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77T CHANNEL OF HVP

e tit channel is the dominant source of uncertainty in HVP
* Many discrepancies remain between ete™ » wtm™ experiments
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77T CHANNEL OF HVP

e tit channel is the dominant source of uncertainty in HVP
* Many discrepancies remain between ete™ » wtm™ experiments
* How can we use theory inputs to shed light on these puzzles?
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THE PION VECTOR FORM FACTOR (VFF)

r — N
= —ie(p’ — p)*Fy(s)
q mt y

* Unitarity: The VFF can be decomposed into intermediate states contributions

* Analiticity: The knowledge of the VFF above threshold implies its knowledge everywhere

* With theory input on the channels (t*n~, n°y, 3r|w, ...], 4n[rlw, ...], etc.) we
can write a model-independent parameterized closed form of the VFF that we

can fit to data |
wd = «@<+w@<+...
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MODEL-INDEPENDENT DESCRIPTION OF THE PION VFF
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UNITARITY AND ANALYTICITY APPLIED TO THE VFF

* Decomposition of the VFF in terms of intermediate states

|

|

| I :
Caprini, Colangelo, Leutwyler, |
Eur.Phys.J.C 72 (2012) 1860 : |

( : TTTT RE-SCATTERING —\
| | Depends only on the elastic
_ >{}< + ... | phase shift 6{(s) of the P-wave = —ie(p’ — p)HEY (s)
. i in the isospin I = 1 channel
- ! J
-c1 4 H A
, <in 5% (5)67’51(3) Roy equations
— ...
t1(s) o (5) | . —» Solution for 61 (s) below = 1.15 GeVJ
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DISPERSIVE REPRESENTATION OF THE VFF

|
|
| | |
| |
- _I_ _|_ Colangelo, Hoferichter,
T © e Stoffer, JHEP 02 (2019) 006
| I :
|

Fy (s) = Q1(8) x Guy(g)(5) X Gin(s)

e Omnés function with elastic m-scattering P-wave phase shift 57 (s)
as input:

.
S

o0 1/ .7
Q%(S) :exp< —/ dS, 51(8)

T Janz  S'(8 = 8)

\
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DISPERSIVE REPRESENTATION OF THE VFF

|
|
I | |

| |

- | | Colangelo, Hoferichter,
s v Stoffer, JHEP 02 (2019) 006

| I I
|

Fy (s) = Qi(5) x Gyg)(8) x Gin(s)

* [sospin-breaking 3 intermediate state: negligible apart from w and ¢
resonances (mixing with the p resonance)

oM 4 Colangelo, Hoferichter, Kubis,
S [ i g ,Img,(s') [ 1— =7 Stoffer, JHEP 10 (2022) 032
S

Go(s)=1+2
R e B

s

M2 + additional terms < Ime_,, to account for nOy effects
S [ ] [ ]
gw(S) =1+ ¢, : + additional terms for ¢ resonance
(]
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DISPERSIVE REPRESENTATION OF THE VFF

Colangelo, Hoferichter,
Stoffer, JHEP 02 (2019) 006

Fy (s) = 21(s) x Gyg)(s) X Gin(s)

* Heavier intermediate states: 41 (mainly t'w), KK, ...
- Description with a cut starting at the m%w threshold: Sin = (M0 + M,,)?
e P-wave behavior imposed near the threshold

3/2
Im Gin(s) ~ (5 — sin)%
— Need an explicit parameterization of G;,,
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CONFORMAL MAPPING

_ VSin— S¢— /Sin — 8
V/Sin — S¢ +1/Sin — S

* Implements branch cut + asymptotic behavior z(s)

A Im(z)
Im(s)

1st Riemann Sheet

2nd Riemann Sheet /

— contains all the resonance poles (and zeros?)

* Thus, the inelastic factor is conveniently written as a function of z(s)
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PREVIOUS ANALYSES

* In our previous analyses, G;, was described as a polynomial in z:

. Colangelo, Hoferichter,
Gin 1+ Z ( “0 ) Stoffer, JHEP 02 (2019) 006

which is able to fit the data up to = 1GeV for degrees N = 2 ...6

* Our last analysis investigated the impact of the zeros in the first Riemann Sheet
* Excluding these zeros resolves some instabilities and variability of the fits with N

* Excluding zeros does not degrade the goodness of fit Leplumey, Stoffer, arXiv:2501.09643

* The fitted zeros were already excluded by analyticity constraints
e Zeros are excluded by yPT: all the zeros must be outside of the range of validity of yPT

Leutwyler, Continuous advances in QCD (2002) 23-40

* In addition, we also implemented a zero-free semi-model-dependent description
of the inelasticities (dispersively improved Gounaris-Sakurai functions) to fit the

high-energy data (up to 3 GeV) and check consistency P
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NEW IMPLEMENTATION OF THE INELASTICITIES
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ALTERNATIVE DESCRIPTIONS OF THE VFF

Alternative descriptions of the VFF use a conformal description from
the elastic threshold 4M2 and incorporate an outer function (OF)

1 N Buck, Lebed,
FV ( ) L k Phys.Rev.D 58 (1998) 056001
T \S) = Ak Zrr
¢ (zﬂ‘ T ) Ananthanarayan, Caprini, Imsong,
k=1 Phys.Rev.D 83 (2011) 096002

With the motivation of incorporating dispersive bounds written as

1 d il
— [ Z1)FY ) <1 —> Y lal <1
27{'3 C < k=0

Such an OF can improve the convergence of the conformal expansion
by setting this orthogonality constraint
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CHOICE OF OUTER FUNCTION

s, = —1 GeV?: central point for conformal transformation

One common choice of OF is the following - s:branch cut threshola

Q2 = —q2 = —1 GeV?: point where the bound is evaluated

5 _1!2_/ 2 5 1
qi;(z)m[ l—é(l—z)+(1+z)] 1+g(1+z)+ l—ﬁ(l—z}

* The initial motivation is a dispersive bound on the mm channel of HVP

00 T 21171 Buck, Lebed,
L[ TGl [1 0TI
— ds 13 = |5 927,212
0 (s —q*) 20%(q°) - :
pQCD Kirk, Kubis, Reboud, van Dyk,
Phys.Lett.B 861 (2025) 139266

T
* This OF mainly contains information on the two-body kinematics

* Supplemented by Blaschke factor corrections to remove sub-threshold
singularities and correct the behavior at threshold and infinity
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ADAPTATION OF THE OMNES PARAMETERIZATION

* The dispersive bound is saturated only at = 45%, and therefore cannot be used
to constrain any data fit

* Still, this OF is relevant to describe the effective two-body kinematics at 7w
threshold
1

Gin(z) = Wz)PN(z)

* |t can be further complemented by the introduction of explicit poles in order to
describe the resonances visible in multi-GeV data

Kirk, Kubis, Reboud, van Dyk,
Phys.Lett.B 861 (2025) 139266

1 PN(Z)
(2) 11;(z = 2) (2 = 2})

Gin(z) = ¢
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FIT OF THE VFF

» Different fits are performed:

* Fits to sub-GeV data only without explicit resonance poles in the parameterization (e.g. left)
* Full-range fits with three explicit resonance poles in the parameterization (e.g. right)

102 - ; 102

1o fit uncertainty lo fit uncertainty

] |' BaBar data \ ¢ BaBar data
' t 10" 4 - | - ‘
1 -
=~ | \ N 10°; - \ -
EIULE / —5 4
- / =101 \ / °°~
| o . '
™ ? | t*t by
e 10—= 4 1 1
bhest ' ’ *
10° ’ ‘ ’ ’
10-3
| |
B, . T }H}}M”H*}H++++“’} H | }
2 | | < 5 | | |
0.2 04 0.6 08 10 0.0 ¥ . 1.5 2.0 2.5 3.0
V5 (GeV) V5 (GeV)

THOMAS LEPLUMEY

DISPERSIVE ANALYSIS OF THE PION VFF 17



IMPROVED METHODOLOGY FOR PARAMETER INFERENCE
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MODEL AND PARAMETERS

Fy (s) = Q4(8) X Gug)(8) x Gin(s)

2 parameters: 3 parameters: N — 1 parameters:
1
Value of 67 (s) at 2 M,, Ree,, Ime, (+ €2y s CN |
particular points Re €4, Im €, when ¢ visible in (+ 2 X npees for full-range fits)
data)

* Multiple fits to individual experiments:
* Direct-scan: SNDO6, CMD-2, SND20, CMD-3
e Radiative-return: BaBar, KLOE, BESII|

* Use of unbiased fitting to avoid the d’Agostini bias

NNPDF Collaboration, D’Agostini, Nucl.Instrum.Meth.A
JHEP 05 (2010) 075 362 (1995) 487-498
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BAYESIAN INFERENCE

The inference is based on a y?-like negative log-likelihood:

2 2 2 2 2
X~ = Xdata T XEL T Xzeros T Xsyst

Data constraint: Y 2., = |0(si,0) — ai]" L [o(s4,0) — o]

Eidelman-tukaszuk bound: upper bound on the inelastic phase of the VFF close to
the inelastic threshold, constrained by external experimental data
Phys.Lett.B 582 (2004) 27-31

\/Sin [:" . _ds Gin(s)

Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

Sum-rule constraint for the absence of zeros —0

m
Leplumey, Stoffer, arXiv:2501.09643

Prior constraints on the model systematics parameters
* Roy equation parameters, I',,, My, ['y, Sc, asymptotic extrapolation of 511

|
SiD)S/Q o8 Gin(sin)
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BAYESIAN INFERENCE

» Separate fits are performed for each value of N (degree of the conformal polynomial)

* Under Gaussianity, we derive the posterior for each fit separately against data D:
* Studies have been performed to ensure Gaussianity hypothesis is nearly correct and conservative in our case

(6]D,N) ~ N (6n,2nN)
* The posteriors are then marginalized over N
p(6|D) = > p(6|D, N)p(N|D)
N

* If N has a flat (or exponential) prior, then one can show that

1

p(NID) = exp (3 ((Ow) + ) )

* a ~ log|D| would hold for very large dataset (Bayesian information)

* Smaller a tend to be more conservative & accurate if none of the models is exact (e.g. @ = 2 for Akaike information)
» We choose a = 1 for our nominal inference, which penalizes the addition of one parameter by one x? unit
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U
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RESULT FOR a

HVP,LO [

e All the datasets are truncated at 1 GeV

* No resonance poles are explicitly introduced in the inelastic factor

485

: | Preliminary
! - i SNDO06 Leplumey — Stoffer
: ® | CMD-2
—e— KLOE
| ° | BESIII
o Combined
| ® | SND20
e CMD-3
4;90 4555 5(|)0 5(|)5 5iO 5i5 550
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KLOE
BaBar
BESIII
Combined
SND20
CMD-3
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RESULT FOR a

HVP,LO [

nm, e’ e ]

e All the datasets marked with a * are combined with BaBar data above 1.4 GeV

* 3 resonance poles are explicitly fitted in the parameterization (p’, p"’ and p'"’)

. . . Preliminary
I - ! SNDOG Leplumey — Stoffer
| L | CMD-2*
—a— KLOE*
I = | BESIIIT*
—a— Combined
I = | SND20*
-+ CMD-3*
495 500 505 510 515 520 525 530
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CONSISTENCY IN a

HVP,LO [

i, e e | BELOW 1GEV

* Very good consistency is observed between sub-GeV and multi-GeV fits!

SNDO6 A
SNDO6™ 1

CMD-2|1cev
CMD-2*

KLOE
KLOE* 1

BaBar|.1cev T
BaBar A

Preliminary

Leplumey — Stoffer

BESIII A :

BESIII* + :

Combined| 1gey T
Combined 1

SND20 A
SND20* 4

CMD-316ev
CMD-3*

—e—
——

485 490
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® Sub-GeVfits
B Full-range fits
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COMPARISONS WITH OUR PREVIOUS ANALYSIS

* Very good consistency is observed with our previous analysis

* The new analysis allows better interpretability of the credible intervals

D) . . Preliminary ) : i Preliminary
061 I - Leplumey — Stoffer SNDOG* A o T e — bl Leplumey — Stoffer
CMD-21 | R CMD-2* e - I
KLOFEA —— Sub-GeV fits KLOE* o= Full-range fits
BaBar 1 . BaBar 1 } y '=
BESIII { . - i BESIIT*{ e
Combined 1 ”...f. ..... 1 Combined 1 foponne @eenanfe]
SND20 | / o ! SND20*- A e y
CMD-3- R CMD-3* et
485 490 495 500 505 510 515 500 505 510 515 520 525
1010 x a; <1 Gev 10" x a;"|<1.8Gev

- New analysis (preliminary)
------- Previous analysis (arXiv:2501.09643)
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COMPARISONS WITH WP25

* Our results remain compatible with other approaches

WP20
SNDO61(93.8%) T : ’ + CHKLS
4  DHMZ
CMD-21 (88.6%) e = KNTW
| | WP20
BaBar { (99.9%) i — e (590 e, + oms
' ' CMD-2 (88.6%) '_+£‘ =  KNTW
KLOE{(97.2%) [t ,- B (095 —
' ' KLOE{ (97.2%) '_‘5:_'::,
BESITI (72.8%) T gt s (20—
I — e _— —— — e e e e SND20 | (80.3%) Ly e
IND20 A (80.3%) : | I*_..:_II CMD-31(98.9%) e c‘)
I I 190 500 510 520 530 540
CMD-3 - (98.9%) ! = a 10 x VP 1O e e |
| WP25: Fig. 26
190 500 510 520 530 540
1010 % QEVP’ LOrr, ete]
THOMAS LEPLUMEY DISPERSIVE ANALYSIS OF THE PION VFF 27




EUCLIDEAN WINDOWS

B BESIII
v * The different euclidean windows are
—f actually very correlated by the data fit
I Combined
— * Therefore, the discrepancies
k propagate to all the windows, even at
. very long distance!
D a0 : o~ | SNDO06
I z | CMD-2
> 145 —e— KLOE
.'éiél ——e—— BaBar
ol | ° | BESIII
£ . —e— Combined
145 } < | SND20
o2 e— CMD-3
260 262 264 266 268 270 272 274
ida L. & 1 # | s 10 X 0| S Gy

L I 1 1 1 1 1 L - ! 4 !
26 27 310 320 330 135 140 145 13.5 14.0 14.5

109 x arT VIR, 109 x a7, 10% x qrefit 10 x aZF R Very-long-distance window — sub-GeV description
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COMMENT ABOUT THE DATA CORRELATIONS OF CMD-3

* Some concerns have been raised about the impact of correlations in CMD-3 data
* For direct integration, fully correlated covariance is clearly the most conservative
* However, it is less clear a priori whether this choice is conservative or not in our framework

* In our last analysis, we implemented a “decorrelation scheme” to evaluate this:

515.51

- i
: 515.01

514.51

/

a3

a=0 a=0.11 a=0.22 o =0.33 a=0.44 %‘514.0- - Leplumey, Stoffer,
= 51351 arXiv:2501.09643
o 8N -

512.51

10

51‘2.0‘_
a = 0.56 a = 0.67 a=0.78 a = 0.89 a=1.0 0.0

0.2 04 0.6 08 10

* Smaller correlations lead to higher value of a;;" and smaller uncertainty!

* Full correlations allow global scale effects — analyticity constraints seem to pull the VFF down
» Zero/negative correlations constrain the fit to be closer to the central values of the data points
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COMMENT ABOUT THE DATA CORRELATIONS OF CMD-3

* To assess this issue, we tried tuning the covariance a posteriori to get the largest
posterior uncertainty in aﬁ” (— expected to be the most conservative choice)

Corr( ) _ 8@? Gaﬁﬂ
i,0j) = X
orr(o;, 0 sign 9o, 9o,

* However, the a posteriori conservative covariance depends on the starting point

» Starting from the fully correlated best-fit point, the conservative option is consistently the
fully correlated covariance matrix

» Starting from the uncorrelated best-fit point, the conservative option contains anti-
correlations between different energy regions, but the overall uncertainty remains smaller

* Without a clear prescription yet, we decided to stick to the full corr. prescription
* This makes the interpretation and comparison with other results easier
* This choice does not overestimate the discrepancy with other experiments
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RESULT FOR THE ELASTIC PHASE SHIFT

* The elastic contributions are described by the elastic phase shift 61
* Small disagreements are found between CMD-3 and other experiments

B S\NDoG SNDO0G*
B SND20 SND20*
170 4 B CMD-2 170 - CMD-2*
B KLOE KLOE*
WEE BaBar | BaBar
Bl Combined o Combined
= BN CMD-3 e CMD-3*
>y S
160 4 Sub-GeV fits 160 Full-range fits
109 110 111 112 113 109 110 11 112 113
5! (s0) [°] 81 (s0) [°]
so = 0.8 GeV? :
s; = 1.15 GeV?2
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RESULT FOR THE w PARAMETERS

SNDO06

= . .
B CMD-2 * The impact of the w resonance is
I KLOE . .

. described with 3 parameters:

Il Combined

BN SND20 * M,: The w mass

I CMD-3

* Re(e,): The scale of 3 channel effects
« Im(e,): The scale of Ty channel effects

Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

—e—— SNDO6
p——e—— CMD-2

F—e— KLOE
—e— (B8NS ar
6x10 4 } < | BESIII
o< Combined

Ax10 4
3
)—GE 2% 10 4 ——e—— SND20

w1 te4 CMD-3
: : ) A ) : 0 5 10 15 20 25 30
0.781 0.782 0.783 0.781 0.0018 0.0020 o 5F [o]
M, [GeV] Ree, Ime, - '
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RESULT FOR THE PION CHARGE RADIUS — SUB-GEV FITS

* The impact of marginalizing on N is much more visible in the charge radius

* This appears as large non-Gaussianities in the posterior distributions

250
| ° . SNDO06 Preliminary == ANDDS
I Leplumey — Stoffer T C’;‘\IDQ
: ® | | CMD-2 200 —— KLOE
—— BaBar
| t | KLOE o": —— BESIII
| I ) - =, =04 —— Combined
I @ 1 B('lB:'l]_ ™ 150 N
| o | BESIII 2 ||— cwmps
® Combined g 100 1
E
| . | SND20 501
—e—— CMD-3
0_
0.4'20 0.425 0.430 0.435 0.440 0.40 0.41 0.42 0.43 0.44

(r2) [fm’]
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RESULT FOR THE PION CHARGE RADIUS — FULL-RANGE FITS

 However, better Gaussianity is restored in multi-GeV fits

* Multi-GeV data helps a lot in reducing the variability of the result with N

imi — SNDO06*
| = . sNDog+  Preliminary W | e (\
Leplumey — Stoffer 5
l = | CMD-2* —— KLOE*
—=—1 KLOE' T
—a— BaBar é — Combined
. to 3004 |
} - - BESIII 8 L
= Combined 3
5 200 1
‘g
l = |  SND20* - i35
—=— CMD-3*
T T T T T T T T T () 1
0.4200 0.4225 0.4250 0.4275 02.43002 0.4325 0.4350 0.4375 0.4400 ol = P o —— =
(rz) [fm’] (r2) [fm?]
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IMPACT OF ZEROS IN THE FIRST RIEMANN SHEET

* Excluding zeros reduces a lot the variability with N for sub-GeV fits

 However, the impact of zeros is almost invisible in multi-GeV fits even in (r;?)

e R Preiminay | e Preliminary

CMD-21 A s CMD-2* N i — "

KLOE. —— Sub-GeV fits KLOE- e Full-range fits

BaBar 1 I BaBar e -

BESIII- S o BESIII*- A S ;

Combined - B Combined 1 A=
SND20 1 e R— SND20* — . !
CMD-3- e CMD-3*- e
0410 0415 0420 0425 0430 0435  0.440 04200 04225 04250 04275  0.4300 04325  0.4350  0.4375
(r2) [fm? (r2) [fm]
= Constrained fits
==== Unconstrained fits
THOMAS LEPLUMEY DISPERSIVE ANALYSIS OF THE PION VFF 36




IMPACT OF MULTI-GEV DATA ON THE PION CHARGE RADIUS

* Small variations are observed (although always less than ~ 10)

e The inclusion of multi-GeV data systematically reduces the value of (r;?)

SNDO6 1
SNDO6* 1

CMD-2|1Gev 1
CMD-2* 1

KLOE A
KLOE" 4

BaBar| o1cev T
BaBar -

BESIIT 4
BESIIIT* A

Combined| <1gey
Combined A

Preliminary
Leplumey — Stoffer

SND20 -
SND20* A

CMD-3|<1cev
CMD-3* -

0.420
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0.425

0.430
(r2) [fm?]

0.435
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® Sub-GeVfits
B Full-range fits
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CORRELATION WITH a

HVP,LO [

nm, e e ]

* Strong correlations are observed between (1%) and a,", both within each fit
and between the fits

* Therefore, an independent lattice calculation of (%) could provide valuable

insights on the observed discrepancies in a;;"

144 | Preliminary Preliminary
) Leplumey — Stoffer 0.44 1 Leplumey — Stoffer
043 7 043 -
&~ a
E BN BESITI E o p B BESIHE
S E BN SND20 i B SNDOG*
~ B SNDOG = B SND20*
0.41 - B CMD-2 e B CMD-27
BN KLOE B KLOE*
" BaBar | BaBar
0.40 - Sub-GeV fits Bl Combined 0404  Full-ra nge fits Bl Combined
B CMD-3 B CMD-3*
480 490 500 510 180 490 500 510
10" x a"| <1 Gev 10" % al"| <1 Gev

THOMAS LEPLUMEY DISPERSIVE ANALYSIS OF THE PION VFF 38




IMPACT OF A FUTURE LATTICE DETERMINATION OF (’I}?)

* The impact of a future precise lattice calculation of (%) can be assessed by the
expected discrepancy with current results
* The current world-leading yQCD result has ¢ ~ 0.014 fm?: more precision would be needed

* A precision of 0.003 fm? (factor 4.6 reduction) would suffice to get ~ 1.50 tension with at
least one experiment — up to 30 in many cases

10 ] 10 10
T LN e L e AU ¥ AU KRR UYURITIR OO U VORUN U0 ASOOOOTN SOOPPRO 1/ S O O
g
8 8 8 8 i
E |
£
& 67 61 6
=
E
g) 4 BT T A mmmmnImn I mm oy —— SND06* . 4 N 4 ................................................... — SND06
g —— CMD-2* —— (CMD-2
8—- — KLOE* — KLOE
S f ~——— BaBar \ ~——— BaBa
£ 2 ._ —— BESIT* 9 2 \ / —— BESII*
~ Combined Combined
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IMPACT OF A FUTURE LATTICE DETERMINATION OF (’I}?)

* An alternative probe to the charge radius could be values of the VFF at fixed
spacelike Q2
* Values further from Q% = 0 are much easier to access on the lattice
« A compromise has to be found with the increasing fit uncertainty at larger Q?
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CONCLUSION

* Pion VFF representation incorporating dispersive constraints with reduced model
dependence on full energy range

* Determinations of a;" are stable and robust under multiple parameterization changes

e Unitarity and analyticity constraints propagate the discrepancies to the whole energy range,
including the very-long-distance window

* The correlations with the pion charge radius might be very helpful to probe the
discrepancies if a precise lattice calculation of the charge radius arises
* Removing zeros in the physical sheet helps a lot in stabilizing the result for sub-GeV fits
* Nevertheless, full-range fits are nearly insensitive to the constraint and naturally exclude zeros

— Spacelike values of the VFF might prove very valuable for comparison with lattice
calculations!
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IMPACT OF ZEROS IN THE FIRST RIEMANN SHEET

* The constraint of having no zeros is almost uneffective on a;;" alone
B reiminay | g ————— Prelminay
CMD-21 - P CMD-2* -
KLOE- — Sub-GeV fits KLOE* _— Full-range fits
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EUCLIDEAN WINDOWS

* The discrepancies are particularly visible in the intermediate window

* Still, very large discrepancies remain even at very long distance!
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COMPARISONS WITH OUR PREVIOUS ANALYSIS

* In sub-GeV fits, our new treatment of the systematics reduces the uncertainties

* In multi-GeV fits, switching to a less model-dependent parameterization slightly
increased the uncertainties and shifted some of the results
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