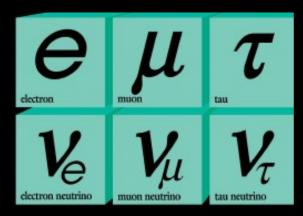
Médiateur hypothétique : graviton

Matière Quarks Leptons

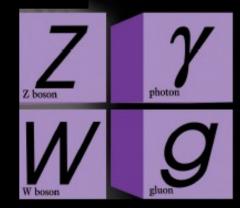


Matière Quarks Leptons

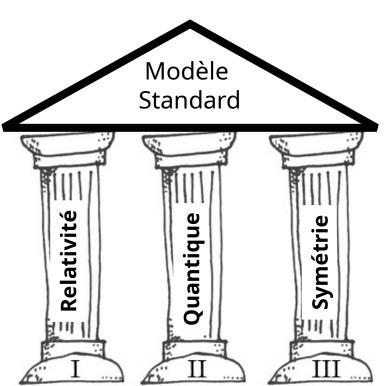


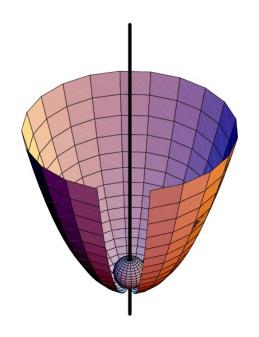


U C f top Charm bottom



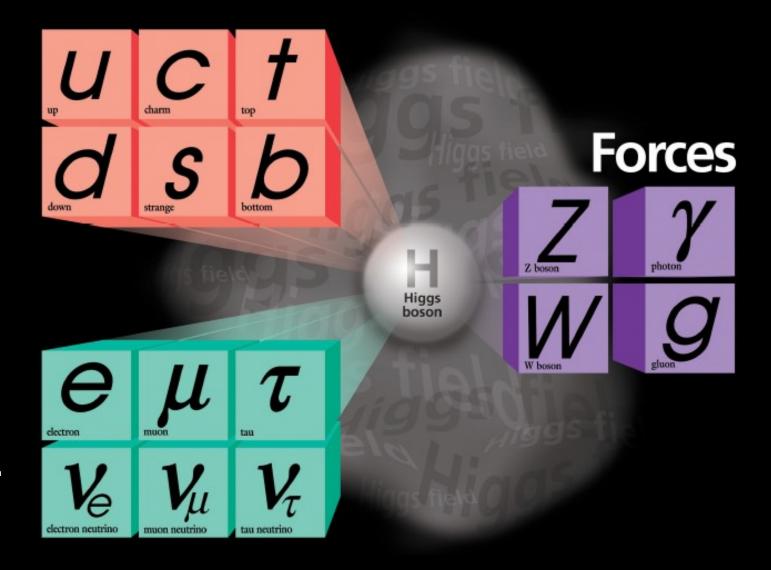
Matière Quarks Leptons


Forces



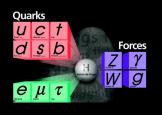
$$\begin{split} & -\frac{2}{2} \partial_{\nu} \partial_{\mu} \partial_{\nu} \partial_{\mu}^{\alpha} - \partial_{\mu} f^{\alpha} b c}{\partial_{\mu} \partial_{\nu}^{\alpha} \partial_{\mu}^{\beta} \partial_{\nu}^{\beta} - \frac{1}{4} g_{\mu}^{2} f^{\alpha} b^{c} f^{\alpha} d^{g}}{\partial_{\mu}^{\alpha} \partial_{\nu}^{\beta} \partial_{\mu}^{\beta} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} f^{\alpha} b^{c} \partial_{\mu} G^{\beta} \partial_{\mu}^{\alpha} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H^{\alpha} \partial_{\mu} H^{\gamma} - \frac{1}{2} \partial_{\mu} f^{\alpha} \partial_{\mu} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H^{\alpha} \partial_{\mu} H^{\gamma} - \frac{1}{2} \partial_{\mu} f^{\alpha} \partial_{\mu} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\mu} f^{\alpha} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\nu} f^{\alpha} \partial_{\nu}^{\gamma} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\nu}^{\gamma} \partial_{\nu}^{\gamma} - \frac{1}{2} \partial_{\nu}^{\gamma} \partial_{\nu}^{\gamma} \partial_{\nu}^{\gamma} \partial_{\nu}^{\gamma} \partial_{$$

Le Modèle Standard


- Elaboré dans les années 1960-70
- Décrit dans un même cadre les particules élémentaires et les interactions forte et électrofaible
 - Mais pas la gravitation!
- Testé expérimentalement avec grande précision

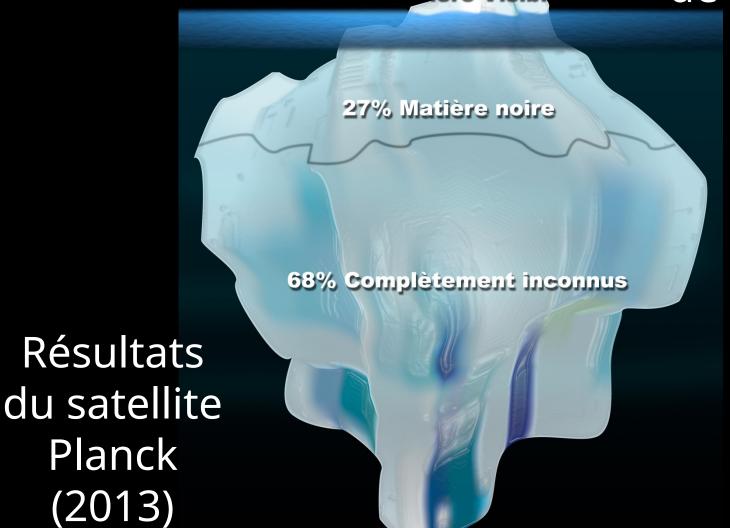
- Un système est symétrique quand on le transforme en laissant sa forme inchangée.
- Groupe de symétrie (Invariance de jauge) détermine complètement la structure de l'interaction!

Matière Quarks Leptons



Matière Quarks

Leptons


Forces Higgs boson

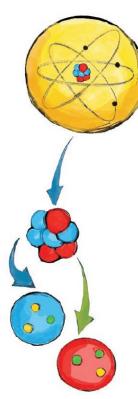
5% Matière Visible

5% Matière Visible

Le contenu énergétique de l'Univers

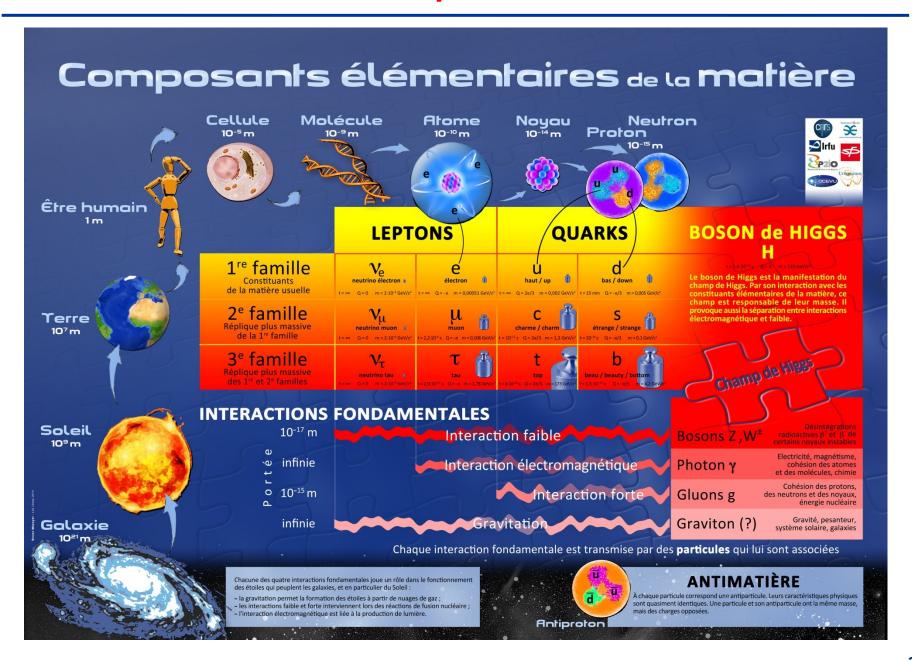
Résumé

Particules de matières: fermions


- Particules stables et « utiles » pour bâtir l'univers:
 - électron, quark up et quark down
 - proton = 2 quarks u et un quark d
- Particules instables:
 - muon, tau, quark étrange,...
- A chaque particule est associée une antiparticule

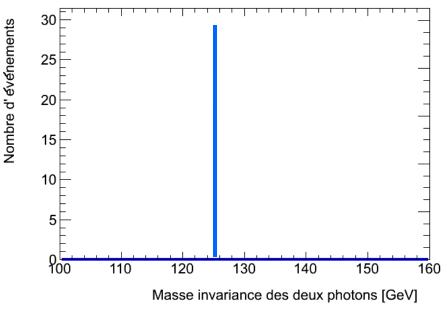
Particules d'interactions: bosons

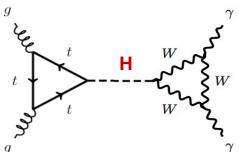
- Photon: interaction électromagnétique
- Boson Z/W: interaction faible
- Gluon: interaction forte

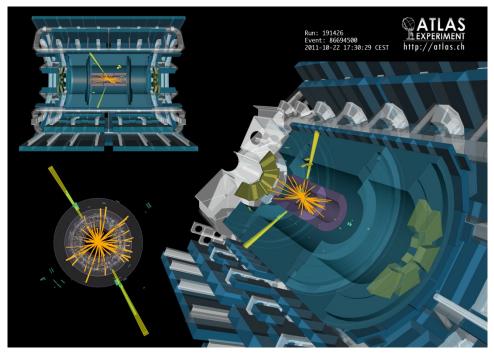


La masse des particules élémentaires provient de l'interaction avec le champ de Higgs qui se manifeste également par l'existence du boson de Higgs

That's all Folks!

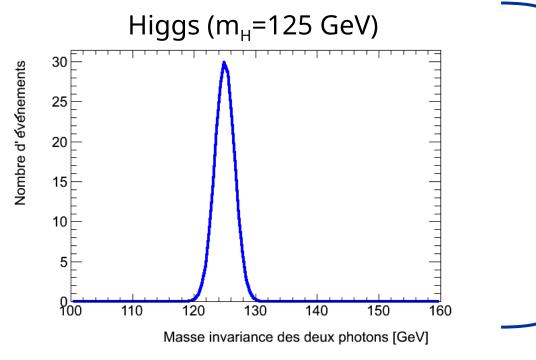

Nouvelle affiche des composants élémentaires (2014)

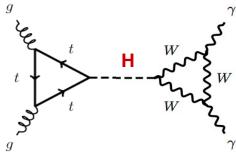



Le canal Höhh

$$\mathbf{m}_{yy} = \sqrt{\left(\frac{\mathbf{E}_1 + \mathbf{E}_2}{c^2}\right)^2 - \left(\frac{\mathbf{p}_1 + \mathbf{p}_2}{c}\right)^2}$$

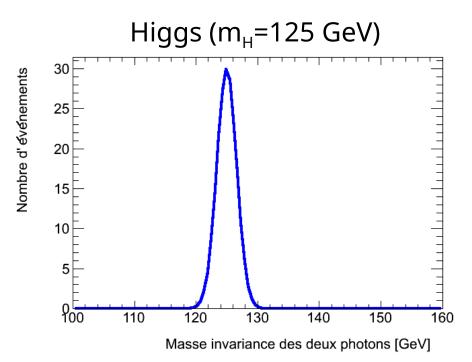
Higgs $(m_H=125 \text{ GeV})$

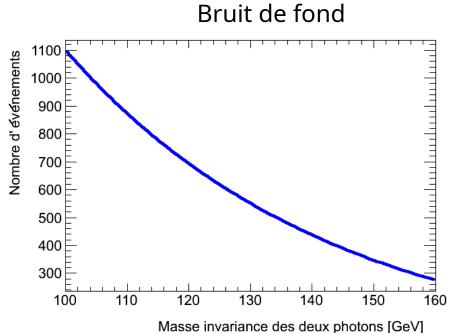


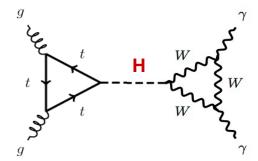


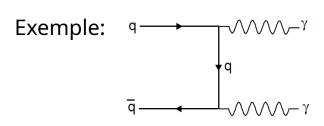
Le canal Höhh

$$\mathbf{m}_{yy} = \sqrt{\left(\frac{\mathbf{E}_1 + \mathbf{E}_2}{c^2}\right)^2 - \left(\frac{\mathbf{p}_1 + \mathbf{p}_2}{c}\right)^2}$$

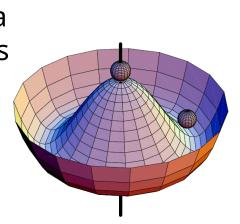



Résolution du détecteur




Le canal Höhh

$$\mathbf{m}_{yy} = \sqrt{\left(\frac{\mathbf{E}_1 + \mathbf{E}_2}{c^2}\right)^2 - \left(\frac{\mathbf{p}_1 + \mathbf{p}_2}{c}\right)^2}$$


Le mécanisme de Brout-Englert-Higgs

- La masse quantifie l'inertie du corps
 - Plus un objet est massif plus il est difficile à mettre en mouvement
- Invariance de jauge

_ contradiction avec l'expérience

- La masse n'est pas une propriété intrinsèque des particules, mais le résultat de l'interaction de la particule avec le champ de Brout-Englert-Higgs
- Découvert en 1964 par:
 - R. Brout and F. Englert
 - P.Higgs
 - G. Guralnik, C. R. Hagen, and T. Kibble

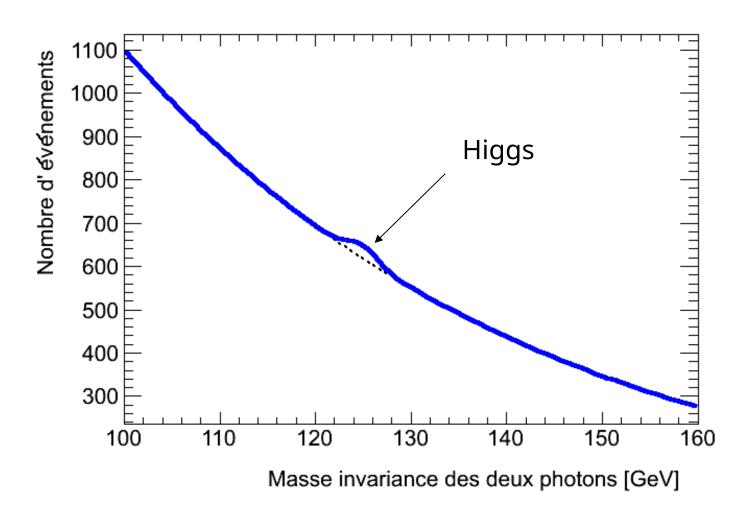
Le mécanisme de Brout-Englert-Higgs

Le photon: masse nulle

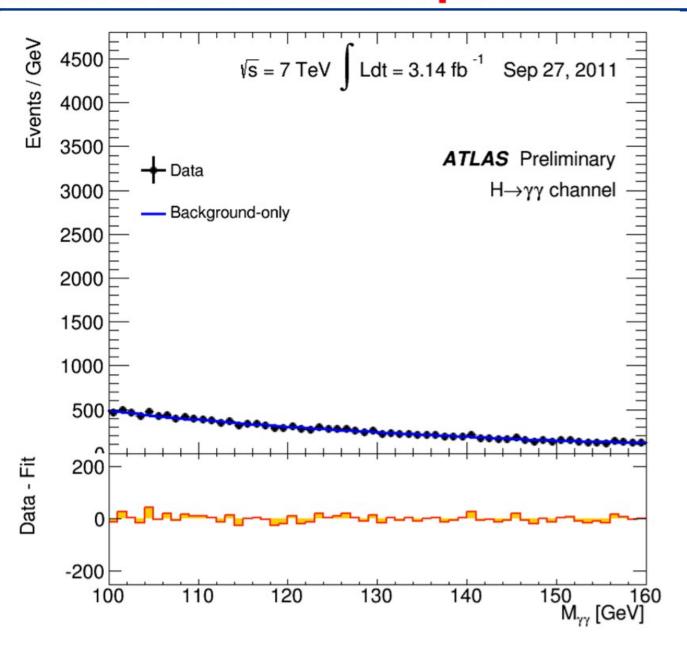
L'électron: petite masse

Le boson Z: grande masse

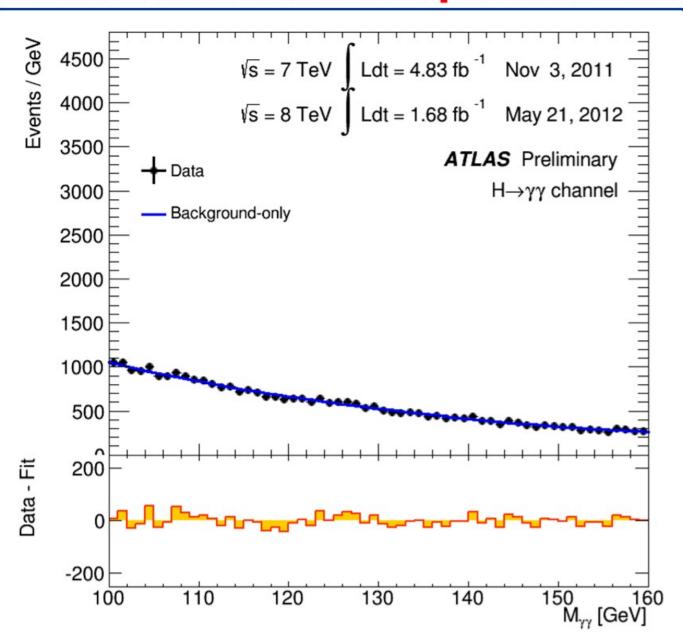
Plus difficile à mettre en mvt


Le boson de Higgs

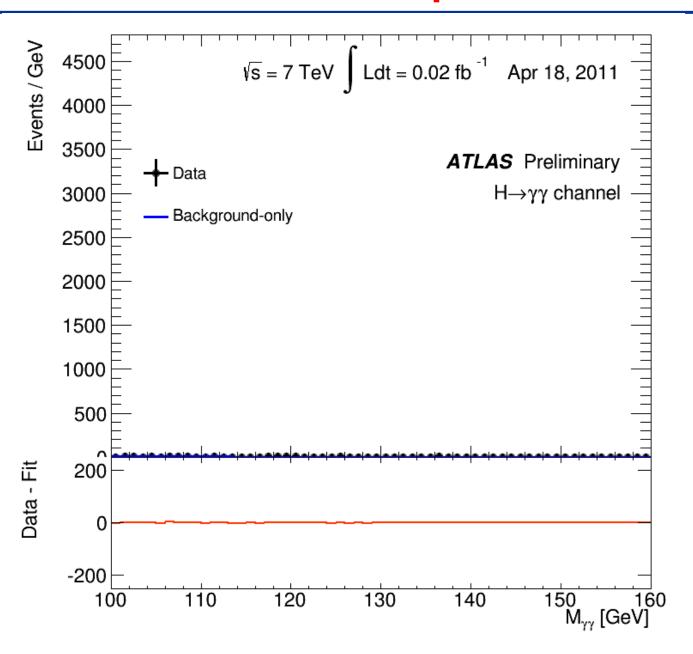
Boson de Higgs = quanta du champ de Higgs

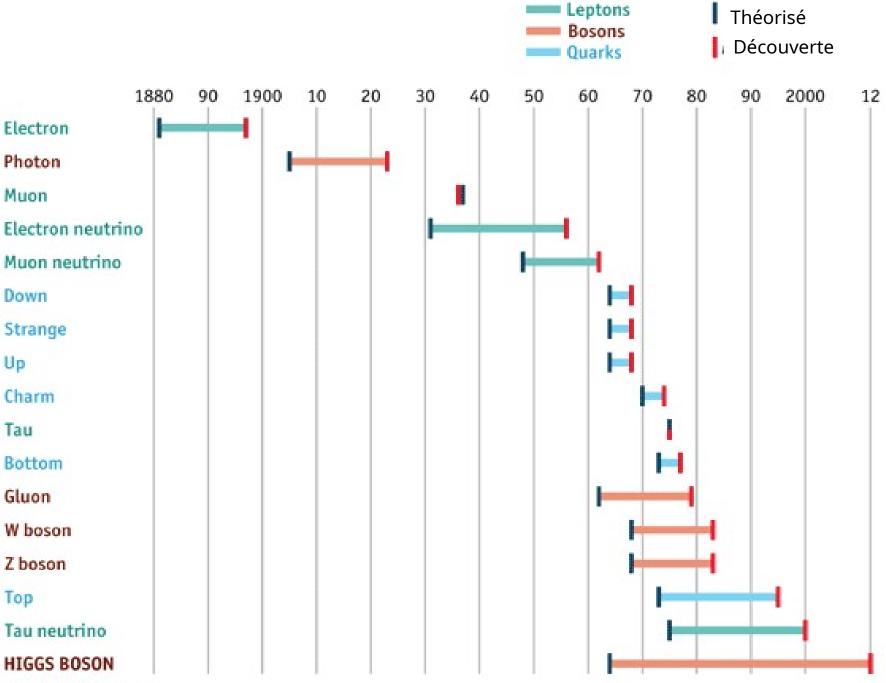

Le boson de Higgs joue un rôle central dans le mécanisme qui explique la masse des particules élémentaires

Le canal Höhh : simulation

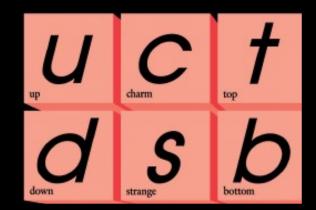


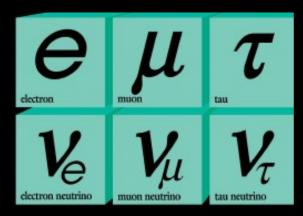
Bosse = signature du boson de Higgs

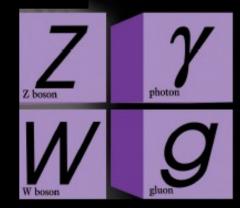

Découverte d'une nouvelle particule au CERN


Découverte d'une nouvelle particule au CERN

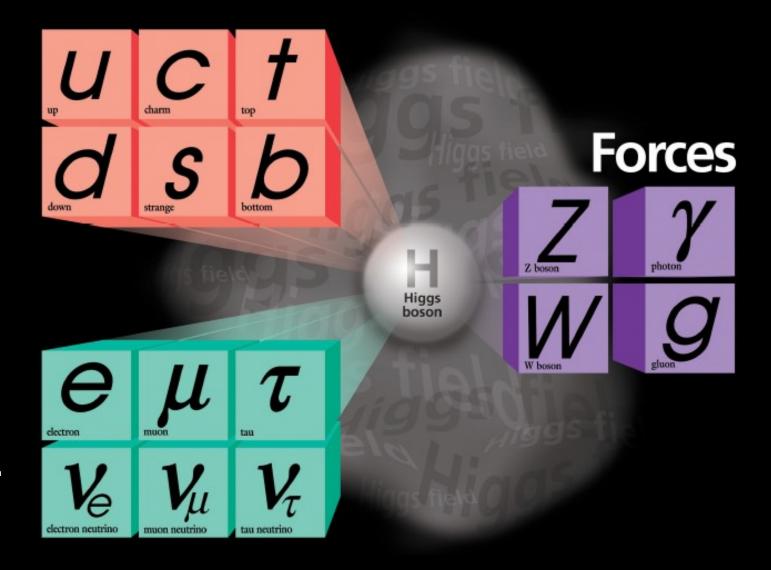
Découverte d'une nouvelle particule au CERN






Source: The Economist

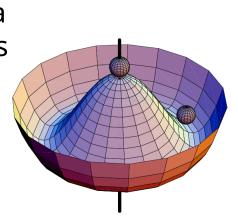
Matière Quarks Leptons



Forces

Matière Quarks Leptons


```
-\tfrac{1}{2}\partial_\nu g^a_\mu\partial_\nu g^a_\mu - g_s f^{abc}\partial_\mu g^a_\nu g^b_\mu g^c_\nu - \tfrac{1}{4}g_s^2 f^{abc} f^{ade} g^b_\mu g^c_\nu g^d_\mu g^e_\nu +
                                                                                                                           rac{1}{2}ig_s^2(ar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a+ar{G}^a\partial^2 G^a+g_s^ff^{abc}\partial_\muar{G}^aG^bg_\mu^c-ar{\partial_
u W_\mu^+\partial_
u W_\mu^--}
   2 \ M^2 W_{\mu}^+ W_{\mu}^- - \tfrac{1}{2} \partial_{\nu} Z_{\mu}^0 \partial_{\nu} Z_{\mu}^0 - \tfrac{1}{2 c_{\nu}^2} M^2 Z_{\mu}^0 Z_{\mu}^0 - \tfrac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \tfrac{1}{2} \partial_{\mu} H \partial_{\mu} H \partial_{\mu} H - \tfrac{1}{2} \partial_{\mu} H \partial_{\mu} H \partial_{\mu} H - \tfrac{1}{2} \partial_{\mu} H \partial_{\mu}
                                                               \frac{1}{2} m_h^2 H^2 - \partial_\mu \phi^+ \partial_\mu \phi^- - M^2 \phi^+ \phi^- - \frac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 - \frac{1}{2c_{co}^2} M \phi^0 \phi^0 - \beta_h [\frac{2M^2}{g^2} + \frac{1}{2c_{co}^2} M \phi^0 \phi^0 - \frac{1}{2c_{co}^2} M \phi^0 - \frac{1}{2c_{c
                                                                                            \frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z_\mu^0(W_\mu^+W_\nu^- - \psi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z_\mu^0(W_\mu^+W_\mu^- - \psi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z_\mu^0(W_\mu^-W_\mu^- - \psi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z_\mu^-W_\mu^- - \psi^-]
                                                                                                      W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}\dot{W}_{\nu}^{-} +
                                                                                                                                                     \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^2c_w^2(Z_{\mu}^0W_{\mu}^{+}Z_{\nu}^0W_{\nu}^{-} - Z_{\mu}^0Z_{\mu}^0W_{\nu}^{+}W_{\nu}^{-}) +
                                                                                                             g^2 \tilde{s}_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\mu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\mu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\mu^- W_\nu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\mu^- W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^- W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^- W_\mu^- W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - A_\mu Z_\mu^- W_\mu^- W_\mu^- W_\mu^-)] + g^2 s_w c_w [A_\mu Z_\mu^0 (W_\mu^+ W_\mu^- - A_\mu Z_\mu^- W_\mu^- W_\mu^- W_\mu^- W_\mu^- W_\mu^- W_\mu^-]] + g^2 s_w c_w [A_\mu Z_\mu^0 (W_\mu^+ W_\mu^- W_\mu^-
                                                                                                                                              W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] -
                                                               \frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]-
                                                                                                                                  gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) -
                                                          W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}
                                                        \phi^{+}\partial_{\mu}H)] + \tfrac{1}{2}g\tfrac{1}{c_{w}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\tfrac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +
                                                                                                         igs_w MA_{\mu}(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z_{\mu}^0(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) + ig\frac{1-2c_w^2}{2c_w}Z_{\mu}^0(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^-) + ig\frac{1-2c_w^2}{2c_w}Z_{\mu}^0(\phi^-\partial_{\mu}\phi^- - \phi^-
                                                                             igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^+ W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + 2\phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4} g^2 W_\mu^- [H^2 + (\phi^0)^2 + \phi^-] - \frac{
                                                                       \frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + 1)^2 \phi^+ \phi^-]
                                                                                                         W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+})
                                                         W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{j}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{j}^{\lambda} - \bar{u}_{j}^{\lambda}(\gamma\partial
                                                                               \overline{d_j^{\lambda}(\gamma\partial+m_d^{\lambda})d_j^{\lambda}+igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda})-\frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})]}+
                                                                                          1 - \gamma^5) u_j^{\lambda}) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda})] + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) e^{\lambda}) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 + \gamma^5) e^{\lambda})] + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 + \gamma^5) e^{\lambda}) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 
                                                                                    (\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})] + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})
                                                                                                                                                           (\gamma^5)u_j^{\lambda}] + \frac{ig}{2\sqrt{2}} \frac{m_e^{\lambda}}{M} [-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \psi^{\lambda}]
                                                                                        \tfrac{g}{2} \tfrac{m_e^\lambda}{M} [H(\bar{e}^\lambda e^\lambda) + i\phi^0(\bar{e}^\lambda \gamma^5 e^\lambda)] + \tfrac{ig}{2M\sqrt{2}} \phi^+ [-m_d^\kappa (\bar{u}_j^\lambda C_{\lambda\kappa} (1-\gamma^5) d_j^\kappa) +
                                                      m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^\lambda(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa) - m_u^\kappa(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa)] + m_u^\kappa(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa) - m_u^\kappa(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa) - m_u^\kappa(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa)] + m_u^\kappa(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_j^\kappa) - m_u^\kappa(\bar{d}_j^\kappa) - m_u^\kappa(\bar{d}_j^\kappa) - m_u^\kappa(\bar{d}_j^\kappa) - m_u^\kappa(\bar{d}_j^\kappa) - m_u^\kappa
                                                                                                                                                             \gamma^5)u_j^{\kappa}] - \frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{u}_j^{\lambda} u_j^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_j^{\lambda} d_j^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_j^{\lambda} \gamma^5 u_j^{\lambda}) -
                                                                 \frac{ig}{2} \frac{m_d^{\lambda}}{M} \phi^0(\bar{d}_j^{\lambda} \gamma^5 d_j^{\lambda}) + \bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 - 
\frac{M^2}{c_w^2} X^0 + \bar{Y} \partial^2 Y + ig c_w W_\mu^+ (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{X}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y}^- X^0 - \partial_\mu \bar{Y}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y}^- X^0 - \partial_\mu \bar{Y}^- X^0) + ig s_w W_\mu^+ (\partial_\mu \bar{Y} X^0 - \partial_\mu \bar{Y}^- X^0 - \partial_\mu \bar{Y
                                                                                                  \partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))
                                                                                              \partial_{\mu} \bar{Y} X^{+}) + igc_{w} Z_{\mu}^{0} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} - \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{-})
                                                                                                                                                                                        \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +
                                                               \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^-\phi^+] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+]
                                                                                                                                    igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]
```


Le mécanisme de Brout-Englert-Higgs

- La masse quantifie l'inertie du corps
 - Plus un objet est massif plus il est difficile à mettre en mouvement
- Invariance de jauge

_ contradiction avec l'expérience

- La masse n'est pas une propriété intrinsèque des particules, mais le résultat de l'interaction de la particule avec le champ de Brout-Englert-Higgs
- Découvert en 1964 par:
 - R. Brout and F. Englert
 - P.Higgs
 - G. Guralnik, C. R. Hagen, and T. Kibble

Le mécanisme de Brout-Englert-Higgs

Le photon: masse nulle

Le boson Z: grande masse

Plus difficile à mettre en mvt

Le boson de Higgs

Boson de Higgs = quanta du champ de Higgs

