BESIII Inputs to HVP: Status and Plans

Weiping Wang

Johannes Gutenberg University Mainz

Eighth Plenary Workshop of the Muon g-2 Theory Initiative Orsay, 08.09.2025

BESIII detector

- > Symmetric electron-positron beams with c.m. energy between 1.84~4.95 GeV
- Maximum luminosity reaches 1.2×10^{33} cm⁻²s⁻¹
- ο Multilayer drift chamber: $\sigma_{r\phi} \sim 130 \, \mu \text{m}$ (single wire), $\sigma_{p_t}/p_t \sim 0.5\%@1 \, \text{GeV}/c$
- Time-of-Flight system: $\sigma_t \sim 68 \text{ ps}$ (barrel), $\sigma_t \sim 110 \rightarrow 65 \text{ ps}$ (end-cap)
- \circ Electromagnetic calorimeter: $\sigma_E/E < 2.5\%$ (barrel), $\sigma_E/E < 5.0\%$ (end-cap) at 1 GeV
- O Resistive plate chamber Muon counter: $\Delta\Omega/4\pi = 93\%$

Data samples at BESIII

- o 20 fb⁻¹ at $\psi(3773)$, ISR returned $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, K^+K^- , $K_S^0K_L^0$, 4π , ..., and R
- o 13 scan points in 1.84 \sim 2.00 GeV, an inclusive measurement of R
- O More than 100 scan points in the open-charm region for R measurement

BESIII contribution to HVP

Published results:

- ➤ Time-like Pion Form Factor, 600 ~ 900 MeV, Phys. Lett. B 753, 629 (2016)
- \triangleright R measurement, 2.23 ~ 3.67 GeV, Phys. Rev. Lett., 128, 062004 (2022)
- \triangleright Several exclusive channels, 2.00 \sim 3.08 GeV, $\pi^+\pi^-\pi^0$, K^+K^- , $K^0_SK^0_L$, $\phi\pi^+\pi^-$, $\eta'\pi^+\pi^-$

Ongoing analysis:

- $e^+e^- \to \gamma_{\rm ISR}\pi^+\pi^-$, 0.3 ~ 1.0 GeV, and $(\gamma_{\rm ISR})\pi^+\pi^-$, $m_{\pi\pi} > 1.0$ GeV
- $e^+e^- \to \gamma_{\rm ISR} K^+ K^- / K_S^0 K_L^0$, 1.0 ~ 3.0 GeV and $(\gamma_{\rm ISR}) K^+ K^-$, in 1.2 ~ 3.2 GeV
- $\rightarrow e^+e^- \rightarrow \gamma_{\rm ISR}q\bar{q}, 0.3 \sim 2.0 \text{ GeV}$
- \rightarrow $e^+e^- \rightarrow q\bar{q}$ with scan points in 1.84 ~ 2.00 GeV and the open-charm region

	DHMZ19	KNT19	Difference
$\overline{\pi^+\pi^-}$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
K_SK_L	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46

Tagged ISR analysis: $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-$

Phys. Lett. B 753, 629 (2016)

- 4C kinematic fit with the $\pi^+\pi^-\gamma$ hypothesis and $\chi^2_{4C} < 60$ is required
- dominant background is $\mu^+\mu^-\gamma$ events and a μ/π separation is realized with ANN

Validation and cross checks using $\mu^+\mu^-\gamma$ events

- \circ Good MC-data agreement in $m_{\mu\mu}$ validates the corrections to signal efficiency
- O Consistent bare cross sections within uncertainty are observed when normalizing the yields with luminosity and $\mu^+\mu^-\gamma$ events

Contribution to a_{μ} :

Phys. Lett. B 753, 629 (2016) Phys. Lett. B 812, 135982 (2021)

- 0.15
 0.1

 BESIII fit
 BaBar
 BESIII

 -0.05
 -0.1

 -0.15
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
- Lower statistical uncertainty of a_{μ} is obtained after the covariance matrix being corrected
- Precision competitive with current best results:
 - ➤ BESIII: 1.0%
 - BaBar: 0.7% (2009), 0.6% (2025)
 - ➤ KLOE: 0.6%
- \circ Precision of 0.5% is expected at BESIII with 20 fb^{-1} data

New analysis on going: $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-$

First result with accuracy of 0.7%:

- Data sets at $\sqrt{s} = 3.773$ and 4.178 GeV
- Integrated luminosity ~6 fb⁻¹
- 1C kinematic fit as nominal and 4C cross check
- Investigation of NLO radiative effects
- Normalization to integrated luminosity
- Blind analysis will be implemented

sources	Uncertainty (%)
Photon efficiency	$0.2 \rightarrow 0.0$
Tracking efficiency	$0.3 \rightarrow 0.2$
Pion ANN efficiency	0.2
Pion e-PID efficiency	$0.2 \rightarrow 0.0$
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction $\delta_{ extsf{FSR}}$	0.2
Vacuum polarization correction $\delta_{ m vac}$	0.2
Radiator function	0.5
Luminosity $\mathcal{L}_{ ext{int}}$	$0.5 \rightarrow 0.3$
Sum	$0.9 \rightarrow 0.7$

Important cross checks:

- \triangleright Perform previous measurement with different methods: $4C \rightarrow 1C$
- Apply same method at different c.m. energies: $\sqrt{s} = 3.773 \rightarrow 4.178 \text{ GeV}$
- Measure the luminosity with a new method to reduce its uncertainty
- \triangleright Compare the normalizations with the integrated luminosity and the $\mu^+\mu^-$ events

Current status:

- ✓ Blinding and unblinding strategies are defined and implemented

 Three steps of blinding:
 - 1. Statistics: use 5% of data sample, 2~5% accuracy achievable
 - 2. Form factor in MC: scale by $\pm 2\%$ with $m_{\pi\pi}$ -dependent function
 - 3. PID corrections: scale elements of correction matrices by $\pm 2\%$

Current status:

Blinding and unblinding strategies are defined and implemented

Three steps of blinding:

- 1. Statistics: use 5% of data sample, 2~5% accuracy achievable
- Main idea is preventing us from any bias! 2. Form factor in MC: scale by $\pm 2\%$ with $m_{\pi\pi}$ -dep
- **3. PID corrections**: scale elements of \sim

Current status:

✓ Blinding and unblinding strategies are defined and implemented

Three steps of blinding:

- 1. Statistics: use 5% of data sample, 2~5% accuracy achievable
- 2. Form factor in MC: scale by $\pm 2\%$ with $m_{\pi\pi}$ -dependent function
- 3. PID corrections: scale elements of correction matrices by $\pm 2\%$

Current status:

- ✓ Blinding and unblinding strategies are defined and implemented
- ✓ Event selection criteria are defined and frozen
- ✓ Dominant background is prompt $\pi^+\pi^-\pi^0$ event and evaluated via PWA
- ✓ Various corrections to efficiency are under finalization
- ✓ Systematic uncertainties under study
- ✓ Preparing documentation for internal review

Current status:

- Blinding and unblinding strategies are defined and implemented
- Event selection criteria are defined and frozen
- Dominant background is prompt $\pi^+\pi^-\pi^0$ event and evaluated via PWA
- Various corrections to efficiency are under finalization
- Systematic uncertainties under study

✓ Preparing documentation for internal review

Final result with accuracy of 0.5%:

- All the new data sets at $\sqrt{s} = 3.773$
- Integrated luminosity ~17 fb⁻¹
- 1C kinematic fit as nominal and 4C cross check
- Full PID and angular fit methods
- Investigation of NLO radiative effects
- Normalization to $\mu^+\mu^-$ events
- Blind analysis will be implemented

sources	Uncertainty (%)
Photon efficiency	$0.2 \rightarrow 0.0$
Tracking efficiency	$0.3 \rightarrow 0.2$
Pion ANN efficiency	0.2
Pion e-PID efficiency	$0.2 \rightarrow 0.0$
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction $\delta_{ extsf{FSR}}$	0.2
Vacuum polarization correction $\delta_{ m vac}$	0.2
Radiator function	$0.5 \rightarrow 0.0$
Luminosity $\mathcal{L}_{ ext{int}}$	$0.5 \rightarrow 0.0$
Sum	0.9 → 0.5

Important cross checks:

- Precise measurements with different methods: 4C and 1C kinematic fits
- \triangleright Compare the μ/π separation between ANN and fit on the angular distribution
- \triangleright Compare the normalization with the $\mu^+\mu^-$ events and the integrated luminosity
- Compare results obtained with data sets taken in different rounds

Final result with accuracy of 0.5%:

- All the new data sets at $\sqrt{s} = 3.773$
- Integrated luminosity ~17 fb⁻¹
- 1C kinematic fit as nominal and 4C cross check
- Full PID and angular fit methods
- Investigation of NLO radiative effects
- Normalization to $\mu^+\mu^-$ events
- Blind analysis will be implemented

sources Photon efficiency Tracking efficiency	Uncertainty (%) $0.2 \rightarrow 0.0$
v	$0.2 \rightarrow 0.0$
Tracking efficiency	
	$0.3 \rightarrow 0.2$
Pion ANN efficiency	0.2
Pion e-PID efficiency	$0.2 \rightarrow 0.0$
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction $\delta_{ t FSR}$	0.2
Vacuum polarization correction $\delta_{ m vac}$	0.2
Radiator function	$0.5 \rightarrow 0.0$
Luminosity $\mathcal{L}_{ ext{int}}$	$0.5 \rightarrow 0.0$
Sum	$0.9 \rightarrow 0.5$

Important cross checks:

Two PhD students work on this respectively!

- Precise measurements with different methods: 4C and lematic fits
- \triangleright Compare the μ/π separation between ANN and fit on the angular distribution
- \triangleright Compare the normalization with the $\mu^+\mu^-$ events and the integrated luminosity
- Compare results obtained with data sets taken in different rounds

Tagged ISR analysis: $e^+e^- \rightarrow \gamma_{\rm ISR}K^+K^-$

- Kaon identification based on energy loss (dE/dx) and TOF information
- 4C kinematic fit with the $K^+K^-\gamma$ hypothesis, $\chi^2_{4C} < 50$ and $\chi^2_{4C} < \chi^2_{4C,2\gamma}$ are required
- Data-driven method is used to estimate the remain background $K^+K^-\pi^0$ and $\pi^+\pi^-\pi^0$

- O Background ratios around the $\phi(1020)$ peak (mainly from $\pi^+\pi^-\pi^0$) is $\sim 0.1\%$
- \circ m_{KK} -independent detection efficiency (\sim 5%) below 2.0 GeV/ c^2
- O With all the available data samples, a statistical uncertainty of 0.9% is expected

Untagged ISR analysis: $e^+e^- \rightarrow (\gamma_{\rm ISR})K^+K^-$

- Kaon identification based on energy loss (dE/dx) and TOF information
- A missing ISR photon is implied by $|\cos\theta_{miss}| > 0.99$ where $P_{miss} = P_{c.m.} P_{K^+} P_{K^-}$
- Signal extracted by requiring $U_{\text{miss}} = E_{\text{miss}} p_{\text{miss}} \in [-0.1, 0.1] \text{ GeV}$

- \circ The $\phi(1020)$ peak is no longer accessible and the response matrix is diagonal
- \circ m_{KK} -dependent detection efficiency due to the boost effect of the missing ISR photon
- O Dominant background is from $K^+K^-\pi^0$ (~2.5%) and estimated via a data-driven method

Tagged ISR analysis: $e^+e^- \rightarrow \gamma_{\rm ISR}K_S^0K_L^0$

- A good identification of K_S^0 is required to improve the resolution of m_{KK}
- 1C kinematic fit with the K_L^0 missing to reserve sufficient statistics around $\phi(1020)$
- 3C kinematic fit with direction of K_L^0 tagged to suppress background above $\phi(1020)$

- O Roughly 50% signal events will be lost with tagging the K_L^0 direction in EMC
- \circ A joint analysis strategy combining 1C around $\phi(1020)$ and 3C above is preferred

R measurement via ISR below 2 GeV

New idea: determine hadronic mass via energy of ISR photon only!

Simple events selection:

- \triangleright 1 high-energetic photon at large polar angle: E > 1.2 GeV and $|\cos\theta| < 0.8$
- > At least one charged track in each event

Advantages:

- Very high efficiency due to boost of ISR photon
- Less reliant on description of hadronic MC
- Single measured down to threshold
- Fully inclusive for FSR and higher order ISR

Challenges:

- Significant QED backgrounds due to their higher cross section: dedicated PID needed
- Background from non-ISR hadronic events containing π^0/η : dedicated vetoes
- Limited resolution due to high energy of ISR photon: unfolding of hadronic mass spectrum

R measurement via ISR below 2 GeV

- Large smearing is caused by detector: track lost, photon energy leakage, ...
- An un-biased unfolding is crucial to recover the true hadronic mass spectrum
- Fractions and shapes of $\pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ channels in the signal MC samples producing response matrix are modified to test the unfolding method
- Unfolded spectra keep unchanged within the corresponding standard deviation

R measurement at scan points below 2 GeV

Comparison of R between inclusive and exclusive sum is of particular interest:

- ➤ KEDR results are consistent with exclusive sum within uncertainty
- Preliminary results of SND higher than exclusive sum by 10%
- > SND results reproduce the trend of the exclusive sum around proton threshold
- ➤ BESIII has taken 13 scan points of which the statistic uncertainties are less than 0.5%

R measurement at scan points below 2 GeV

Great efforts have been made at BESIII to measure R inclusively:

- Fractions and kinematics of few-body exclusive channels in MC is essential for efficiency
- > Two relatively different simulation models are utilized to address the systematic uncertainty
- \triangleright Final state radiations are included in the measured R values, which is evaluated as $\sim 0.15\%$
- Internal review has already started and final result will come next year

R measurement in open-charm region

There is more possibility of inclusive R measurement at BESIII:

Why R measurement in open-charm region?

- pQCD could not describe the data due to the existence of excited charmonium resonances
- Significant uncertainty in current data: 6~7% for BES-II and 10% for CrystalBall

Why BESIII could do better?

- Data at more that 100 scan-points with high luminosity: statistical uncertainty less than 0.3%
- All the few-body open-charm channels are measured: more reliable signal simulation
- Two extensively investigated signal simulation models: better understanding of sys. uncertainty

R measurement in open-charm region

There is more possibility of inclusive R measurement at BESIII:

Why R measurement in open-charm region?

- pQCD could not describe the data due to the existence of excited charmonium res
- All the few-body open-charm channels are Final result expected in next year!

 Two extensively investigated signal are properties of the signal are properties of

Why BESIII could do better?

- al uncertainty less than 0.3%
- Two extensively investigated signal simulation models: better understanding of sys. uncertainty

Summary

BESIII strongly engaged in providing experimental inputs to HVP!

Published results:

- ➤ Pion form factor with sub-percent precision between 600 ~ 900 MeV
- ➤ Most precise *R* measurement between 2.23 ~ 3.67 GeV

The best is still to come:

- \triangleright Pion form factor with $\mathcal{O}(0.7\%)$ precision
- ➤ Kaon form factor via tagged and untagged ISR methods
- ➤ Inclusive R measurement from threshold to 2.0 GeV via ISR
- ➤ Inclusive R measurement at 13 scan points from 1.84 to 2.0 GeV
- ➤ Inclusive R measurement in the open-charm region
- \triangleright Pion form factor with $\mathcal{O}(0.5\%)$