Dispersive HVP Updates from DHMZ

Comparisons among the $e^+e^- \rightarrow \pi^+\pi^-$ *measurements*

Bogdan MALAESCU

LPNHE, CNRS

In collaboration & useful discussions with:

Michel DAVIER, Andreas HOECKER, Anne-Marie LUTZ, Zhiqing ZHANG (DHLMZ) Andres PINTO, Léonard POLAT The BMW lattice QCD collaboration

8th Plenary Workshop of the Muon g-2 Theory Initiative Orsay

09/09/2025

Content of the talk

Introduction

Global / partial combinations for data comparisons

Quantitative direct comparisons among measurements

Conclusions

Hadronic Vacuum Polarization and Muon (g-2)_u

Dominant uncertainty for the theoretical prediction: from lowest-order HVP piece Cannot be calculated from pQCD (low E-scale), but one can use experimental data on e⁺e⁻ → hadrons cross section

- \rightarrow Precise $\sigma(e^+e^- \rightarrow hadrons)$ measurements at low energy are very important $\pi\pi$ channel: 73% (70%) of HVP contribution to a_{μ} (uncertainty ²)
- \rightarrow Alternatively, one can use hadronic τ decays data + Isospin Breaking corrections

B. Malaescu (CNRS) a HVP 3

We have an interesting, long standing, multifaceted problem to solve...

- → Comparisons of dispersive results for various experimental inputs depends on the method (fit/combination) used to cover missing energy ranges; misleading "penalization" for measurements covering low- and/or high-mass range, when comparing uncertainties → Aim for more direct comparisons
- → Preliminary BABAR 25 result not yet included in the comparisons presented later in this talk

Global combination for data comparisons

Experimental data combination (Example: $e^+e^- \rightarrow \pi^+\pi^-$ channel)

Procedure and software (*HVPTools - Since 2009*) for combining cross section data with arbitrary point spacing/binning → Validated through closure test. Featuring full & realistic (i.e. not too optimistic) treatment of uncertainties and correlations (between measurements (data points/bins) of a given experiment, b. experiments, b. different channels), fully accounting for systematic tensions between experiments.

Combination procedure implemented in HVPTools software

- → Define a (fine) final binning (to be filled and used for integrals etc.)
- → Linear/quadratic splines to interpolate between the points/bins of each experiment
 - for binned measurements: preserve integral inside each bin
 - closure test: replace nominal values of data points by Gounaris-Sakurai model and re-do the combination
 - \rightarrow (non-)negligible bias for (linear)quadratic interpolation
- → Fluctuate data points taking into account correlations & re-do the splines for each (pseudo-)experiment
 - each uncertainty fluctuated coherently for all the points/bins that it impacts
 - eigenvector decomposition for (statistical) covariance matrices
- → In each final bin, compute: average value for each measurement & its uncertainty; correlation matrix between experiments

Backup

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: relative differences

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: relative differences

Combination procedure: weights and tension

- \rightarrow For each narrow final bin minimize χ^2 to get average coefficients test locally the level of agreement
- → Average weights account for bin sizes/point-spacing of measurements: compare precisions on same footing

- → Average dominated by BaBar, CMD3, KLOE, SND20; BaBar covers full energy range
- \rightarrow Enhanced tensions, especially between KLOE & CMD3, which provide the smallest / largest cross-sections in the ρ region: clear indication of uncertainties on uncertainties (and on correlations) <u>Backup</u>
- → Calls for conservative uncertainty treatment in combination fit (fits / evaluation of weights)
- \rightarrow Systematic effects beyond the local χ^2 /ndof rescaling

<u>Backup</u>

Partial combinations for data comparisons

Comparisons with BaBar & CMD3 & Tau(+IB) combination

Comparisons with BaBar & CMD3 & Tau(+IB) combination

Comparisons among CMD2 & CMD3, through their average

- → Employing an average between CMD2 and CMD3 for comparing the two (sets of) measurements
- → Note: while here the CMD3 uncertainties were treated as independent of the CMD2 ones, it would be useful to discuss about possible *estimates* of the correlations among them.

Quantitative direct comparisons for pairs of measurements

Quantitative comparisons for a_{μ}^{HVP}

→ Comparison of integrals computed in various restricted energy ranges, for individual e⁺e⁻ experiments: significance of the pairwise differences between experiments, taking into account correlations

→ Largest tensions between CMD3 and KLOE

Quantitative comparisons for a_{μ}^{HVP}

 \rightarrow Comparison of integrals computed in various restricted energy ranges, for τ / individual e⁺e⁻ experiments: significance of the pairwise differences between experiments, taking into account correlations

- → Largest tensions between Tau and KLOE
- → Good agreement among the Tau measurements (<u>Backup</u>)

Quantitative comparisons: towards a more global picture for e⁺e⁻ data

 \rightarrow Considering all the e⁺e⁻ experiments fully covering a given energy range: numerous for ~narrow ranges

Quantitative comparisons: towards a more global picture for e⁺e⁻ data

Remarks and conclusions

- → Detailed quantitative comparisons among measurements provide insight into the current situation for the data inputs
- → Need *rigorous* and *realistic* treatment of uncertainties and correlations at all levels
- \rightarrow Caution about significance: for numerous input measurements, resulting $a_{\mu}^{\ \ HVP}$ uncertainty limited by non-Gaussian systematic effects

Backup

Combine cross section data: goal and requirements

- → Goal: combine experimental spectra with arbitrary point spacing / binning
- → Requirements:
- Properly propagate uncertainties and correlations
- Between measurements (data points/bins) of a given experiment (covariance matrices and/or detailed split of uncertainties in sub-components)
- *Between experiments* (common systematic uncertainties, e.g. VP) based on detailed information provided in publications
- Between different channels motivated by understanding of the meaning of systematic uncertainties and identifying the common ones

```
BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling); BABAR radiative corrections; 4\pi 2\pi^0 - \eta\omega CMD2 \eta\gamma - \pi^0\gamma; CMD2/3 luminosity; SND luminosity; FSR; hadronic VP (old experiments)
```

- Minimize biases
- Optimize g-2 integral uncertainty (without overestimating the precision with which the uncertainties of the measurements are known)

Back

Combination procedure implemented in HVPTools software

For each final bin:

- → Compute an average value for each measurement and its uncertainty
- → Compute correlation matrix between experiments
- \rightarrow Minimize χ^2 and get average coefficients (weights)
- → Compute average between experiments and its uncertainty

Evaluation of integrals and propagation of uncertainties:

- → Integral(s) evaluated for nominal result and for each set of toy pseudo-experiments; uncertainty of integrals from RMS of results for all toys
- → The pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections → Integral evaluation
- \rightarrow Uncertainties also propagated through $\pm 1\sigma$ shifts of each uncertainty:
 - allows to account for correlations between different channels (for integrals and spectra)
- → Checked consistency between the different approaches

Combination procedure: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

Note: average weights must account for bin sizes / point spacing of measurements (do not over-estimate the weight of experiments with large bins)

- → Weights in fine bins evaluated using a common (large) binning for measurements + interpolation
- → Compare the precisions on the same footing

- \rightarrow Bins used by KLOE larger than the ones by BABAR in ρ-ω interference region (factor ~3)
- → Average dominated by BaBar, CMD3, KLOE, SND20
 BaBar covering full range

Back

Combination procedure: compatibility between measurements

For each final bin:

- $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, taking into account correlations
- \rightarrow Scale uncertainties in bins with $\chi^2/\text{ndof} > 1$ (PDG): locally conservative; Adopted by KNT since '17

 \rightarrow Tension between measurements, especially between KLOE & CMD3, which provide the smallest / largest cross-sections in the ρ region:

Indication of underestimated uncertainties

Motivates conservative uncertainty treatment
in combination fit (evaluation of weights / fits based on
analyticity & unitarity to constrain uncertainties)

 \rightarrow Observed (systematic) tension between measurements, beyond the local χ^2 /ndof rescaling

→ (Since 2019) Included extra (dominant) uncertainty: 1/2 difference between integrals w/o either BABAR or KLOE

However, tensions are larger now and we need to understand their source!

CMD2 / CMD3 tension still open question.

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (DHMZ '19)

More on the combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (DHMZ '19)

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: weights and tension (DHMZ '19)

Combining the τ data in the $\pi\pi$ channel

 $\rightarrow \tau$ hadronic spectral functions ($\pi\pi^0$ channel) from various experiments

- → Normalisation: branching fractions best determined by ALEPH (large boost, high granularity)
- → Shape best determined by Belle (high statistics); improvements @ Belle II

Back

Combination: compatibility between measurements

For each final bin:

- $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, taking into account correlations
- \rightarrow Scale uncertainties in bins with $\chi^2/\text{ndof} > 1$ (PDG)

 \rightarrow Level of agreement significantly better than the one observed for $e^+e^- \rightarrow \pi^+\pi^-$ data

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data, BaBar & CMD3 & Tau(+IB)

 \rightarrow Motivated by the previous findings, combine τ , BABAR and CMD-3 spectra

Back

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data, BaBar & CMD3 & Tau(+IB)

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data, BaBar & CMD3 & Tau(+IB)

- \rightarrow Some tension between BaBar & CMD3 in the ρ region
- \rightarrow Much larger tension (slope and shift) when comparing KLOE with the BABAR + CMD-3 + τ combination

x 10⁻¹⁰

```
a_{\mu} [ 0.3 ; 1.8 GeV ] = 519.8 ±3.3 ( ±1.3(stat) ±3.1 (syst) ) Without applying the \chi^2/ndof rescaling of uncertainties: a_{\mu} [ 0.3 ; 1.8 GeV ] = 519.8 ±2.5 ( ±1.0 (stat) ±2.3 (syst) ) \rightarrow Coherent with DHLMZ value (2312.02053, EPJ C) obtained from average of BaBar, CMD3 and \tau integrals: 518.0 ±3.3 (after uncertainty rescaling x1.5) (Different e+e- combination to complete CMD3 energy range; Using fit of \tau data to complete their integral for [Thr.;0.36 GeV])
```

```
\begin{split} &a_{\mu}^{\ \ win} \ [\ 0.3\ ;\ 1.8\ GeV\ ] = 148.5\ \pm 1.0\ (\ \pm 0.4(stat)\ \pm 0.9\ (syst)\ ) \\ &Without\ applying\ the\ \chi^2/ndof\ rescaling\ of\ uncertainties: \\ &a_{\mu}^{\ \ win}\ [\ 0.3\ ;\ 1.8\ GeV\ ] = 148.5\ \pm 0.7\ (\ \pm 0.3\ (stat)\ \pm 0.6\ (syst)\ ) \end{split}
```

```
a_{\mu} [ 0.6; 0.9747 GeV ] = 394.6 ±2.5 ( ±1.3 (stat) ±2.2 (syst) ) Without applying the \chi^2/ndof rescaling of uncertainties: a_{\mu} [ 0.6; 0.9747 GeV ] = 394.6 ±1.8 ( ±0.9(stat) ±1.6 (syst) )
```

```
a_{\mu}^{\text{ win}} \left[ \ 0.6 \ ; \ 0.9747 \ GeV \ \right] = 127.4 \pm 0.8 \ ( \ \pm 0.4 \ (stat) \pm 0.7 \ (syst) \ ) Without applying the \chi^2/ndof rescaling of uncertainties: a_{\mu}^{\text{ win}} \left[ \ 0.6 \ ; \ 0.9747 \ GeV \ \right] = 127.4 \pm 0.6 \ ( \ \pm 0.3 (stat) \pm 0.5 \ (syst) \ )
```

 \rightarrow Still non-negligible effect of uncertainty enhancement through the local χ^2 /ndof rescaling; In addition, an extra uncertainty accounting for systematic deviations between measurements has to be added, as done for DHMZ'19

Ratios between measurements

- → Compute ratio between pairs of KLOE measurements
- → Full propagation of uncertainties and correlations using pseudo-experiments (agreement with analytical linear uncertainty propagation)

→ Good agreement between KLOE 10 and KLOE 12

Ratios between measurements

Direct comparison of the 3 KLOE measurements

→ Quantitative comparison between the ratios and unity, taking into account correlations

KLOE 10 / KLOE 08

χ^2 [0.35;0.85] GeV²: 79.0 / 50(DOF) p-value= 0.0056

$$\chi^2$$
 [0.35;0.58] GeV²: 46.2 / 23(DOF) p-value= 0.0028

$$\chi^2$$
 [0.58;0.85] GeV²: 29.7 / 27(DOF) p-value= 0.33

$$\chi^2$$
 [0.64;0.85] GeV²: 20.7 / 21(DOF) p-value= 0.47

KLOE 12 / KLOE 08

$$\chi^2$$
 [0.35;0.95] GeV² : 73.7 / 60(DOF) p-value= 0.11

$$\chi^2$$
 [0.35;0.58] GeV² : 21.8 / 23(DOF) p-value= 0.53

$$\chi^2$$
 [0.35;0.64] GeV² : 27.5 / 29(DOF) p-value= 0.55

$$\chi^2$$
 [0.64;0.95] GeV² : 39.4 / 31(DOF) p-value= 0.14

Quantitative comparisons of the KLOE measurements

- → Quantitative comparison between the ratios and unity, taking into account correlations
- → Fitting the ratio taking into account correlations
- \rightarrow Full propagation of uncertainties and correlations 3 methods yielding consistent results: $\pm 1\sigma$ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit


```
Comparison with Unity: \chi^2 [0.35;0.85] \text{ GeV}^2 : 79.0 / 50(\text{DOF}) p-value= 0.0056 \chi^2 [0.35;0.58] \text{ GeV}^2 : 46.2 / 23(\text{DOF}) p-value= 0.0028 \chi^2 [p0 + p1\sqrt{s}]: 36.1 / 21(\text{DOF}) p-value= 0.02 p0: 0.745 \pm 0.085 p1: 0.341 \pm 0.117
```

- → Significant shift & slope (~2.5-3 σ) at low \sqrt{s} , no significant shift at high \sqrt{s} Similar shift & slope for KLOE 12 / KLOE 08 (see below)
- → Should motivate conservative treatment of uncertainties and correlations in combination

Direct comparison of the 3 KLOE measurements

- → Fitting the ratio taking into account correlations
- \rightarrow Full propagation of uncertainties and correlations 3 methods yielding consistent results: $\pm 1\sigma$ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

$$\chi^2$$
 [p0 + p1 \sqrt{s}]: 20.7 / 27(DOF)
p-value= 0.80

p0: 0.876 ± 0.056 p1: 0.159 ± 0.081

 \rightarrow Significant shift and slope (~2 σ) at low \sqrt{s} , no significant shift at high \sqrt{s}

Direct comparison of the 3 KLOE measurements

p-value= 0.02

 $p0: 0.745 \pm 0.085$ p1: 0.341 ± 0.117

→ Significant shift and slope ($\sim 2.5-3\sigma$) at low \sqrt{s} , no significant shift at high √s

√s [GeV]

Local comparison of the 3 KLOE measurements

- \rightarrow Local χ^2 /ndof test of the local compatibility between KLOE 08 & 10 & 12, taking into account the correlations: some tensions observed
- → Does not probe general trends of the difference between the measurements (e.g. slopes in the ratio)

Combining the 3 KLOE measurements

Comparison of / consequences for combination methods

Analysis aspect	DHMZ	KNTW			
Blinding	Not necessary (No ad-hoc choices to make)	Included for upcoming update			
Binning	Fine (≤ 1 MeV) final binning for average and integrals. Large (O(100 MeV) or less) common binning @ intermediate step: compare statistics of experiments coherently for deriving weights in fine bins.	Re-bin data into "clusters". Scans over cluster configurations for optimisation.			
Closure test	Using model for spectrum: negligible bias. (since 2009)	Not performed			
Additional constraints	Analyticity constraints for 2π channel.	None			
Fitting	 χ² minimisation with correlated uncertainties incorporated locally (in fine & large bins), for deriving weights. Full propagation of uncertainties & correlations. 	χ^2 minimisation with correlated uncertainties incorporated globally.			
Integration / interpolation	Av. of quadratic splines (3 rd order polynomial), integral preservation in bins of measurements. Analyticity-based function for 2π (< 0.6 GeV).	Trapezoidal for continuum, quintic for resonances.			
Uncertainty inflation	Local χ ² uncertainty inflation. (since 2009) Extra BABAR-KLOE systematic. (since 2019)	Local χ ² uncertainty inflation. (adopted since 2017)			
Inter-channel correlations	Taken into account. (since 2010)	Not included.			
Missing channels	Estimated based on isospin symmetry. (since 1997 - ADH)	Adopted in subsequent updates			
I DIDAZ/IZNITWI	1: CC				

[→] Large DHMZ/KNTW differences for the resulting uncertainties, as well as for the shapes of the combined spectra

WP TI DHMZ19 KNT19 $a_{\mu}^{\text{HVP, LO}} \times 10^{10}$ 694.0(4.0) 692.8(2.4)

B. Malaescu (CNRS) a_u HVP 43

 $[\]rightarrow$ CHKLS approach for 2π and 3π : Analyticity and global χ^2 fit

Uncertainties on uncertainties and on correlations

Topic of general interest, in other fields too

<u>1908.00921</u>(DHMZ), <u>2006.04822</u>(WP Theory Initiative)

Back

Uncertainties on uncertainties and correlations

Numerous indications of uncertainties on uncertainties and on correlations, with a direct impact on combination fits

- → Shapes of systematic uncertainties *evaluated* in ~wide mass ranges with sharp transitions
- → One standard deviation is statistically not well defined for systematic uncertainties
- → Systematic uncertainties like acceptance, tracking efficiency, background etc. not necessarily fully correlated between low and high mass
- → Are all systematic uncertainty components fully independent between each-other? (e.g. tracking / trigger)
- → Yield uncertainties on uncertainties and on correlations
- → Tensions between measurements (BABAR/KLOE/CMD3; 3 KLOE results etc.): experimental indications of underestimated uncertainties
- \rightarrow Statistical methods (χ^2 with correlations, likelihood fits, ratios of measured quantities etc.) should not over-exploit the information on the amplitude and correlations of uncertainties

Topic of general interest, in other fields too (e.g. ATLAS JES and Jet Xsec studies)

Two different approaches for combining (e⁺e⁻) data

DHMZ:

- $\rightarrow \chi^2$ computed locally (in each fine bin), taking into account correlations between measurements (see previous slides)
- → Used to determine the weights on the measurements in the combination and their level of agreement
- \rightarrow Uncertainties and correlations propagated using pseudo-experiments or $\pm 1\sigma$ shifts of each uncertainty component

KNTW:

 $\rightarrow \chi^2$ computed globally (for full mass range)

$$\chi_I^2 = \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{N_{\text{tot}}} \left(R_i^{(m)} - \mathcal{R}_m^{i,I} \right) \mathbf{C}_I^{-1} \left(i^{(m)}, j^{(n)} \right) \left(R_j^{(n)} - \mathcal{R}_n^{j,I} \right)$$
KNT (1802.02995)

$$\chi^{2} = \sum_{i=0}^{195} \sum_{j=0}^{195} \left(\sigma_{\pi\pi(\gamma)}^{0}(i) - \bar{\sigma}_{\pi\pi(\gamma)}^{0}(m) \right) \mathbf{C}^{-1} \left(i^{(m)}, j^{(n)} \right) \left(\sigma_{\pi\pi(\gamma)}^{0}(j) - \bar{\sigma}_{\pi\pi(\gamma)}^{0}(n) \right)$$
 KLOE-KMT (1711.03085)

- → relies on description of correlations on long ranges
- \rightarrow One of the main sources of differences for the uncertainty on a_{μ}

Evaluation of uncertainties and correlations (e⁺e⁻)

	$\sigma_{\pi\pi\gamma}$	$\sigma_{\pi\pi}^0$	F_{π}	$\Delta^{\pi\pi}a_{\mu}$		
Reconstruction Filter	negligible					
Background subtraction	-	$\Gamma ab. 1$	0.3%			
Trackmass	0.2%					
Pion cluster ID	negligible					
Tracking efficiency	0.3%					
Trigger efficiency	0.1%					
Acceptance	Tab. 2			0.2%		
Unfolding	r	$\Gamma ab. 3$	negligible			
L3 filter	0.1%					
\sqrt{s} dependence of H	-	Tab	. 4	0.2%		
Luminosity	0.3%					
Experimental systematics				0.6%		
FSR resummation	- 0.3%			3%		
Radiator function H	- 0.5			5%		
Vacuum Polarization	-	0.1%	_	0.1%		
Theory systematics		***	3.	0.6%		

→ Systematics *evaluated* in ~wide mass ranges with sharp transitions

Ī	$M_{\pi\pi}^2$ range (GeV ²)	Systematic error (%)
Ī	$0.35 \le M_{\pi\pi}^2 < 0.39$	0.6
١	$0.39 \le M_{\pi\pi}^2 < 0.43$	0.5
٠	$0.43 \le M_{\pi\pi}^2 < 0.45$	0.4
١	$0.45 \le M_{\pi\pi}^2 < 0.49$	0.3
	$0.49 \le M_{\pi\pi}^2 < 0.51$	0.2
	$0.51 \le M_{\pi\pi}^2 < 0.64$	0.1
	$0.64 \le M_{\pi\pi}^2 < 0.95$	5-

KLOE 08 (0809.3950)

KLOE 10 (1006.5313)

	$\sigma_{\pi\pi\gamma}$	$\sigma_{\pi\pi}^{\mathrm{bare}}$	$ F_{\pi} ^2$	$\Delta a_{\mu}^{\pi\pi}$		
	threshold ; ρ -peak			$(0.1 - 0.85 \text{ GeV}^2)$		
Background Filter	1.3	0.5% ; 0.1%	0	negligible		
Background subtraction	1	3.4% ; 0.1%	ó	0.5%		
$f_0 + \rho \pi$ bkg.	1	6.5%; negl	0.4%			
Ω cut		1.4%; negl		0.2%		
Trackmass cut		3.0% ; 0.2%	0	0.5%		
π -e PID	18	0.3%; negl		negligible		
Trigger	0.3% ; 0.2%			0.2%		
Acceptance	8	1.9% ; 0.3%	0.5%			
Unfolding		negl.; 2.0%	0	negligible		
Tracking	0.3%					
Software Trigger (L3)			0.1%			
Luminosity			0.3%			
Experimental syst.				1.0%		
FSR treatment	-	7% ; n	egl.	0.8%		
Radiator function H	- 0.:		5%			
Vacuum Polarization	-	Ref. [34]	-	0.1%		
Theory syst.			•	0.9%		

Evaluation of uncertainties and correlations (e⁺e⁻)

Sources	0.3 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.9	0.9 - 1.2	1.2 - 1.4	1.4-2.0	2.0 - 3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.7	0.6	0.4	0.4
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
π -ID	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi\pi/\mu\mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4

BABAR (1205.2228)

→ Systematics *evaluated* in ~wide mass ranges with sharp transitions (statistics limitations when going to narrow ranges)

Combining the 3 KLOE measurements

Information propagated between mass regions, through shifts of systematics - relying on correlations, amplitudes and shapes of systematics (KLOE-KT)

Combining the 3 KLOE measurements - $a_{\mu}^{\pi\pi}$ contribution

```
KLOE08 a_{\mu}[0.6; 0.9]: 368.3 \pm 3.2 [10^{-10}]

KLOE10 a_{\mu}[0.6; 0.9]: 365.6 \pm 3.3

KLOE12 a_{\mu}[0.6; 0.9]: 366.8 \pm 2.5

\rightarrow Correlation matrix:

\begin{vmatrix} 08 & 1 & 10 & 12 & 12 \\ 0.70 & 1 & 0.19 \\ 12 & 0.35 & 0.19 & 1 \end{vmatrix}
```

- → Amount of independent information provided by each measurement
- \rightarrow KLOE-08-10-12(DHMZ) $a_{11}[0.6; 0.9]: 366.5 \pm 2.8$ (Without χ^2 rescaling: ± 2.2)
- → Conservative treatment of uncertainties and correlations (*not perfectly known*) in weight determination
- \rightarrow KLOE-08-10-12(KLOE-KT) $a_{ii}[0.6 ; 0.9]$ GeV : 366.9 ± 2.2 (Includes χ^2 rescaling)
- → Assuming perfect knowledge of the correlations to minimize average uncertainty

Uncertainties on ATLAS JES correlations

→ Derived two alternative configurations with stronger/weaker correlations w.r.t. nominal

(Inspired remarks about uncertainties on uncertainties for combinations of hadronic spectra)

Nominal correlation matrix

Strong - Weak correlation scenarios

χ^2 definitions and properties

$$\chi^{2}(\mathbf{d}; \mathbf{t}) = \sum_{i,j} (d_{i} - t_{i}) \cdot \left[C^{-1}(\mathbf{t}) \right]_{ij} \cdot (d_{j} - t_{j}) \qquad C_{ij} = C_{ij}^{\text{stat}} + \sum_{k} s_{i}^{k} \cdot s_{j}^{k}$$

$$\chi^{2}(\mathbf{d}; \mathbf{t}) = \min_{\beta_{a}} \left\{ \sum_{i,j} \left[d_{i} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{i} \right) t_{i} \right] \cdot \left[C_{\text{su}}^{-1}(\mathbf{t}) \right]_{ij} \cdot \left[C_{\text{su}}^{-1}(\mathbf{t}) \right]_{ij} \right\}$$

$$\cdot \left[d_{j} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{j} \right) t_{j} \right] + \sum_{a} \beta_{a}^{2} \right\},$$

- \rightarrow Two χ^2 definitions, with systematic uncertainties included in covariance matrix or treated as fitted "nuisance parameters"
- → Equivalent for symmetric Gaussian uncertainties (1312.3524 ATLAS)
- → Both approaches assume the knowledge of the amplitude, shape (phase-space dependence) and correlations of systematic uncertainties

Back