Dispersive evaluation of the two-pion channel of HVP

Thomas Leplumey

Laboratoire Leprince Ringuet — Ecole Polytechnique

in collaboration with Peter Stoffer

Based on the Colangelo-Hoferichter-Kubis-Leplumey-Stoffer (CHKLS) framework

 8^{th} plenary workshop of the muon g-2 theory initiative IJCLab, Orsay, September 9, 2024

OUTLINE

- 1. Introduction
- 2. MODEL-INDEPENDENT DESCRIPTION OF THE PION VFF
- 3. Parameterization of the inelasticities
- 4. METHODOLOGY FOR PARAMETER INFERENCE
- 5. RESULTS FOR THE 2-PION CONTRIBUTIONS TO THE HVP
- 6. Results for other observables and correlations with $a_{\mu}^{\pi\pi}$
- 7. CONCLUSION AND FUTURE PROSPECTS

$\pi\pi$ channel of HVP

- $\pi\pi$ channel is the dominant source of uncertainty in HVP
- Many discrepancies remain between $e^+e^- \to \pi^+\pi^-$ experiments

$$a_{\mu}^{\text{HVP}(\pi\pi)} = \frac{m_{\mu}^2}{4\pi^2} \int_{s_{\text{thr}}}^{\infty} \frac{\hat{K}(s)}{s} \sigma(e^+e^- \to \pi^+\pi^-(+\gamma))$$

$\pi\pi$ channel of HVP

- $\pi\pi$ channel is the dominant source of uncertainty in HVP
- Many discrepancies remain between $e^+e^- \to \pi^+\pi^-$ experiments
- How can we use theory inputs to shed light on these puzzles?

$$a_{\mu}^{\text{HVP}(\pi\pi)} = \frac{m_{\mu}^2}{4\pi^2} \int_{s_{\text{thr}}}^{\infty} \frac{\hat{K}(s)}{s} \sigma(e^+e^- \to \pi^+\pi^-(+\gamma))$$

$$= -ie(p'-p)^{\mu}F_{\pi}^{V}(s)$$

$$= -ie(p'-p)^{\mu}F_{\pi}^{V}(s)$$
PION VECTOR FORM FACTOR

THE PION VECTOR FORM FACTOR (VFF)

$$=-ie(p'-p)^{\mu}F_{\pi}^{V}(s)$$

$$\pi^{+}$$

- Unitarity: The VFF can be decomposed into intermediate states contributions
- Analiticity: The knowledge of the VFF above threshold implies its knowledge everywhere
- With theory input on the channels $(\pi^+\pi^-, \pi^0\gamma, 3\pi[\omega, ...], 4\pi[\pi^0\omega, ...],$ etc.) we can write a model-independent parameterized closed form of the VFF that we can fit to data

$$= \sqrt{+ \sqrt{+ \cdots}} + \cdots$$

Model-independent description of the pion VFF

Unitarity and analyticity applied to the VFF

Decomposition of the VFF in terms of intermediate states

Caprini, Colangelo, Leutwyler, Eur.Phys.J.C 72 (2012) 1860

Depends only on the *elastic* phase shift $\delta_1^1(s)$ of the P-wave $= -ie(p'-p)^{\mu}F_{\pi}^V(s)$ in the isospin I = 1 channel

$$=-ie(p'-p)^{\mu}F_{\pi}^{V}(s)$$

$$t_1^1(s) = \frac{\sin \delta_1^1(s)e^{i\delta_1^1(s)}}{\sigma_\pi(s)} + \cdots$$

Roy equations

→ Solution for $\delta_1^1(s)$ below ≈ 1.15 GeV

DISPERSIVE REPRESENTATION OF THE VFF

• Omnès function with elastic $\pi\pi$ -scattering P-wave phase shift $\delta_1^1(s)$ as input:

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

DISPERSIVE REPRESENTATION OF THE VFF

Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

• Isospin-breaking 3π intermediate state: negligible apart from ω and ϕ resonances (mixing with the ρ resonance)

$$G_{\omega}(s) = 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\mathrm{Im}g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}}\right)^4 + \mathrm{additi}$$

$$g_{\omega}(s) = 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s} + \mathrm{additi}$$

Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

- + additional terms $\propto Im\epsilon_{\omega}$ to account for $\pi^0\gamma$ effects
- + additional terms for ϕ resonance

DISPERSIVE REPRESENTATION OF THE VFF

Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

$$F_{\pi}^{V}(s) = \Omega_{1}^{1}(s) \times G_{\omega(\phi)}(s) \times G_{\text{in}}(s)$$

- Heavier intermediate states: 4π (mainly $\pi^0\omega$), $K\overline{K}$, ...
- Description with a cut starting at the $\pi^0\omega$ threshold: $s_{
 m in}=(M_{\pi^0}+M_\omega)^2$
- P-wave behavior imposed near the threshold

$$\text{Im } G_{\text{in}}(s) \sim (s - s_{\text{in}})^{3/2}$$

ightarrow Need an explicit parameterization of $G_{
m in}$

CONFORMAL MAPPING

• Implements branch cut + asymptotic behavior $z(s) = \frac{\sqrt{s_{\rm in} - s_c} - \sqrt{s_{\rm in} - s}}{\sqrt{s_{\rm in} - s_c} + \sqrt{s_{\rm in} - s}}$

• Thus, the inelastic factor is conveniently written as a function of z(s)

PREVIOUS ANALYSES

• In our previous analyses, G_{in} was described as a polynomial in z:

$$G_{
m in}(z)=1+\sum_{k=1}^N\left(z^k-z_0^k
ight)$$
 Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

which is able to fit the data up to $\approx 1 \text{GeV}$ for degrees $N = 2 \dots 6$

- Our last analysis investigated the impact of the zeros in the first Riemann Sheet
 - Excluding these zeros resolves some instabilities and variability of the fits with N
 - Excluding zeros does not degrade the goodness of fit

Leplumey, Stoffer, arXiv:2501.09643

- The fitted zeros were already excluded by analyticity constraints
- Zeros are excluded by χ PT: all the zeros must be outside of the range of validity of χ PT

Leutwyler, Continuous advances in QCD (2002) 23-40

• In addition, we also implemented a zero-free semi-model-dependent description of the inelasticities (dispersively improved Gounaris-Sakurai functions) to fit the high-energy data (up to 3 GeV) and check consistency

Ruiz Arriola, Sanchez-Puertas, arXiv 2403.07121

Phys.Rev.Lett 21 (1968) 244-247

New implementation of the inelasticities

ALTERNATIVE DESCRIPTIONS OF THE VFF

Alternative descriptions of the VFF use a conformal description from the elastic threshold $4M_{\pi}^2$ and incorporate an **outer function** (OF)

$$F_{\pi}^{V}(s) = \frac{1}{\phi(z_{\pi\pi})} \sum_{k=1}^{N} a_k z_{\pi\pi}^{k}$$

Buck, Lebed, Phys.Rev.D 58 (1998) 056001

Ananthanarayan, Caprini, Imsong, Phys.Rev.D 83 (2011) 096002

With the motivation of incorporating dispersive bounds written as

$$\frac{1}{2\pi i} \int_C \frac{dz}{z} \left| \phi(z) F_{\pi}^V(z) \right|^2 \le 1 \qquad \longrightarrow \qquad \sum_{k=0}^N |a_k|^2 \le 1$$

Such an OF can improve the convergence of the conformal expansion by setting this orthogonality constraint

CHOICE OF OUTER FUNCTION

One common choice of OF is the following

- $s_c = -1 \ {
 m GeV^2}$: central point for conformal transformation
- s_0 : branch cut threshold
- $Q^2 = -q^2 = -1 \text{ GeV}^2$: point where the bound is evaluated

$$\phi(z) \propto \left[\sqrt{1 - \frac{s_c}{s_0}} (1 - z) + (1 + z) \right]^{-1/2} \left[\sqrt{1 + \frac{Q^2}{s_0}} (1 + z) + \sqrt{1 - \frac{s_c}{s_0}} (1 - z) \right]^{-3}$$

• The initial motivation is a dispersive bound on the $\pi\pi$ channel of HVP

$$\frac{1}{\pi} \int_0^\infty ds \, \frac{\Pi_J^T(s)|_{\pi\pi}}{(s-q^2)^3} \le \left[\frac{1}{2} \frac{\partial^2 \Pi_J^T}{\partial^2 (q^2)^2} \right]_{\text{pQCD}}$$

Buck, Lebed, Phys.Rev.D 58 (1998) 056001

Kirk, Kubis, Reboud, van Dyk, Phys.Lett.B 861 (2025) 139266

- This OF mainly contains information on the two-body kinematics
- Supplemented by Blaschke factor corrections to remove sub-threshold singularities and correct the behavior at threshold and infinity

ADAPTATION OF THE OMNÈS PARAMETERIZATION

- The dispersive bound is saturated only at $\approx 45\%$, and therefore cannot be used to constrain any data fit
- Still, this OF is relevant to describe the **effective two-body kinematics** at $\pi^0\omega$ threshold

$$G_{\rm in}(z) = \frac{1}{\phi(z)} P_N(z)$$

 It can be further complemented by the introduction of explicit poles in order to describe the resonances visible in multi-GeV data

> Kirk, Kubis, Reboud, van Dyk, Phys.Lett.B 861 (2025) 139266

$$G_{\rm in}(z) = \frac{1}{\phi(z)} \frac{P_N(z)}{\prod_j (z - z_j)(z - z_j^*)}$$

FIT OF THE VFF

- Different fits are performed:
 - Fits to sub-GeV data only without explicit resonance poles in the parameterization (e.g. left)
 - Full-range fits with three explicit resonance poles in the parameterization (e.g. right)

IMPROVED METHODOLOGY FOR PARAMETER INFERENCE

Model and parameters

$$F_{\pi}^{V}(s) = \Omega_{1}^{1}(s) \times G_{\omega(\phi)}(s) \times G_{\mathrm{in}}(s)$$

2 parameters: Value of $\delta_1^1(s)$ at 2 particular points

3 parameters:

 M_{ω} , $\mathrm{Re}\;\epsilon_{\omega}$, $\mathrm{Im}\;\epsilon_{\omega}$ (+ $\mathrm{Re}\;\epsilon_{\phi}$, $\mathrm{Im}\;\epsilon_{\phi}$ when ϕ visible in data)

N-1 parameters:

 C_2 , ..., C_N (+ 2 × $n_{
m poles}$ for full-range fits)

- Multiple fits to individual experiments:
 - Direct-scan: SND06, CMD-2, SND20, CMD-3
 - Radiative-return: BaBar, KLOE, BESIII

• Use of unbiased fitting to avoid the d'Agostini bias

NNPDF Collaboration, JHEP 05 (2010) 075

D'Agostini, Nucl.Instrum.Meth.A 362 (1995) 487-498

BAYESIAN INFERENCE

The inference is based on a χ^2 -like negative log-likelihood:

$$\chi^2 = \chi^2_{\rm data} + \chi^2_{\rm EL} + \chi^2_{\rm zeros} + \chi^2_{\rm syst}$$

- Data constraint: $\chi^2_{\mathrm{data}} = \left[\sigma(s_i, \theta) \sigma_i\right]^{\mathrm{T}} \Sigma^{-1} \left[\sigma(s_i, \theta) \sigma_i\right]$
- Eidelman-Łukaszuk bound: upper bound on the inelastic phase of the VFF close to the inelastic threshold, constrained by external experimental data

 | Eidelman, Łukaszuk, | Phys.Lett.B 582 (2004) 27-31

Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

- Sum-rule constraint for the absence of zeros $\frac{\sqrt{s_{\rm in}}}{\pi} \int_{s_{\rm in}}^{\infty} \frac{ds}{(s-s_{\rm in})^{3/2}} \log \left| \frac{G_{\rm in}(s)}{G_{\rm in}(s_{\rm in})} \right| = 0$
- Prior constraints on the model systematics parameters
 - Roy equation parameters, Γ_{ω} , M_{ϕ} , Γ_{ϕ} , S_c , asymptotic extrapolation of δ_1^1

BAYESIAN INFERENCE

- Separate fits are performed for each value of N (degree of the conformal polynomial)
- Under Gaussianity, we derive the posterior for each fit separately against data D:
 - Studies have been performed to ensure Gaussianity hypothesis is nearly correct and conservative in our case

$$(\theta|D,N) \sim \mathcal{N}(\hat{\theta}_N,\hat{\Sigma}_N)$$

The posteriors are then marginalized over N

$$p(\theta|D) = \sum_{N} p(\theta|D, N)p(N|D)$$

• If N has a flat (or exponential) prior, then one can show that

$$p(N|D) \simeq \exp\left(-\frac{1}{2}\left(\chi_N^2(\hat{\theta}_N) + \alpha N\right)\right)$$

- $\alpha \sim \log |D|$ would hold for very large dataset (Bayesian information)
- Smaller α tend to be more conservative & accurate if none of the models is exact (e.g. $\alpha=2$ for Akaike information)
- We choose $\alpha=1$ for our nominal inference, which penalizes the addition of one parameter by one χ^2 unit

Results for $a_{\mu}^{\mathrm{HVP,LO}}[\pi\pi,e^{+}e^{-}]$

RESULT FOR $a_{\mu}^{\mathrm{HVP,LO}}[\pi\pi,e^{+}e^{-}]$ BELOW 1GEV

- All the datasets are truncated at 1 GeV
- No resonance poles are explicitly introduced in the inelastic factor

RESULT FOR $a_{\mu}^{\mathrm{HVP,LO}}[\pi\pi,e^{+}e^{-}]$

- All the datasets marked with a * are combined with BaBar data above 1.4 GeV
- 3 resonance poles are explicitly fitted in the parameterization (ρ' , ρ'' and ρ''')

Consistency in $a_{\mu}^{\mathrm{HVP,LO}}[\pi\pi,e^{+}e^{-}]$ below 1GeV

Very good consistency is observed between sub-GeV and multi-GeV fits!

- Sub-GeV fits
- Full-range fits

COMPARISONS WITH OUR PREVIOUS ANALYSIS

- Very good consistency is observed with our previous analysis
- The new analysis allows better interpretability of the credible intervals

COMPARISONS WITH WP25

• Our results remain compatible with other approaches

WP25: Fig. 26

EUCLIDEAN WINDOWS

- The different euclidean windows are actually very correlated by the data fit
- Therefore, the discrepancies
 propagate to all the windows, even at very long distance!

Very-long-distance window — **sub-GeV description**

COMMENT ABOUT THE DATA CORRELATIONS OF CMD-3

- Some concerns have been raised about the impact of correlations in CMD-3 data
 - For direct integration, fully correlated covariance is clearly the most conservative
 - However, it is less clear *a priori* whether this choice is conservative or not in our framework
- In our last analysis, we implemented a "decorrelation scheme" to evaluate this:

- Smaller correlations lead to higher value of $a_{\mu}^{\pi\pi}$ and smaller uncertainty!
 - Full correlations allow global scale effects → analyticity constraints seem to pull the VFF down
 - Zero/negative correlations constrain the fit to be closer to the central values of the data points

COMMENT ABOUT THE DATA CORRELATIONS OF CMD-3

• To assess this issue, we tried tuning the covariance a posteriori to get the largest posterior uncertainty in $a_{\mu}^{\pi\pi}$ (\rightarrow expected to be the most conservative choice)

$$Corr(\sigma_i, \sigma_j) = sign\left(\frac{\partial a_{\mu}^{\pi\pi}}{\partial \sigma_i} \times \frac{\partial a_{\mu}^{\pi\pi}}{\partial \sigma_j}\right)$$

- However, the a posteriori conservative covariance depends on the starting point
 - Starting from the fully correlated best-fit point, the conservative option is consistently the fully correlated covariance matrix
 - Starting from the uncorrelated best-fit point, the conservative option contains anticorrelations between different energy regions, but the overall uncertainty remains smaller
- Without a clear prescription yet, we decided to stick to the full corr. prescription
 - This makes the interpretation and comparison with other results easier
 - This choice does not overestimate the discrepancy with other experiments

RESULTS FOR OTHER OBSERVABLES

RESULT FOR THE ELASTIC PHASE SHIFT

- The elastic contributions are described by the elastic phase shift δ_1^1
- Small disagreements are found between CMD-3 and other experiments

Result for the ω parameters

- The impact of the ω resonance is described with 3 parameters:
 - M_{ω} : The ω mass
 - Re(ϵ_{ω}): The scale of 3π channel effects
 - $\operatorname{Im}(\epsilon_{\omega})$: The scale of $\pi^0 \gamma$ channel effects

Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

RESULT FOR THE PION CHARGE RADIUS — SUB-GEV FITS

- The impact of marginalizing on N is much more visible in the charge radius
- This appears as large non-Gaussianities in the posterior distributions

RESULT FOR THE PION CHARGE RADIUS — FULL-RANGE FITS

- However, better Gaussianity is restored in multi-GeV fits
- Multi-GeV data helps a lot in reducing the variability of the result with N

IMPACT OF ZEROS IN THE FIRST RIEMANN SHEET

- Excluding zeros reduces a lot the variability with N for sub-GeV fits
- However, the impact of zeros is almost invisible in multi-GeV fits even in $\langle r_{\pi}^2 \rangle$

THOMAS LEPLUMEY

Unconstrained fits

IMPACT OF MULTI-GEV DATA ON THE PION CHARGE RADIUS

- Small variations are observed (although always less than $\sim 1\sigma$)
- The inclusion of multi-GeV data systematically reduces the value of $\langle r_{\pi}^2 \rangle$

- Sub-GeV fits
- Full-range fits

CORRELATION WITH $a_{\mu}^{ m HVP,LO}[\pi\pi,e^+e^-]$

- Strong correlations are observed between $\langle r_\pi^2 \rangle$ and $a_\mu^{\pi\pi}$, both within each fit and between the fits
- Therefore, an independent lattice calculation of $\langle r_\pi^2 \rangle$ could provide valuable insights on the observed discrepancies in $a_\mu^{\pi\pi}$

Impact of a future lattice determination of $\langle r_\pi^2 angle$

- The impact of a future precise lattice calculation of $\langle r_\pi^2 \rangle$ can be assessed by the expected discrepancy with current results
 - The current world-leading χ QCD result has $\sigma \sim 0.014~{\rm fm^2}$: more precision would be needed
 - A precision of $0.003~{\rm fm^2}$ (factor 4.6 reduction) would suffice to get $\sim 1.5\sigma$ tension with at least one experiment up to 3σ in many cases

Impact of a future lattice determination of $\langle r_{\pi}^2 angle$

- An alternative probe to the charge radius could be values of the VFF at fixed spacelike Q²
 - Values further from $Q^2=0$ are much easier to access on the lattice
 - A compromise has to be found with the increasing fit uncertainty at larger Q^2

CONCLUSION

- Pion VFF representation incorporating dispersive constraints with reduced model dependence on full energy range
 - Determinations of $a_{\mu}^{\pi\pi}$ are stable and robust under multiple parameterization changes
 - Unitarity and analyticity constraints propagate the discrepancies to the whole energy range, including the very-long-distance window
- The correlations with the pion charge radius might be very helpful to probe the discrepancies if a precise lattice calculation of the charge radius arises
 - Removing zeros in the physical sheet helps a lot in stabilizing the result for sub-GeV fits
 - Nevertheless, full-range fits are nearly insensitive to the constraint and naturally exclude zeros

→ Spacelike values of the VFF might prove very valuable for comparison with lattice calculations!

BACKUP

IMPACT OF ZEROS IN THE FIRST RIEMANN SHEET

• The constraint of having no zeros is almost uneffective on $a_{\mu}^{\pi\pi}$ alone

Constrained fits

--- Unconstrained fits

EUCLIDEAN WINDOWS

- The discrepancies are particularly visible in the intermediate window
- Still, very large discrepancies remain even at very long distance!

COMPARISONS WITH OUR PREVIOUS ANALYSIS

- In sub-GeV fits, our new treatment of the systematics reduces the uncertainties
- In multi-GeV fits, switching to a less model-dependent parameterization slightly increased the uncertainties and shifted some of the results

