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The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, ðg − 2Þ=2,
is computed in the infinite volume QED framework with lattice QCD. We report aHLbLμ ¼
12.47ð1.15Þð0.95Þ × 10−10 where the first error is statistical and the second systematic. The result is
mainly based on the 2þ 1 flavor Möbius domain wall fermion ensemble with inverse lattice spacing
a−1 ¼ 1.73 GeV, lattice size L ¼ 5.5 fm, and mπ ¼ 139 MeV, generated by the RBC-UKQCD collab-
orations. The leading systematic error of this result comes from the lattice discretization. This result is
consistent with previous determinations.
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I. INTRODUCTION

Muons are spin-1=2 charged particles with nonzero
magnetic moment

μ ¼ −g
e
2m

S; ð1Þ

where S is the particle’s spin, e and m are the electric
charge and mass, respectively, and g is the Landé
g-factor. The Dirac equation predicts that g ¼ 2, exactly,
so any difference from 2 must arise from interactions.
The magnetic moment of a fermion can be defined in
terms of its electromagnetic form factors in the zero
momentum transfer limit. Lorentz and gauge symmetries
tightly constrain the form of the interactions. In
Euclidean space-time

hμðp0; s0ÞjJνð0Þjμðp; sÞi

¼ −eūs0ðp0Þ
!
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ&qρ
"
usðpÞ; ð2Þ

where Jν is the electromagnetic current, and F1 and F2

are form factors, giving the charge and magnetic moment
at zero momentum transfer (q2 ¼ ðp0 − pÞ2 ¼ 0), or
static limit. The usðpÞ and ūsðpÞ are Dirac spinors.
The anomalous part of the magnetic moment is given
by F2ð0Þ alone, and is known as the anomaly,

aμ ≡ F2ðq2 ¼ 0Þ ¼ g − 2

2
: ð3Þ

Themuon anomalousmagneticmoment is one of themost
precisely determined quantities in particle physics.
Compared with the electron anomalous magnetic moment,
which is determined with higher accuracy, the muon is
expected to be much more sensitive to new physics at very
large energy scales due to its heavier mass. Two experiments
Fermilab (E989) [1] and J-PARC (E34) [2,3] are aiming at
even higher precision in measuring the muon g − 2. The
initial result released by Fermilab (E989) [1] confirmed the
previously best result obtained by the BNL E821 experiment
[4] and reduced the experimental uncertainty from 0.54 to
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loops. The result, shown in Fig. 10, is zero consistent, and
we estimate this contribution to be 0.0ð0.5Þ × 10−10.
In the more recent work by the Mainz group [48], all the

subleading diagrams have been calculated. The result is still
zero consistent but a more stringent bound is obtained.
Therefore, in this work, we use their result to account for the
contribution from all the subleading disconnected diagrams.
The value is shown in Table IX as “subleading discon.”

H. Charm quark contributions

The charm quark contribution is also expected to be very
small due its heavy mass relative to the light quark and
the strange quark. In the 2020 white paper [5], its con-
tribution is included as 0.3ð0.1Þ × 10−10, calculated based
on perturbation theory and consideration of charm meson
resonances [23]. The value is similar to the strange quark

connected diagram contribution due to the heavier mass of
the charm quark and larger electric charge. In a recent work
by the Mainz group [49], the charm quark contribution is
calculated with lattice QCD, including both the charm
quark connected and disconnected diagrams. The result for
the total charm quark contribution is 0.28ð0.05Þ × 10−10,
where the uncertainty is mostly due to the systematic
effects from modeling the lattice spacing and Mηc depend-
ence. In this work, we use this more recent lattice calculated
result to account for the contribution from the charm quark.
The values are shown in Table IX as “charm con,” “charm
discon,” “charm.”

V. CONCLUSION

We summarized all the results discussed above in
Tables II, IV, and IX. Adding all the individual contribu-
tions and corrections, we obtain our final result for the
HLbL contribution to the muon g − 2

aHLbLμ × 1010 ¼ 12.47ð1.15Þstatð0.95Þsyst½1.49%; ð63Þ

where the systematic errors were added in quadrature. We
also give the HLbL contributions to the muon g − 2 from
the connected and disconnected pieces separately

aHLbL;conμ × 1010 ¼ 26.36ð1.33Þstatð1.99Þsyst½2.39%; ð64Þ

aHLbL;disconμ × 1010 ¼−13.89ð1.47Þstatð1.22Þsyst½1.91%: ð65Þ

Numbers in square brackets denote total errors, combining
the statistical uncertainty (“stat”) and systematic ones
(“sys”) in quadrature.

TABLE IX. Summary of final results. Values are different
contributions to aμ × 1010 where aμ ¼ ðgμ − 2Þ=2. The numbers
in the square bracket (except references) are the statistical and
systematic uncertainty combined in quadrature. The “strange
discon” contribution includes disconnected diagrams where one
or two loops are strange quark loops. The tag “hybrid-” indicates
the same quantity obtained using the hybrid approach as
described in Secs. IVA and IV B. The result for “total hybrid-
2.5 fm” is used as our final result.

Contribution aμ×1010

Light con 25.70 ð1.33Þstatð1.99Þsyst½2.39%
Light discon −12.71 ð1.87Þstatð1.17Þsyst½2.20%
Light discon hybrid-2.5 fm −13.50 ð1.36Þstatð1.21Þsyst½1.82%
Light discon hybrid-2 fm −13.37 ð1.29Þstatð1.46Þsyst½1.95%
Light total 12.99 ð2.11Þstatð0.90Þsyst½2.29%
Light total hybrid-2.5 fm 12.20 ð1.01Þstatð0.95Þsyst½1.38%
Light total hybrid-2 fm 12.33 ð0.90Þstatð1.25Þsyst½1.55%
Strange con 0.35 ð0.01Þstat
Strange discon −0.38 ð0.61Þstatð0.03Þsyst½0.61%
Strange discon hybrid-2.5 fm −0.36 ð0.22Þstatð0.03Þsyst½0.22%
Strange discon hybrid-2 fm −0.28 ð0.12Þstatð0.04Þsyst½0.13%
Strange total −0.03 ð0.61Þstatð0.03Þsyst½0.61%
Strange total hybrid-2.5 fm −0.00 ð0.22Þstatð0.03Þsyst½0.23%
Strange total hybrid-2 fm 0.07 ð0.12Þstatð0.04Þsyst½0.13%
Subleading discon 0.00 ð0.07Þsyst [48]
Charm con 0.31 ð0.04Þsyst [49]
Charm discon −0.03 ð0.02Þsyst [49]
Charm total 0.28 ð0.05Þsyst [49]
Con 26.36 ð1.33Þstatð1.99Þsyst½2.39%
Discon −13.12 ð2.30Þstatð1.18Þsyst½2.59%
Discon hybrid-2.5 fm −13.89 ð1.47Þstatð1.22Þsyst½1.91%
Discon hybrid-2 fm −13.68 ð1.35Þstatð1.47Þsyst½1.99%
Total 13.24 ð2.53Þstatð0.90Þsyst½2.68%
Total hybrid-2.5 fm 12.47 ð1.15Þstatð0.95Þsyst½1.49%
Total hybrid-2 fm 12.68 ð0.98Þstatð1.26Þsyst½1.59%

TABLE X. Comparison of this work with our previous QEDL
results [24] plus the charm quark contribution from [5,23]. The
field “all con” includes all connected diagram contributions,
including the charm quark. The field “all discon” includes all the
disconnected diagram contributions, including the subleading
disconnected diagrams and disconnected diagrams including
charm quarks. The fields “all con diff,” “all discon diff,” “total
diff” shows the difference obtained by subtracting the QEDL
results from the new results presented in this work. The statistical
and systematic uncertainties of the two works are almost
independent. We therefore add them in quadrature for the
difference. The numbers in the square bracket are the statistical
and systematic uncertainty combined in quadrature.

aμ×1010

All con QEDL 24.46 ð2.35Þstatð5.11Þsyst½5.62%
All con diff 1.90 ð2.76Þstatð5.48Þsyst½6.14%
All discon QEDL −16.45 ð2.09Þstatð3.99Þsyst½4.50%
All discon diff 2.56 ð2.57Þstatð4.17Þsyst½4.90%
Total QEDL 8.17 ð3.03Þstatð1.77Þsyst½3.51%
Total diff 4.30 ð3.25Þstatð2.01Þsyst½3.82%
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combine the method used in Refs. [42,43] to calculate the
hadronic four point function with lattice QCD with the
subtracted infinite volume QED weighting function devel-
oped in Ref. [46]. We have tested the QED weighting
function by calculating the leptonic light-by-light contribu-
tion to muon g − 2 and have reproduced the results obtained
by analytical calculation [50,51]. We outline the method
below and focus on the improvements wemade in this work.
All of the diagrams contributing at Oðα3Þ to HLbL

scattering are shown in Fig. 2. We use the term (quark-)
“connected diagram” to refer to the one on the left on the
top row and “disconnected diagram” to refer to the one on
the right. The remaining diagrams, which are all suppressed
in the flavor SU(3) limit, are referred to as the “subleading
disconnected diagrams.” We only explicitly draw quark
loops that are connected to photons. Gluons and sea quark
loops that are not connected to photons are not shown in the
figure but are included automatically in dynamical lattice
QCD calculations. To make nonzero contributions to the
muon g − 2, the quark loops in the disconnected diagrams
must be connected by gluons.
The contribution to the muon g − 2 can be calculated

with the combination of the hadronic four-point functionH
and the QED weighting function G [46]

aHLbLμ
e
m
ūs0ð0⃗Þ

Σi

2
usð0⃗Þ

¼ 1

VT

X

xop

X

x;y;z

1

2
ϵi;j;kðxop − xrefðx; y; zÞÞj

× i3e6Hk;ρ;σ;λðxop; x; y; zÞūs0ð0⃗ÞGρ;σ;λðx; y; zÞusð0⃗Þ; ð7Þ

where ūs0ð0⃗Þ, usð0⃗Þ are Dirac spinors for the outgoing
and incoming muon in the diagram, respectively. V stand

for the spatial volume of the lattice and T stand for the size
of the temporal extent of the lattice. Σk ¼ ϵi;j;kγiγj=ð2iÞ is
the 4 × 4 version of the Pauli matrix, σk. From the spin
structure of the muon particle, we can obtain the expression
for aHLbLμ

aHLbLμ ¼ 2me2

3

1

VT

X

xop

X

x;y;z

1

2
ϵi;j;kðxop − xrefðx; y; zÞÞj

× ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞMi;ρ;σ;λðx; y; zÞ ð8Þ

where

Mi;ρ;σ;λðx; y; zÞ ¼
1

2
Tr
!
1

6
i3Gρ;σ;λðx; y; zÞΣi

"
: ð9Þ

The QED weighting function G is shown diagrammatically
in Fig. 3 and is expressed in terms of the free muon and
Feynman gauge photon propagators, Sμ and G

Gσ;κ;ρðy; z; xÞ ¼ lim
tsrc→−∞;tsnk→∞

emμðtsnk−tsrcÞ

×
Z

α;β;η;x⃗snk;x⃗src
Gðx; αÞGðy; βÞGðz; ηÞ

× Sμðxsnk; βÞiγσSμðβ; ηÞiγκSμðη; αÞiγρ
× Sμðα; xsrcÞ: ð10Þ

As is well known, the above expression contains an infrared
divergence that vanishes after projection to its magnetic
part. We can also remove this infrared divergent piece by
the following procedure:

Gð1Þ
σ;κ;ρðy; z; xÞ ¼

1

2
Gσ;κ;ρðy; z; xÞ þ

1

2
½Gρ;κ;σðx; z; yÞ&†: ð11Þ

In addition we can perform somewhat arbitrary subtractions
to this infinite volume QED weighting function without
changing the final result due to vector current conservation
satisfied by the hadronic four point function,

Gð2Þ
σ;κ;ρðy; z; xÞ ¼ Gð1Þ

σ;κ;ρðy; z; xÞ −Gð1Þ
σ;κ;ρðz; z; xÞ

−Gð1Þ
σ;κ;ρðy; z; zÞ: ð12Þ

FIG. 2. Diagrams contributing to the muon anomaly. The
diagrams in the top row are the leading ones, and do not vanish
in the SUð3Þ flavor limit. Strong interactions to all orders,
including gluons connecting the quark loops and sea quark loops
which are not connected by photons, are not shown.

FIG. 3. Diagrammatic representation of the QED weighting
function defined in Eq. (9), following Ref. [46].

HADRONIC LIGHT-BY-LIGHT CONTRIBUTION TO THE MUON … PHYS. REV. D 111, 014501 (2025)

014501-3

combine the method used in Refs. [42,43] to calculate the
hadronic four point function with lattice QCD with the
subtracted infinite volume QED weighting function devel-
oped in Ref. [46]. We have tested the QED weighting
function by calculating the leptonic light-by-light contribu-
tion to muon g − 2 and have reproduced the results obtained
by analytical calculation [50,51]. We outline the method
below and focus on the improvements wemade in this work.
All of the diagrams contributing at Oðα3Þ to HLbL

scattering are shown in Fig. 2. We use the term (quark-)
“connected diagram” to refer to the one on the left on the
top row and “disconnected diagram” to refer to the one on
the right. The remaining diagrams, which are all suppressed
in the flavor SU(3) limit, are referred to as the “subleading
disconnected diagrams.” We only explicitly draw quark
loops that are connected to photons. Gluons and sea quark
loops that are not connected to photons are not shown in the
figure but are included automatically in dynamical lattice
QCD calculations. To make nonzero contributions to the
muon g − 2, the quark loops in the disconnected diagrams
must be connected by gluons.
The contribution to the muon g − 2 can be calculated

with the combination of the hadronic four-point functionH
and the QED weighting function G [46]

aHLbLμ
e
m
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i3Gρ;σ;λðx; y; zÞΣi

"
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FIG. 3. Diagrammatic representation of the QED weighting
function defined in Eq. (9), following Ref. [46].

HADRONIC LIGHT-BY-LIGHT CONTRIBUTION TO THE MUON … PHYS. REV. D 111, 014501 (2025)

014501-3

combine the method used in Refs. [42,43] to calculate the
hadronic four point function with lattice QCD with the
subtracted infinite volume QED weighting function devel-
oped in Ref. [46]. We have tested the QED weighting
function by calculating the leptonic light-by-light contribu-
tion to muon g − 2 and have reproduced the results obtained
by analytical calculation [50,51]. We outline the method
below and focus on the improvements wemade in this work.
All of the diagrams contributing at Oðα3Þ to HLbL

scattering are shown in Fig. 2. We use the term (quark-)
“connected diagram” to refer to the one on the left on the
top row and “disconnected diagram” to refer to the one on
the right. The remaining diagrams, which are all suppressed
in the flavor SU(3) limit, are referred to as the “subleading
disconnected diagrams.” We only explicitly draw quark
loops that are connected to photons. Gluons and sea quark
loops that are not connected to photons are not shown in the
figure but are included automatically in dynamical lattice
QCD calculations. To make nonzero contributions to the
muon g − 2, the quark loops in the disconnected diagrams
must be connected by gluons.
The contribution to the muon g − 2 can be calculated

with the combination of the hadronic four-point functionH
and the QED weighting function G [46]

aHLbLμ
e
m
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Note that Gð1Þ
σ;κ;ρðz; z; zÞ ¼ 0, so this subtraction signifi-

cantly reduces the size of the QED weighting function
when jx − zj or jy − zj is small. This is the region where the
hadronic function from the lattice calculation has the largest
discretization error. It turns out that this subtraction greatly
reduces the discretization error. This is the major finding of
Ref. [46]. We should also note that the subtraction does
impact the integrand and partial sum. In Ref. [48], a
modified subtraction scheme is used, so their integrand
and partial sum cannot be directly compared with ours.
Finally, we include all possible permutations of the
subtracted QED weighting function which are required
for the total contribution to the muon g − 2:

i3Gρ;σ;κðx; y; zÞ ¼ Gð2Þ
ρ;σ;κðx; y; zÞ þGð2Þ

σ;κ;ρðy; z; xÞ

þGð2Þ
κ;ρ;σðz; x; yÞ þGð2Þ

κ;σ;ρðz; y; xÞ

þGð2Þ
ρ;κ;σðx; z; yÞ þGð2Þ

σ;ρ;κðy; x; zÞ: ð13Þ

Another component of the master formula Eq. (8) is xref ,
the reference position for the moment method to calculate
the magnetic moment. Again, due to current conservation,
there are many possible choices for xref. In this work, we
use the following choice for the connected diagram:

xrefðx; y; zÞ
¼ xref−farðx; y; zÞ

¼

8
>>><

>>>:

x if jy − zj < minðjx − yj; jx − zjÞ
y if jx − zj < minðjx − yj; jy − zjÞ
z if jx − yj < minðjx − zj; jy − zjÞ
1
3 ðxþ yþ zÞ otherwise

ð14Þ

We make a slightly different choice of xref , Eq. (21), for the
disconnected diagrams. The rationale will be described in
the later part of this section. We use H to denote the
hadronic four point function

ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞ ¼ hTJkðxopÞJρðxÞJσðyÞJλðzÞiQCD
ð15Þ

JνðxÞ ¼
X

q¼u;d;s;c

eqZV ψ̄qðxÞγνψqðxÞ ð16Þ

where ZV is the lattice local vector current renormalization
constant. After Wick contraction,H can be expressed as the
sum of different types of diagrams as illustrated in Fig. 2.
For the disconnected and subleading disconnected dia-
grams, we require the quark loops to be connected by
gluons.

H ¼ Hcon þHdiscon þHsubleading-discon þHcharm ð17Þ

where Hcon includes the light and strange quark connected
diagrams, Hdiscon the light and strange quark disconnected
diagrams, Hsubleading-discon the light and strange quark sub-
leading disconnected diagrams [vanish in the flavor SU(3)
limit], andHcharm all diagrams involving charm quark loops.
Naturally, after the Wick contraction, H defined in

Eq. (15) can be expressed in terms of quark propagators
and includes all permutations of x, y, and z. However, note
that all other terms in the master formula Eq. (8) are
symmetric with respect to permutations of x, y, and z (along
with its Lorentz indices). Therefore, we are allowed to
calculate only a subset of the diagrams generated by the
Wick contractions in Eq. (15) and multiply them with
appropriate factors.

6e4Hcon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hcon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ −6
!
Re

X

q¼u;d;s

e4qTrðγνSqðxop; xÞγρSqðx; zÞ

× γκSqðz; yÞγσSqðy; xopÞÞ
"

QCD
; ð18Þ

6e4Hdiscon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hdiscon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ 3

! X

q0¼u;d;s

e2q0TrðγνSq0ðxop; xÞγρSq0ðx; xopÞÞ

×
X

q¼u;d;s

e2qTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞ
"

QCD
; ð19Þ

where Sq denotes the quark propagator. As shown in Fig. 4,
we calculate the hadronic four-point function with two
point-source propagators. The above trick can make
the evaluation more efficient [42,47]. We note that
Hdiscon-no-perm, the disconnected diagram of the hadronic
four-point function without permutation, still satisfies the
current conservation condition in the continuum limit (this
is not true for Hcon-no-perm) which leads to the following
relation in the infinite volume limit:

X

xop

Hdiscon-no-perm
k;ρ;σ;λ ðxop; x; y; zÞ ¼ 0: ð20Þ

We are therefore allowed to alter the choice of xref for the
disconnected diagram

xref-discon ¼ x: ð21Þ

This choice allows the summation over xop to be performed
independently of coordinates y and z. This choice also has
the benefit of suppressing the contribution from the region
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Subtracted weight function 
reduces FV, discretization errors

Infinite volume, continuum QED weighting function
Mainz, RBC/UKCD

combine the method used in Refs. [42,43] to calculate the
hadronic four point function with lattice QCD with the
subtracted infinite volume QED weighting function devel-
oped in Ref. [46]. We have tested the QED weighting
function by calculating the leptonic light-by-light contribu-
tion to muon g − 2 and have reproduced the results obtained
by analytical calculation [50,51]. We outline the method
below and focus on the improvements wemade in this work.
All of the diagrams contributing at Oðα3Þ to HLbL

scattering are shown in Fig. 2. We use the term (quark-)
“connected diagram” to refer to the one on the left on the
top row and “disconnected diagram” to refer to the one on
the right. The remaining diagrams, which are all suppressed
in the flavor SU(3) limit, are referred to as the “subleading
disconnected diagrams.” We only explicitly draw quark
loops that are connected to photons. Gluons and sea quark
loops that are not connected to photons are not shown in the
figure but are included automatically in dynamical lattice
QCD calculations. To make nonzero contributions to the
muon g − 2, the quark loops in the disconnected diagrams
must be connected by gluons.
The contribution to the muon g − 2 can be calculated

with the combination of the hadronic four-point functionH
and the QED weighting function G [46]

aHLbLμ
e
m
ūs0ð0⃗Þ

Σi

2
usð0⃗Þ

¼ 1

VT

X

xop

X

x;y;z

1

2
ϵi;j;kðxop − xrefðx; y; zÞÞj

× i3e6Hk;ρ;σ;λðxop; x; y; zÞūs0ð0⃗ÞGρ;σ;λðx; y; zÞusð0⃗Þ; ð7Þ

where ūs0ð0⃗Þ, usð0⃗Þ are Dirac spinors for the outgoing
and incoming muon in the diagram, respectively. V stand

for the spatial volume of the lattice and T stand for the size
of the temporal extent of the lattice. Σk ¼ ϵi;j;kγiγj=ð2iÞ is
the 4 × 4 version of the Pauli matrix, σk. From the spin
structure of the muon particle, we can obtain the expression
for aHLbLμ

aHLbLμ ¼ 2me2

3

1

VT

X

xop

X

x;y;z

1

2
ϵi;j;kðxop − xrefðx; y; zÞÞj

× ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞMi;ρ;σ;λðx; y; zÞ ð8Þ

where

Mi;ρ;σ;λðx; y; zÞ ¼
1

2
Tr
!
1

6
i3Gρ;σ;λðx; y; zÞΣi

"
: ð9Þ

The QED weighting function G is shown diagrammatically
in Fig. 3 and is expressed in terms of the free muon and
Feynman gauge photon propagators, Sμ and G

Gσ;κ;ρðy; z; xÞ ¼ lim
tsrc→−∞;tsnk→∞

emμðtsnk−tsrcÞ

×
Z

α;β;η;x⃗snk;x⃗src
Gðx; αÞGðy; βÞGðz; ηÞ

× Sμðxsnk; βÞiγσSμðβ; ηÞiγκSμðη; αÞiγρ
× Sμðα; xsrcÞ: ð10Þ

As is well known, the above expression contains an infrared
divergence that vanishes after projection to its magnetic
part. We can also remove this infrared divergent piece by
the following procedure:

Gð1Þ
σ;κ;ρðy; z; xÞ ¼

1

2
Gσ;κ;ρðy; z; xÞ þ

1

2
½Gρ;κ;σðx; z; yÞ&†: ð11Þ

In addition we can perform somewhat arbitrary subtractions
to this infinite volume QED weighting function without
changing the final result due to vector current conservation
satisfied by the hadronic four point function,

Gð2Þ
σ;κ;ρðy; z; xÞ ¼ Gð1Þ

σ;κ;ρðy; z; xÞ −Gð1Þ
σ;κ;ρðz; z; xÞ

−Gð1Þ
σ;κ;ρðy; z; zÞ: ð12Þ

FIG. 2. Diagrams contributing to the muon anomaly. The
diagrams in the top row are the leading ones, and do not vanish
in the SUð3Þ flavor limit. Strong interactions to all orders,
including gluons connecting the quark loops and sea quark loops
which are not connected by photons, are not shown.

FIG. 3. Diagrammatic representation of the QED weighting
function defined in Eq. (9), following Ref. [46].
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RBC setup and previous results

where jx − xopj is small and the quark loop is large before
subtracting the vacuum expectation value. Also, we note that
the new choice xref-discon is the same as the initial choice in the
long distance region where the contribution is dominated by
π0-exchange and jy − zj ≪ minðjx − yj; jx − zjÞ. This prop-
erty guarantees that the connected and disconnected dia-
grams have exactly the same QED weighting function in the
long distance region, which leads to Eq. (28) before taking
the continuum limit. This is themain reason for the choice of
xref for the connected diagrams.

III. LATTICE DETAILS

The calculation presented here is performed on ensembles
of gauge fields generated by the RBC and UKQCD collab-
orations [52]. The main calculation is carried out using
the 48I ensemble, a physical-mass ensemble generated with
2þ 1 flavors ofMöbius domainwall fermions (MDWF).We
also use a few other ensembles to calculate various correc-
tions and estimate systematic effects. The relevant informa-
tion about the 48I ensemble and other ensembles is listed in
Table I. We always use the MDWF action. For most of the
ensembles, the quarks have their physical masses.
For our main calculation on the 48I ensemble, we use

113 configurations. On each configuration, we randomly
sample 2048 uniformly distributed distinct points and
calculate light quark point-source propagators for each
of the selected points.
Among the above 2048 points we randomly select 1024

points and also calculate strange quark propagators.

These 2048þ 1024 point-source propagators are computed
using the (deflated-) conjugate gradient algorithm with a
sloppy stopping condition. To further speed up the sloppy
propagator calculation, we use the zMöbius domain wall
fermion formulation [54] with reduced fifth dimension size
Ls ¼ 14 to approximate the unitary MDWF action used in
the gauge ensemble generation (Ls ¼ 24). For deflation of
the Dirac operator we reuse the eigenvectors generated for
the calculation of the hadronic vacuum polarization con-
tribution to the muon g − 2 [55,56] using the locally
coherent Lanczos approach [57]. Then, we use a two-level
all-mode-averaging (AMA) method [58] to correct the bias
caused by the inexact propagators. The AMA method
requires a portion of the sloppy propagators be computed
again with higher precision. In the first step a more precise
version of the light and strange quark propagators are
calculated on a randomly selected set of 64 points among
the 1024 points. In the second step among the 64 points, we
randomly select 16 points and calculate these propagators
to full precision. These propagators are used to calculate
both the connected and the disconnected diagrams in the
bias correction. By using two steps, we are able to reduce
the statistical error coming from the bias correction to a
level well below the statistical error for the sloppy part.
For the connected diagrams, we sample two-point pairs

among all the possible 2048 × ð2048 − 1Þ=2þ 2048 ¼
2098176 combinations (including the case where x ¼ y).
For each of the two-point pairs, we can perform the
contraction as described in Eq. (18) in the previous section.
As the number of all possible pairs is enormous, the cost to
perform all the contractions is not affordable. Therefore, we
only calculate the contraction for a subset of the available
two-point pairs. We sample the subset with the empirical
probability pðrÞ, which is a function of the distance
between the two points, r ¼ jx − yj,

pðrÞ ¼

8
>>>>><

>>>>>:

Npsrc−1
2ðL3T−1Þ if r ¼ 0

1 if 8 ≥ r > 0
1

ðr=8Þ3 if L ≥ r > 8

0 if r > L

; ð22Þ

where L ¼ 48, T ¼ 96, and the numbers are in lattice units.
On average, about 57,000 light quark point-source propa-
gator pairs per configuration are sampled to calculate the
connected diagrams. The reason we sample long-distance
point-pairs less often is because the connected hadronic
four point function and its statistical fluctuation decrease
with distance for long distances. For each pair, due to the
sampling procedure, the probability of that pair taking a
particular relative coordinate is a function of r. The total
connected diagram contribution is equal to the expectation
value of the contraction for the point pairs multiplied by the
inverse probabilities. We refer to the inverse probability as
the weight wðrÞ

FIG. 4. Two point-source propagators are used to calculate the
hadronic four-point function. The locations of the point-sources
are indicated in the diagrams as small circles.
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Note that Gð1Þ
σ;κ;ρðz; z; zÞ ¼ 0, so this subtraction signifi-

cantly reduces the size of the QED weighting function
when jx − zj or jy − zj is small. This is the region where the
hadronic function from the lattice calculation has the largest
discretization error. It turns out that this subtraction greatly
reduces the discretization error. This is the major finding of
Ref. [46]. We should also note that the subtraction does
impact the integrand and partial sum. In Ref. [48], a
modified subtraction scheme is used, so their integrand
and partial sum cannot be directly compared with ours.
Finally, we include all possible permutations of the
subtracted QED weighting function which are required
for the total contribution to the muon g − 2:

i3Gρ;σ;κðx; y; zÞ ¼ Gð2Þ
ρ;σ;κðx; y; zÞ þGð2Þ

σ;κ;ρðy; z; xÞ

þGð2Þ
κ;ρ;σðz; x; yÞ þGð2Þ

κ;σ;ρðz; y; xÞ

þGð2Þ
ρ;κ;σðx; z; yÞ þGð2Þ

σ;ρ;κðy; x; zÞ: ð13Þ

Another component of the master formula Eq. (8) is xref ,
the reference position for the moment method to calculate
the magnetic moment. Again, due to current conservation,
there are many possible choices for xref. In this work, we
use the following choice for the connected diagram:

xrefðx; y; zÞ
¼ xref−farðx; y; zÞ

¼

8
>>><

>>>:

x if jy − zj < minðjx − yj; jx − zjÞ
y if jx − zj < minðjx − yj; jy − zjÞ
z if jx − yj < minðjx − zj; jy − zjÞ
1
3 ðxþ yþ zÞ otherwise

ð14Þ

We make a slightly different choice of xref , Eq. (21), for the
disconnected diagrams. The rationale will be described in
the later part of this section. We use H to denote the
hadronic four point function

ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞ ¼ hTJkðxopÞJρðxÞJσðyÞJλðzÞiQCD
ð15Þ

JνðxÞ ¼
X

q¼u;d;s;c

eqZV ψ̄qðxÞγνψqðxÞ ð16Þ

where ZV is the lattice local vector current renormalization
constant. After Wick contraction,H can be expressed as the
sum of different types of diagrams as illustrated in Fig. 2.
For the disconnected and subleading disconnected dia-
grams, we require the quark loops to be connected by
gluons.

H ¼ Hcon þHdiscon þHsubleading-discon þHcharm ð17Þ

where Hcon includes the light and strange quark connected
diagrams, Hdiscon the light and strange quark disconnected
diagrams, Hsubleading-discon the light and strange quark sub-
leading disconnected diagrams [vanish in the flavor SU(3)
limit], andHcharm all diagrams involving charm quark loops.
Naturally, after the Wick contraction, H defined in

Eq. (15) can be expressed in terms of quark propagators
and includes all permutations of x, y, and z. However, note
that all other terms in the master formula Eq. (8) are
symmetric with respect to permutations of x, y, and z (along
with its Lorentz indices). Therefore, we are allowed to
calculate only a subset of the diagrams generated by the
Wick contractions in Eq. (15) and multiply them with
appropriate factors.

6e4Hcon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hcon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ −6
!
Re

X

q¼u;d;s

e4qTrðγνSqðxop; xÞγρSqðx; zÞ

× γκSqðz; yÞγσSqðy; xopÞÞ
"

QCD
; ð18Þ

6e4Hdiscon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hdiscon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ 3

! X

q0¼u;d;s

e2q0TrðγνSq0ðxop; xÞγρSq0ðx; xopÞÞ

×
X

q¼u;d;s

e2qTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞ
"

QCD
; ð19Þ

where Sq denotes the quark propagator. As shown in Fig. 4,
we calculate the hadronic four-point function with two
point-source propagators. The above trick can make
the evaluation more efficient [42,47]. We note that
Hdiscon-no-perm, the disconnected diagram of the hadronic
four-point function without permutation, still satisfies the
current conservation condition in the continuum limit (this
is not true for Hcon-no-perm) which leads to the following
relation in the infinite volume limit:

X

xop

Hdiscon-no-perm
k;ρ;σ;λ ðxop; x; y; zÞ ¼ 0: ð20Þ

We are therefore allowed to alter the choice of xref for the
disconnected diagram

xref-discon ¼ x: ð21Þ

This choice allows the summation over xop to be performed
independently of coordinates y and z. This choice also has
the benefit of suppressing the contribution from the region
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Note that Gð1Þ
σ;κ;ρðz; z; zÞ ¼ 0, so this subtraction signifi-

cantly reduces the size of the QED weighting function
when jx − zj or jy − zj is small. This is the region where the
hadronic function from the lattice calculation has the largest
discretization error. It turns out that this subtraction greatly
reduces the discretization error. This is the major finding of
Ref. [46]. We should also note that the subtraction does
impact the integrand and partial sum. In Ref. [48], a
modified subtraction scheme is used, so their integrand
and partial sum cannot be directly compared with ours.
Finally, we include all possible permutations of the
subtracted QED weighting function which are required
for the total contribution to the muon g − 2:

i3Gρ;σ;κðx; y; zÞ ¼ Gð2Þ
ρ;σ;κðx; y; zÞ þGð2Þ

σ;κ;ρðy; z; xÞ

þGð2Þ
κ;ρ;σðz; x; yÞ þGð2Þ

κ;σ;ρðz; y; xÞ

þGð2Þ
ρ;κ;σðx; z; yÞ þGð2Þ

σ;ρ;κðy; x; zÞ: ð13Þ

Another component of the master formula Eq. (8) is xref ,
the reference position for the moment method to calculate
the magnetic moment. Again, due to current conservation,
there are many possible choices for xref. In this work, we
use the following choice for the connected diagram:

xrefðx; y; zÞ
¼ xref−farðx; y; zÞ

¼

8
>>><

>>>:

x if jy − zj < minðjx − yj; jx − zjÞ
y if jx − zj < minðjx − yj; jy − zjÞ
z if jx − yj < minðjx − zj; jy − zjÞ
1
3 ðxþ yþ zÞ otherwise

ð14Þ

We make a slightly different choice of xref , Eq. (21), for the
disconnected diagrams. The rationale will be described in
the later part of this section. We use H to denote the
hadronic four point function

ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞ ¼ hTJkðxopÞJρðxÞJσðyÞJλðzÞiQCD
ð15Þ

JνðxÞ ¼
X

q¼u;d;s;c

eqZV ψ̄qðxÞγνψqðxÞ ð16Þ

where ZV is the lattice local vector current renormalization
constant. After Wick contraction,H can be expressed as the
sum of different types of diagrams as illustrated in Fig. 2.
For the disconnected and subleading disconnected dia-
grams, we require the quark loops to be connected by
gluons.

H ¼ Hcon þHdiscon þHsubleading-discon þHcharm ð17Þ

where Hcon includes the light and strange quark connected
diagrams, Hdiscon the light and strange quark disconnected
diagrams, Hsubleading-discon the light and strange quark sub-
leading disconnected diagrams [vanish in the flavor SU(3)
limit], andHcharm all diagrams involving charm quark loops.
Naturally, after the Wick contraction, H defined in

Eq. (15) can be expressed in terms of quark propagators
and includes all permutations of x, y, and z. However, note
that all other terms in the master formula Eq. (8) are
symmetric with respect to permutations of x, y, and z (along
with its Lorentz indices). Therefore, we are allowed to
calculate only a subset of the diagrams generated by the
Wick contractions in Eq. (15) and multiply them with
appropriate factors.

6e4Hcon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hcon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ −6
!
Re

X

q¼u;d;s

e4qTrðγνSqðxop; xÞγρSqðx; zÞ

× γκSqðz; yÞγσSqðy; xopÞÞ
"

QCD
; ð18Þ

6e4Hdiscon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hdiscon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ 3

! X

q0¼u;d;s

e2q0TrðγνSq0ðxop; xÞγρSq0ðx; xopÞÞ

×
X

q¼u;d;s

e2qTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞ
"

QCD
; ð19Þ

where Sq denotes the quark propagator. As shown in Fig. 4,
we calculate the hadronic four-point function with two
point-source propagators. The above trick can make
the evaluation more efficient [42,47]. We note that
Hdiscon-no-perm, the disconnected diagram of the hadronic
four-point function without permutation, still satisfies the
current conservation condition in the continuum limit (this
is not true for Hcon-no-perm) which leads to the following
relation in the infinite volume limit:

X

xop

Hdiscon-no-perm
k;ρ;σ;λ ðxop; x; y; zÞ ¼ 0: ð20Þ

We are therefore allowed to alter the choice of xref for the
disconnected diagram

xref-discon ¼ x: ð21Þ

This choice allows the summation over xop to be performed
independently of coordinates y and z. This choice also has
the benefit of suppressing the contribution from the region
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Note that Gð1Þ
σ;κ;ρðz; z; zÞ ¼ 0, so this subtraction signifi-

cantly reduces the size of the QED weighting function
when jx − zj or jy − zj is small. This is the region where the
hadronic function from the lattice calculation has the largest
discretization error. It turns out that this subtraction greatly
reduces the discretization error. This is the major finding of
Ref. [46]. We should also note that the subtraction does
impact the integrand and partial sum. In Ref. [48], a
modified subtraction scheme is used, so their integrand
and partial sum cannot be directly compared with ours.
Finally, we include all possible permutations of the
subtracted QED weighting function which are required
for the total contribution to the muon g − 2:

i3Gρ;σ;κðx; y; zÞ ¼ Gð2Þ
ρ;σ;κðx; y; zÞ þGð2Þ

σ;κ;ρðy; z; xÞ

þGð2Þ
κ;ρ;σðz; x; yÞ þGð2Þ

κ;σ;ρðz; y; xÞ

þGð2Þ
ρ;κ;σðx; z; yÞ þGð2Þ

σ;ρ;κðy; x; zÞ: ð13Þ

Another component of the master formula Eq. (8) is xref ,
the reference position for the moment method to calculate
the magnetic moment. Again, due to current conservation,
there are many possible choices for xref. In this work, we
use the following choice for the connected diagram:

xrefðx; y; zÞ
¼ xref−farðx; y; zÞ

¼

8
>>><

>>>:

x if jy − zj < minðjx − yj; jx − zjÞ
y if jx − zj < minðjx − yj; jy − zjÞ
z if jx − yj < minðjx − zj; jy − zjÞ
1
3 ðxþ yþ zÞ otherwise

ð14Þ

We make a slightly different choice of xref , Eq. (21), for the
disconnected diagrams. The rationale will be described in
the later part of this section. We use H to denote the
hadronic four point function

ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞ ¼ hTJkðxopÞJρðxÞJσðyÞJλðzÞiQCD
ð15Þ

JνðxÞ ¼
X

q¼u;d;s;c

eqZV ψ̄qðxÞγνψqðxÞ ð16Þ

where ZV is the lattice local vector current renormalization
constant. After Wick contraction,H can be expressed as the
sum of different types of diagrams as illustrated in Fig. 2.
For the disconnected and subleading disconnected dia-
grams, we require the quark loops to be connected by
gluons.

H ¼ Hcon þHdiscon þHsubleading-discon þHcharm ð17Þ

where Hcon includes the light and strange quark connected
diagrams, Hdiscon the light and strange quark disconnected
diagrams, Hsubleading-discon the light and strange quark sub-
leading disconnected diagrams [vanish in the flavor SU(3)
limit], andHcharm all diagrams involving charm quark loops.
Naturally, after the Wick contraction, H defined in

Eq. (15) can be expressed in terms of quark propagators
and includes all permutations of x, y, and z. However, note
that all other terms in the master formula Eq. (8) are
symmetric with respect to permutations of x, y, and z (along
with its Lorentz indices). Therefore, we are allowed to
calculate only a subset of the diagrams generated by the
Wick contractions in Eq. (15) and multiply them with
appropriate factors.

6e4Hcon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hcon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ −6
!
Re

X

q¼u;d;s

e4qTrðγνSqðxop; xÞγρSqðx; zÞ

× γκSqðz; yÞγσSqðy; xopÞÞ
"

QCD
; ð18Þ

6e4Hdiscon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hdiscon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ 3

! X

q0¼u;d;s

e2q0TrðγνSq0ðxop; xÞγρSq0ðx; xopÞÞ

×
X

q¼u;d;s

e2qTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞ
"

QCD
; ð19Þ

where Sq denotes the quark propagator. As shown in Fig. 4,
we calculate the hadronic four-point function with two
point-source propagators. The above trick can make
the evaluation more efficient [42,47]. We note that
Hdiscon-no-perm, the disconnected diagram of the hadronic
four-point function without permutation, still satisfies the
current conservation condition in the continuum limit (this
is not true for Hcon-no-perm) which leads to the following
relation in the infinite volume limit:

X

xop

Hdiscon-no-perm
k;ρ;σ;λ ðxop; x; y; zÞ ¼ 0: ð20Þ

We are therefore allowed to alter the choice of xref for the
disconnected diagram

xref-discon ¼ x: ð21Þ

This choice allows the summation over xop to be performed
independently of coordinates y and z. This choice also has
the benefit of suppressing the contribution from the region
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Note that Gð1Þ
σ;κ;ρðz; z; zÞ ¼ 0, so this subtraction signifi-

cantly reduces the size of the QED weighting function
when jx − zj or jy − zj is small. This is the region where the
hadronic function from the lattice calculation has the largest
discretization error. It turns out that this subtraction greatly
reduces the discretization error. This is the major finding of
Ref. [46]. We should also note that the subtraction does
impact the integrand and partial sum. In Ref. [48], a
modified subtraction scheme is used, so their integrand
and partial sum cannot be directly compared with ours.
Finally, we include all possible permutations of the
subtracted QED weighting function which are required
for the total contribution to the muon g − 2:

i3Gρ;σ;κðx; y; zÞ ¼ Gð2Þ
ρ;σ;κðx; y; zÞ þGð2Þ

σ;κ;ρðy; z; xÞ

þGð2Þ
κ;ρ;σðz; x; yÞ þGð2Þ

κ;σ;ρðz; y; xÞ

þGð2Þ
ρ;κ;σðx; z; yÞ þGð2Þ

σ;ρ;κðy; x; zÞ: ð13Þ

Another component of the master formula Eq. (8) is xref ,
the reference position for the moment method to calculate
the magnetic moment. Again, due to current conservation,
there are many possible choices for xref. In this work, we
use the following choice for the connected diagram:

xrefðx; y; zÞ
¼ xref−farðx; y; zÞ

¼

8
>>><

>>>:

x if jy − zj < minðjx − yj; jx − zjÞ
y if jx − zj < minðjx − yj; jy − zjÞ
z if jx − yj < minðjx − zj; jy − zjÞ
1
3 ðxþ yþ zÞ otherwise

ð14Þ

We make a slightly different choice of xref , Eq. (21), for the
disconnected diagrams. The rationale will be described in
the later part of this section. We use H to denote the
hadronic four point function

ð6e4ÞHk;ρ;σ;λðxop; x; y; zÞ ¼ hTJkðxopÞJρðxÞJσðyÞJλðzÞiQCD
ð15Þ

JνðxÞ ¼
X

q¼u;d;s;c

eqZV ψ̄qðxÞγνψqðxÞ ð16Þ

where ZV is the lattice local vector current renormalization
constant. After Wick contraction,H can be expressed as the
sum of different types of diagrams as illustrated in Fig. 2.
For the disconnected and subleading disconnected dia-
grams, we require the quark loops to be connected by
gluons.

H ¼ Hcon þHdiscon þHsubleading-discon þHcharm ð17Þ

where Hcon includes the light and strange quark connected
diagrams, Hdiscon the light and strange quark disconnected
diagrams, Hsubleading-discon the light and strange quark sub-
leading disconnected diagrams [vanish in the flavor SU(3)
limit], andHcharm all diagrams involving charm quark loops.
Naturally, after the Wick contraction, H defined in

Eq. (15) can be expressed in terms of quark propagators
and includes all permutations of x, y, and z. However, note
that all other terms in the master formula Eq. (8) are
symmetric with respect to permutations of x, y, and z (along
with its Lorentz indices). Therefore, we are allowed to
calculate only a subset of the diagrams generated by the
Wick contractions in Eq. (15) and multiply them with
appropriate factors.

6e4Hcon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hcon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ −6
!
Re

X

q¼u;d;s

e4qTrðγνSqðxop; xÞγρSqðx; zÞ

× γκSqðz; yÞγσSqðy; xopÞÞ
"

QCD
; ð18Þ

6e4Hdiscon
ν;ρ;σ;κðxop; x; y; zÞ

⇒ 6e4Hdiscon-no-perm
ν;ρ;σ;κ ðxop; x; y; zÞ

¼ 3

! X

q0¼u;d;s

e2q0TrðγνSq0ðxop; xÞγρSq0ðx; xopÞÞ

×
X

q¼u;d;s

e2qTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞ
"

QCD
; ð19Þ

where Sq denotes the quark propagator. As shown in Fig. 4,
we calculate the hadronic four-point function with two
point-source propagators. The above trick can make
the evaluation more efficient [42,47]. We note that
Hdiscon-no-perm, the disconnected diagram of the hadronic
four-point function without permutation, still satisfies the
current conservation condition in the continuum limit (this
is not true for Hcon-no-perm) which leads to the following
relation in the infinite volume limit:

X

xop

Hdiscon-no-perm
k;ρ;σ;λ ðxop; x; y; zÞ ¼ 0: ð20Þ

We are therefore allowed to alter the choice of xref for the
disconnected diagram

xref-discon ¼ x: ð21Þ

This choice allows the summation over xop to be performed
independently of coordinates y and z. This choice also has
the benefit of suppressing the contribution from the region
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Moment method based on two point-source propagators



• 2+1 flavors of MDWF fermions, Iwasaki gluons, generated by 
RBC/UKQCD collaborations

• Physical masses

6

a-1=1.73 GeV (0.114 fm)
L=5.47 fm, 48!×96
Complete

a-1=2.36 GeV (0.084 fm)
L=5.38 fm, 64!×128
Analysis underway

a-1=2.69 GeV (0.073 fm)
L=7.0 fm, 96!×192
Planned

RBC setup and previous results
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RBC setup and previous results

Sampling strategy for connected diagrams

• 483×96, 113 configurations, 2-step
AMA using Z-Möbius approximation

• 2048 light quark point-source props,
uniformly distributed over sites

• Subset of 1024 for strange quarks

• 2048×(2048 − 1)/2+2048 = 2,098,176 combi’s,
Sample ~57,000 pairs with probability p(r) and weight with w(r)
Loop contribution exponentially smaller for large r=|x-y|

• Uniformly, randomly choose (sparsen) 1/16 of all sink points (z,xop)

where jx − xopj is small and the quark loop is large before
subtracting the vacuum expectation value. Also, we note that
the new choice xref-discon is the same as the initial choice in the
long distance region where the contribution is dominated by
π0-exchange and jy − zj ≪ minðjx − yj; jx − zjÞ. This prop-
erty guarantees that the connected and disconnected dia-
grams have exactly the same QED weighting function in the
long distance region, which leads to Eq. (28) before taking
the continuum limit. This is themain reason for the choice of
xref for the connected diagrams.

III. LATTICE DETAILS

The calculation presented here is performed on ensembles
of gauge fields generated by the RBC and UKQCD collab-
orations [52]. The main calculation is carried out using
the 48I ensemble, a physical-mass ensemble generated with
2þ 1 flavors ofMöbius domainwall fermions (MDWF).We
also use a few other ensembles to calculate various correc-
tions and estimate systematic effects. The relevant informa-
tion about the 48I ensemble and other ensembles is listed in
Table I. We always use the MDWF action. For most of the
ensembles, the quarks have their physical masses.
For our main calculation on the 48I ensemble, we use

113 configurations. On each configuration, we randomly
sample 2048 uniformly distributed distinct points and
calculate light quark point-source propagators for each
of the selected points.
Among the above 2048 points we randomly select 1024

points and also calculate strange quark propagators.

These 2048þ 1024 point-source propagators are computed
using the (deflated-) conjugate gradient algorithm with a
sloppy stopping condition. To further speed up the sloppy
propagator calculation, we use the zMöbius domain wall
fermion formulation [54] with reduced fifth dimension size
Ls ¼ 14 to approximate the unitary MDWF action used in
the gauge ensemble generation (Ls ¼ 24). For deflation of
the Dirac operator we reuse the eigenvectors generated for
the calculation of the hadronic vacuum polarization con-
tribution to the muon g − 2 [55,56] using the locally
coherent Lanczos approach [57]. Then, we use a two-level
all-mode-averaging (AMA) method [58] to correct the bias
caused by the inexact propagators. The AMA method
requires a portion of the sloppy propagators be computed
again with higher precision. In the first step a more precise
version of the light and strange quark propagators are
calculated on a randomly selected set of 64 points among
the 1024 points. In the second step among the 64 points, we
randomly select 16 points and calculate these propagators
to full precision. These propagators are used to calculate
both the connected and the disconnected diagrams in the
bias correction. By using two steps, we are able to reduce
the statistical error coming from the bias correction to a
level well below the statistical error for the sloppy part.
For the connected diagrams, we sample two-point pairs

among all the possible 2048 × ð2048 − 1Þ=2þ 2048 ¼
2098176 combinations (including the case where x ¼ y).
For each of the two-point pairs, we can perform the
contraction as described in Eq. (18) in the previous section.
As the number of all possible pairs is enormous, the cost to
perform all the contractions is not affordable. Therefore, we
only calculate the contraction for a subset of the available
two-point pairs. We sample the subset with the empirical
probability pðrÞ, which is a function of the distance
between the two points, r ¼ jx − yj,

pðrÞ ¼

8
>>>>><

>>>>>:

Npsrc−1
2ðL3T−1Þ if r ¼ 0

1 if 8 ≥ r > 0
1

ðr=8Þ3 if L ≥ r > 8

0 if r > L

; ð22Þ

where L ¼ 48, T ¼ 96, and the numbers are in lattice units.
On average, about 57,000 light quark point-source propa-
gator pairs per configuration are sampled to calculate the
connected diagrams. The reason we sample long-distance
point-pairs less often is because the connected hadronic
four point function and its statistical fluctuation decrease
with distance for long distances. For each pair, due to the
sampling procedure, the probability of that pair taking a
particular relative coordinate is a function of r. The total
connected diagram contribution is equal to the expectation
value of the contraction for the point pairs multiplied by the
inverse probabilities. We refer to the inverse probability as
the weight wðrÞ

FIG. 4. Two point-source propagators are used to calculate the
hadronic four-point function. The locations of the point-sources
are indicated in the diagrams as small circles.
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wðrÞ ¼
!
w0 if r ¼ 0

w0=pðrÞ if r > 0
; ð23Þ

w0 ¼
X

x

pðjxjÞ: ð24Þ

To further reduce the contraction cost and the storage cost
of saving these propagators, we use field sparsening
techniques [59,60]. We randomly sample 1=16 points
among all the points of the lattice and only perform
contractions on these randomly selected points. Since we
only need propagator values on these points, we only save
these values to disk. To accommodate the sparsening, we
multiply a factor of 162 for the summation over z and xop in
Eq. (8), except when z ¼ xop, where we multiply by 16. In
this way the sampling procedure does not introduce any
systematic effects on our central value.
For the disconnected diagrams, the two point-source

locations are also indicated in Fig. 4. Different from the
connected diagrams, the statistical fluctuations of the
disconnected hadronic functions are not suppressed when
r ¼ jx − yj increases. Therefore, we use all possible com-
binations of point pairs of x and y as long as jx − yj ≤ L to
estimate the summation over x and y in Eq. (8). Thanks to
the choice of xref ¼ xref-discon ¼ x in Eq. (21), the summa-
tion over xop can be performed for each point-source
propagator with source location at x, the result can be
used for all possible values of y locations. However, the
summation of z depends on the location of x and y due to
the QED weighting function. Therefore, we need to
perform the summation over z for each pair of points.
To make the contractions of all point pairs affordable, we

aggressively sparsen when summing over z. Fortunately,

the vertex z and vertex y are connected by two quark
propagators, and the four point function is exponentially
suppressed when the distance between z and y increases.
Naturally, we can sample the z locations based on the

distance between z and y, similar to the sampling of x and y
combinations in the calculation of the connected diagrams.
However, for this disconnected diagram, we discovered a
much more efficient adaptive sampling scheme as follows.
For each point-source location y, we calculate the following
square norm nðz; yÞ of the quark loop for all z:

nðz; yÞ ¼
X

κ;σ

jTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞj2

Unlike the full contraction, the above norm is independent
of the location of x, and the location of z is sampled with
the following (empirical) probability

pyðzÞ ¼

8
>><

>>:

1 if nðz; yÞ ≥ t20 and jz− yj ≤ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðz; yÞ

p
=t0 if nðz; yÞ< t20 and jz− yj ≤ L

0 if jz− yj> L

;

ð25Þ

where t0 is the threshold parameter to control the overall
sample frequency. With this probability distribution, we
sample more often points where the (norm of) the quark
loop is large which is much more efficient than basing the
probability on the distance jz − yj. We choose t0 ¼ 5 × 10−5

in this work for the 48I ensemble.
For the light quark loop, there are 9,156,431 points

within the jz − yj ≤ L range. Among these, we sample
about 17,000 points for z on average. For each of the
sampled z, we then loop over all possible x locations with
jx − yj ≤ L and perform the full contraction. Due to the
sampling procedure, we multiply the result of the con-
traction by the inverse of the sample probability 1=pyðzÞ to
obtain an unbiased final result. While the sampled z points
amount to less than 0.2% of the possible z points in the
allowed range, we expect the final statistical precision to be
almost unaffected by the adaptive sampling procedure. That
is, we expect the final statistical error would be almost the
same even if we had calculated the contraction using all the
z locations. This expectation is based on a quick test run
with much lower threshold t0 ¼ 10−3, which corresponds
to about a factor of 20 smaller number of sampled points;
we find the final statistical error is roughly the same.
In contrast to the connected diagram, we do not sparsen

the propagators. To save disk space, we temporarily save
the following intermediate contraction for each point-
source propagator:

TrðγκSqðz; yÞγσSqðy; zÞÞ: ð26Þ

TABLE I. 2þ 1 flavors of MDWF gauge field ensembles
generated by the RBC-UKQCD collaborations [52]. The labels
indicate the lattice size in lattice units and the QCD gauge
action, where “I” stands for Iwasaki, and “D” stands for
Iwasaki þ DSDR. DSDR stands for dislocation-suppressing-
determinant-ratio, which is an additional term in the action to
soften explicit chiral symmetry breaking effects, needed in
particular for very coarse lattices [53]. The pion mass mπ , lattice
spacing aa, spatial extent L, extra fifth dimension size Ls, and the
number of QCD configurations used are listed.

48I 64I 24D 32D 24DH

mπ (MeV) 139 135 142 142 341
a−1 (GeV) 1.730 2.359 1.015 1.015 1.015
a (fm) 0.114 0.084 0.194 0.194 0.194
L (fm) 5.47 5.38 4.67 6.22 4.67
Ls 24 12 24 24 24
No. meas 113 64 31 70 37

aAfter the analysis for this work was completed, we updated
the lattice spacing for the 24D and 32D ensembles. The new
lattice spacing is a−1 ¼ 1.023 GeV and makes no material
difference to the results presented here.
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where jx − xopj is small and the quark loop is large before
subtracting the vacuum expectation value. Also, we note that
the new choice xref-discon is the same as the initial choice in the
long distance region where the contribution is dominated by
π0-exchange and jy − zj ≪ minðjx − yj; jx − zjÞ. This prop-
erty guarantees that the connected and disconnected dia-
grams have exactly the same QED weighting function in the
long distance region, which leads to Eq. (28) before taking
the continuum limit. This is themain reason for the choice of
xref for the connected diagrams.

III. LATTICE DETAILS

The calculation presented here is performed on ensembles
of gauge fields generated by the RBC and UKQCD collab-
orations [52]. The main calculation is carried out using
the 48I ensemble, a physical-mass ensemble generated with
2þ 1 flavors ofMöbius domainwall fermions (MDWF).We
also use a few other ensembles to calculate various correc-
tions and estimate systematic effects. The relevant informa-
tion about the 48I ensemble and other ensembles is listed in
Table I. We always use the MDWF action. For most of the
ensembles, the quarks have their physical masses.
For our main calculation on the 48I ensemble, we use

113 configurations. On each configuration, we randomly
sample 2048 uniformly distributed distinct points and
calculate light quark point-source propagators for each
of the selected points.
Among the above 2048 points we randomly select 1024

points and also calculate strange quark propagators.

These 2048þ 1024 point-source propagators are computed
using the (deflated-) conjugate gradient algorithm with a
sloppy stopping condition. To further speed up the sloppy
propagator calculation, we use the zMöbius domain wall
fermion formulation [54] with reduced fifth dimension size
Ls ¼ 14 to approximate the unitary MDWF action used in
the gauge ensemble generation (Ls ¼ 24). For deflation of
the Dirac operator we reuse the eigenvectors generated for
the calculation of the hadronic vacuum polarization con-
tribution to the muon g − 2 [55,56] using the locally
coherent Lanczos approach [57]. Then, we use a two-level
all-mode-averaging (AMA) method [58] to correct the bias
caused by the inexact propagators. The AMA method
requires a portion of the sloppy propagators be computed
again with higher precision. In the first step a more precise
version of the light and strange quark propagators are
calculated on a randomly selected set of 64 points among
the 1024 points. In the second step among the 64 points, we
randomly select 16 points and calculate these propagators
to full precision. These propagators are used to calculate
both the connected and the disconnected diagrams in the
bias correction. By using two steps, we are able to reduce
the statistical error coming from the bias correction to a
level well below the statistical error for the sloppy part.
For the connected diagrams, we sample two-point pairs

among all the possible 2048 × ð2048 − 1Þ=2þ 2048 ¼
2098176 combinations (including the case where x ¼ y).
For each of the two-point pairs, we can perform the
contraction as described in Eq. (18) in the previous section.
As the number of all possible pairs is enormous, the cost to
perform all the contractions is not affordable. Therefore, we
only calculate the contraction for a subset of the available
two-point pairs. We sample the subset with the empirical
probability pðrÞ, which is a function of the distance
between the two points, r ¼ jx − yj,

pðrÞ ¼

8
>>>>><

>>>>>:

Npsrc−1
2ðL3T−1Þ if r ¼ 0

1 if 8 ≥ r > 0
1

ðr=8Þ3 if L ≥ r > 8

0 if r > L

; ð22Þ

where L ¼ 48, T ¼ 96, and the numbers are in lattice units.
On average, about 57,000 light quark point-source propa-
gator pairs per configuration are sampled to calculate the
connected diagrams. The reason we sample long-distance
point-pairs less often is because the connected hadronic
four point function and its statistical fluctuation decrease
with distance for long distances. For each pair, due to the
sampling procedure, the probability of that pair taking a
particular relative coordinate is a function of r. The total
connected diagram contribution is equal to the expectation
value of the contraction for the point pairs multiplied by the
inverse probabilities. We refer to the inverse probability as
the weight wðrÞ

FIG. 4. Two point-source propagators are used to calculate the
hadronic four-point function. The locations of the point-sources
are indicated in the diagrams as small circles.
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where jx − xopj is small and the quark loop is large before
subtracting the vacuum expectation value. Also, we note that
the new choice xref-discon is the same as the initial choice in the
long distance region where the contribution is dominated by
π0-exchange and jy − zj ≪ minðjx − yj; jx − zjÞ. This prop-
erty guarantees that the connected and disconnected dia-
grams have exactly the same QED weighting function in the
long distance region, which leads to Eq. (28) before taking
the continuum limit. This is themain reason for the choice of
xref for the connected diagrams.

III. LATTICE DETAILS

The calculation presented here is performed on ensembles
of gauge fields generated by the RBC and UKQCD collab-
orations [52]. The main calculation is carried out using
the 48I ensemble, a physical-mass ensemble generated with
2þ 1 flavors ofMöbius domainwall fermions (MDWF).We
also use a few other ensembles to calculate various correc-
tions and estimate systematic effects. The relevant informa-
tion about the 48I ensemble and other ensembles is listed in
Table I. We always use the MDWF action. For most of the
ensembles, the quarks have their physical masses.
For our main calculation on the 48I ensemble, we use

113 configurations. On each configuration, we randomly
sample 2048 uniformly distributed distinct points and
calculate light quark point-source propagators for each
of the selected points.
Among the above 2048 points we randomly select 1024

points and also calculate strange quark propagators.

These 2048þ 1024 point-source propagators are computed
using the (deflated-) conjugate gradient algorithm with a
sloppy stopping condition. To further speed up the sloppy
propagator calculation, we use the zMöbius domain wall
fermion formulation [54] with reduced fifth dimension size
Ls ¼ 14 to approximate the unitary MDWF action used in
the gauge ensemble generation (Ls ¼ 24). For deflation of
the Dirac operator we reuse the eigenvectors generated for
the calculation of the hadronic vacuum polarization con-
tribution to the muon g − 2 [55,56] using the locally
coherent Lanczos approach [57]. Then, we use a two-level
all-mode-averaging (AMA) method [58] to correct the bias
caused by the inexact propagators. The AMA method
requires a portion of the sloppy propagators be computed
again with higher precision. In the first step a more precise
version of the light and strange quark propagators are
calculated on a randomly selected set of 64 points among
the 1024 points. In the second step among the 64 points, we
randomly select 16 points and calculate these propagators
to full precision. These propagators are used to calculate
both the connected and the disconnected diagrams in the
bias correction. By using two steps, we are able to reduce
the statistical error coming from the bias correction to a
level well below the statistical error for the sloppy part.
For the connected diagrams, we sample two-point pairs

among all the possible 2048 × ð2048 − 1Þ=2þ 2048 ¼
2098176 combinations (including the case where x ¼ y).
For each of the two-point pairs, we can perform the
contraction as described in Eq. (18) in the previous section.
As the number of all possible pairs is enormous, the cost to
perform all the contractions is not affordable. Therefore, we
only calculate the contraction for a subset of the available
two-point pairs. We sample the subset with the empirical
probability pðrÞ, which is a function of the distance
between the two points, r ¼ jx − yj,

pðrÞ ¼

8
>>>>><

>>>>>:

Npsrc−1
2ðL3T−1Þ if r ¼ 0

1 if 8 ≥ r > 0
1

ðr=8Þ3 if L ≥ r > 8

0 if r > L

; ð22Þ

where L ¼ 48, T ¼ 96, and the numbers are in lattice units.
On average, about 57,000 light quark point-source propa-
gator pairs per configuration are sampled to calculate the
connected diagrams. The reason we sample long-distance
point-pairs less often is because the connected hadronic
four point function and its statistical fluctuation decrease
with distance for long distances. For each pair, due to the
sampling procedure, the probability of that pair taking a
particular relative coordinate is a function of r. The total
connected diagram contribution is equal to the expectation
value of the contraction for the point pairs multiplied by the
inverse probabilities. We refer to the inverse probability as
the weight wðrÞ

FIG. 4. Two point-source propagators are used to calculate the
hadronic four-point function. The locations of the point-sources
are indicated in the diagrams as small circles.
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RBC setup and previous results

Sampling strategy for disconnected diagrams

• Noise not suppressed with r=|x-y|, 
sum over all (x,y) pairs with r < 48

• Sum over xop

• z depends on x,y: adaptively sparsen 
sum according to norm of loop: 
n(z,y), py(z) for t0 = 5×10-5

since loop is suppressed with |y-z|

• 17,000 z locations in sum. Checked 
noise not enhanced with t0 = 1×10-3

wðrÞ ¼
!
w0 if r ¼ 0

w0=pðrÞ if r > 0
; ð23Þ

w0 ¼
X

x

pðjxjÞ: ð24Þ

To further reduce the contraction cost and the storage cost
of saving these propagators, we use field sparsening
techniques [59,60]. We randomly sample 1=16 points
among all the points of the lattice and only perform
contractions on these randomly selected points. Since we
only need propagator values on these points, we only save
these values to disk. To accommodate the sparsening, we
multiply a factor of 162 for the summation over z and xop in
Eq. (8), except when z ¼ xop, where we multiply by 16. In
this way the sampling procedure does not introduce any
systematic effects on our central value.
For the disconnected diagrams, the two point-source

locations are also indicated in Fig. 4. Different from the
connected diagrams, the statistical fluctuations of the
disconnected hadronic functions are not suppressed when
r ¼ jx − yj increases. Therefore, we use all possible com-
binations of point pairs of x and y as long as jx − yj ≤ L to
estimate the summation over x and y in Eq. (8). Thanks to
the choice of xref ¼ xref-discon ¼ x in Eq. (21), the summa-
tion over xop can be performed for each point-source
propagator with source location at x, the result can be
used for all possible values of y locations. However, the
summation of z depends on the location of x and y due to
the QED weighting function. Therefore, we need to
perform the summation over z for each pair of points.
To make the contractions of all point pairs affordable, we

aggressively sparsen when summing over z. Fortunately,

the vertex z and vertex y are connected by two quark
propagators, and the four point function is exponentially
suppressed when the distance between z and y increases.
Naturally, we can sample the z locations based on the

distance between z and y, similar to the sampling of x and y
combinations in the calculation of the connected diagrams.
However, for this disconnected diagram, we discovered a
much more efficient adaptive sampling scheme as follows.
For each point-source location y, we calculate the following
square norm nðz; yÞ of the quark loop for all z:

nðz; yÞ ¼
X

κ;σ

jTrðγκSqðz; yÞγσSqðy; zÞ

− hγκSqðz; yÞγσSqðy; zÞiQCDÞj2

Unlike the full contraction, the above norm is independent
of the location of x, and the location of z is sampled with
the following (empirical) probability

pyðzÞ ¼

8
>><

>>:

1 if nðz; yÞ ≥ t20 and jz− yj ≤ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðz; yÞ

p
=t0 if nðz; yÞ< t20 and jz− yj ≤ L

0 if jz− yj> L

;

ð25Þ

where t0 is the threshold parameter to control the overall
sample frequency. With this probability distribution, we
sample more often points where the (norm of) the quark
loop is large which is much more efficient than basing the
probability on the distance jz − yj. We choose t0 ¼ 5 × 10−5

in this work for the 48I ensemble.
For the light quark loop, there are 9,156,431 points

within the jz − yj ≤ L range. Among these, we sample
about 17,000 points for z on average. For each of the
sampled z, we then loop over all possible x locations with
jx − yj ≤ L and perform the full contraction. Due to the
sampling procedure, we multiply the result of the con-
traction by the inverse of the sample probability 1=pyðzÞ to
obtain an unbiased final result. While the sampled z points
amount to less than 0.2% of the possible z points in the
allowed range, we expect the final statistical precision to be
almost unaffected by the adaptive sampling procedure. That
is, we expect the final statistical error would be almost the
same even if we had calculated the contraction using all the
z locations. This expectation is based on a quick test run
with much lower threshold t0 ¼ 10−3, which corresponds
to about a factor of 20 smaller number of sampled points;
we find the final statistical error is roughly the same.
In contrast to the connected diagram, we do not sparsen

the propagators. To save disk space, we temporarily save
the following intermediate contraction for each point-
source propagator:

TrðγκSqðz; yÞγσSqðy; zÞÞ: ð26Þ

TABLE I. 2þ 1 flavors of MDWF gauge field ensembles
generated by the RBC-UKQCD collaborations [52]. The labels
indicate the lattice size in lattice units and the QCD gauge
action, where “I” stands for Iwasaki, and “D” stands for
Iwasaki þ DSDR. DSDR stands for dislocation-suppressing-
determinant-ratio, which is an additional term in the action to
soften explicit chiral symmetry breaking effects, needed in
particular for very coarse lattices [53]. The pion mass mπ , lattice
spacing aa, spatial extent L, extra fifth dimension size Ls, and the
number of QCD configurations used are listed.

48I 64I 24D 32D 24DH

mπ (MeV) 139 135 142 142 341
a−1 (GeV) 1.730 2.359 1.015 1.015 1.015
a (fm) 0.114 0.084 0.194 0.194 0.194
L (fm) 5.47 5.38 4.67 6.22 4.67
Ls 24 12 24 24 24
No. meas 113 64 31 70 37

aAfter the analysis for this work was completed, we updated
the lattice spacing for the 24D and 32D ensembles. The new
lattice spacing is a−1 ¼ 1.023 GeV and makes no material
difference to the results presented here.
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wðrÞ ¼
!
w0 if r ¼ 0

w0=pðrÞ if r > 0
; ð23Þ

w0 ¼
X

x

pðjxjÞ: ð24Þ
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sample frequency. With this probability distribution, we
sample more often points where the (norm of) the quark
loop is large which is much more efficient than basing the
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about 17,000 points for z on average. For each of the
sampled z, we then loop over all possible x locations with
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sampling procedure, we multiply the result of the con-
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amount to less than 0.2% of the possible z points in the
allowed range, we expect the final statistical precision to be
almost unaffected by the adaptive sampling procedure. That
is, we expect the final statistical error would be almost the
same even if we had calculated the contraction using all the
z locations. This expectation is based on a quick test run
with much lower threshold t0 ¼ 10−3, which corresponds
to about a factor of 20 smaller number of sampled points;
we find the final statistical error is roughly the same.
In contrast to the connected diagram, we do not sparsen

the propagators. To save disk space, we temporarily save
the following intermediate contraction for each point-
source propagator:
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TABLE I. 2þ 1 flavors of MDWF gauge field ensembles
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Ls 24 12 24 24 24
No. meas 113 64 31 70 37

aAfter the analysis for this work was completed, we updated
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lattice spacing is a−1 ¼ 1.023 GeV and makes no material
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RBC setup and previous results

For each propagator on each lattice site, the above con-
traction corresponds to 4 × 4 complex numbers while the
full propagator takes 12 × 12 complex numbers.

IV. RESULTS

In this section we display several figures of the summand
(integrand) or its partial sum as a function of Rmax

Rmax ¼ maxðjx − yj; jy − zj; jx − zjÞ; ð27Þ

where x, y, and z represent the positions of the three
internal quark-photon vertices. Partial sums are obtained by
summing the corresponding summand from 0 up to the
specified value of Rmax (inclusive). The rightmost value in a
partial-sum plot corresponds to the total contribution.
Since the summand decreases exponentially at large

Rmax, we expect the partial sum to approach a plateau for
large enough Rmax. We usually use the result of the partial
sum at 4 fm, which includes all contributions from the
region Rmax < 4 fm. In the lattice calculation, we calculate
the partial sum with respect to Rmax and save the partial sum
for all integer values (in lattice units) of the upper limit of
Rmax. To compare with results calculated using ensembles
with different lattice spacings, we can linearly interpolate
the partial sum for any upper limit of Rmax. In this work, we
choose to interpolate at integer multiples ×0.1 fm. The
summand is obtained at half-integer multiples ×0.1 fm by
taking the difference of the linearly interpolated partial
sum. Therefore, the data points of the plots shown in this
work always have spacing 0.1 fm, and the data points of the
integrand plots always have its x-axis value equal to half-
integer times 0.1 fm. In this work, we present our results for
the anomalous magnetic moment in the unit of 10−10.

A. Light quark contribution

The contributions from the connected diagrams, the
disconnected diagrams, and the sum of the two contributions
are shown in Fig. 5. As can be seen from the figure, the
statistical error grows as Rmax increases. However, for both
the connected and the disconnected diagrams, there are non-
negligible contributions that come from regions where Rmax
is as large as 3 or 4 fm.The statistical error is quite significant.
Making the situation worse, the contributions from the long-
distance region of the connected and the disconnected
diagrams are opposite in sign, while the statistical error of
the connected and the disconnected diagrams are largely
independent.As a result, the relative uncertaintyon the sum is
much larger than that for the individual contributions. Results
aregiven inTable II as “48I light conRmax < 4 fm,” “48I light
discon Rmax < 4 fm,” and “48I light Rmax < 4 fm.”
To improve the situation, note that the large contribution

and the cancellation between the connected and discon-
nected diagrams at long distance are due to π0 exchange
and are well-understood theoretically [48,61,62]. It has
been shown that, at large Rmax, the ratio of the disconnected

and the connected hadronic four-point function is −25=34.
In our present computational setup, we use the same infinite
volume QCD weighting function for both the connected
and disconnected diagrams, and use the same variable Rmax
to study the partial sum of the connected and disconnected
diagrams. [63] Therefore the same ratio applies to the
contribution to aμ. Formally, we have

lim
R→∞

adisconμ ðRmax > RÞ
aconμ ðRmax > RÞ

¼ − 1

2
·
ðe2u þ e2dÞ2

e4u þ e4d
¼ − 25

34
: ð28Þ

Here,Rmax is defined inEq. (27), being a function of the three
vertex locations x, y, z as shown in Fig. 4. The long-distance
contributions for the connected and disconnected diagrams

FIG. 5. Light quark contributions computed on the 48I ensem-
ble from the connected diagrams, the disconnected diagrams, and
the total. The upper plot shows the corresponding summands and
the lower plot shows the partial sum.
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The fit range is from 0.5 to 4 fm. We use the result of the fit
to estimate the long-distance contribution to ano-pionμ . Since
this is a completely empirical fit, we will assign a 100%
systematic uncertainty to it. The “no-pion” results are also
collected in Table II.
With the definition of ano-pionμ , we obtain

adisconμ ¼ ano-pionμ −
25

34
aconμ ; ð31Þ

atotalμ ¼ ano-pionμ þ 9

34
aconμ : ð32Þ

The advantage comes in using the early plateau value of
ano-pionμ and combining it with aconμ , which plateaus at much
larger Rmax. This is a “hybrid” approach to calculate adisconμ

and atotalμ , which has a much smaller statistical error than the
direct combination. For aconμ , we will use 4 fm as the upper
limit of Rmax. The results are shown in Table II as entries
that start with “48I light discon Rmax < 4 fm hybrid-” and
“48I light Rmax < 4 fm hybrid-.”
The fitting function form in Eq. (30) is inspired by the

function in Eq. (20) of Ref. [48]. The functional form used
here differs due to the meanings of Rmax and the variable
“jyj” in Ref. [48]. Also, note that the subtraction scheme of
the QED weighting function is also different [46–48,65].
We tried using this fit function to fit other contributions.
The results are shown in Appendix C.
The statistical errors are estimated by assuming the

results from each 48I configuration that we performed
the measurements are statistically independent. We also
tried to bin the data with different lengths in MD time units.
The results are shown in Table III. We can see that the
statistical error does not significantly depend on the binning
sizes. More interestingly, the statistical error calculated by
assuming all the individual samples in each configuration
are independent is only a little bit smaller than the statistical
error calculated from the fluctuation of different configu-
rations. This implies that the current statistical errors still
mainly come from the sampling of the points from each
configuration, instead of from the gauge field fluctuations
sampled by different gauge configurations. Also, this
shows that the strategy using different combinations of
the point source propagators as point pairs to calculate the
connected diagrams is very effective.
The remaining finite volume, pion mass, and nonzero

lattice spacing correctionswill be studied inSecs. IVD–IV F.

B. Strange quark contribution

The contributions from the strange quark connected
diagrams, the disconnected diagrams, and the sum of the
two contributions are plotted in Fig. 7. Note the strange
quark disconnected diagrams include diagrams where one
or both loops are strange quark loops, while the light quark
disconnected diagrams discussed in the previous section
contain only light quarks. As seen in the figure, the
contribution from the strange quark-connected diagrams
is very precise and very small. It can also be clearly seen
that the strange quark contribution vanishes much faster at
long-distance compared to the light quark contribution.
The disconnected diagrams, on the other hand, are much

noisier. However, we still expect the signal to vanish faster
than the light quark contribution due to the absence of the

FIG. 6. Light quark contributions from a special combination of
the connected and disconnected diagrams to cancel the long-
distance π0 exchange contribution [see Eq. (29)]. The upper plot
shows the summand and the lower plot shows the partial sum.
The combined summand vanishes much faster than the light
quark diagrams by themselves. Solid curves represent a fit of the
data to Eq. (30). The fit starts at 0.5 fm. The dashed lines denote
the statistical uncertainty of the fit.
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For each propagator on each lattice site, the above con-
traction corresponds to 4 × 4 complex numbers while the
full propagator takes 12 × 12 complex numbers.

IV. RESULTS

In this section we display several figures of the summand
(integrand) or its partial sum as a function of Rmax

Rmax ¼ maxðjx − yj; jy − zj; jx − zjÞ; ð27Þ

where x, y, and z represent the positions of the three
internal quark-photon vertices. Partial sums are obtained by
summing the corresponding summand from 0 up to the
specified value of Rmax (inclusive). The rightmost value in a
partial-sum plot corresponds to the total contribution.
Since the summand decreases exponentially at large

Rmax, we expect the partial sum to approach a plateau for
large enough Rmax. We usually use the result of the partial
sum at 4 fm, which includes all contributions from the
region Rmax < 4 fm. In the lattice calculation, we calculate
the partial sum with respect to Rmax and save the partial sum
for all integer values (in lattice units) of the upper limit of
Rmax. To compare with results calculated using ensembles
with different lattice spacings, we can linearly interpolate
the partial sum for any upper limit of Rmax. In this work, we
choose to interpolate at integer multiples ×0.1 fm. The
summand is obtained at half-integer multiples ×0.1 fm by
taking the difference of the linearly interpolated partial
sum. Therefore, the data points of the plots shown in this
work always have spacing 0.1 fm, and the data points of the
integrand plots always have its x-axis value equal to half-
integer times 0.1 fm. In this work, we present our results for
the anomalous magnetic moment in the unit of 10−10.

A. Light quark contribution

The contributions from the connected diagrams, the
disconnected diagrams, and the sum of the two contributions
are shown in Fig. 5. As can be seen from the figure, the
statistical error grows as Rmax increases. However, for both
the connected and the disconnected diagrams, there are non-
negligible contributions that come from regions where Rmax
is as large as 3 or 4 fm.The statistical error is quite significant.
Making the situation worse, the contributions from the long-
distance region of the connected and the disconnected
diagrams are opposite in sign, while the statistical error of
the connected and the disconnected diagrams are largely
independent.As a result, the relative uncertaintyon the sum is
much larger than that for the individual contributions. Results
aregiven inTable II as “48I light conRmax < 4 fm,” “48I light
discon Rmax < 4 fm,” and “48I light Rmax < 4 fm.”
To improve the situation, note that the large contribution

and the cancellation between the connected and discon-
nected diagrams at long distance are due to π0 exchange
and are well-understood theoretically [48,61,62]. It has
been shown that, at large Rmax, the ratio of the disconnected

and the connected hadronic four-point function is −25=34.
In our present computational setup, we use the same infinite
volume QCD weighting function for both the connected
and disconnected diagrams, and use the same variable Rmax
to study the partial sum of the connected and disconnected
diagrams. [63] Therefore the same ratio applies to the
contribution to aμ. Formally, we have

lim
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adisconμ ðRmax > RÞ
aconμ ðRmax > RÞ

¼ − 1

2
·
ðe2u þ e2dÞ2
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34
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Here,Rmax is defined inEq. (27), being a function of the three
vertex locations x, y, z as shown in Fig. 4. The long-distance
contributions for the connected and disconnected diagrams

FIG. 5. Light quark contributions computed on the 48I ensem-
ble from the connected diagrams, the disconnected diagrams, and
the total. The upper plot shows the corresponding summands and
the lower plot shows the partial sum.
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The fit range is from 0.5 to 4 fm. We use the result of the fit
to estimate the long-distance contribution to ano-pionμ . Since
this is a completely empirical fit, we will assign a 100%
systematic uncertainty to it. The “no-pion” results are also
collected in Table II.
With the definition of ano-pionμ , we obtain

adisconμ ¼ ano-pionμ −
25

34
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atotalμ ¼ ano-pionμ þ 9

34
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The advantage comes in using the early plateau value of
ano-pionμ and combining it with aconμ , which plateaus at much
larger Rmax. This is a “hybrid” approach to calculate adisconμ

and atotalμ , which has a much smaller statistical error than the
direct combination. For aconμ , we will use 4 fm as the upper
limit of Rmax. The results are shown in Table II as entries
that start with “48I light discon Rmax < 4 fm hybrid-” and
“48I light Rmax < 4 fm hybrid-.”
The fitting function form in Eq. (30) is inspired by the

function in Eq. (20) of Ref. [48]. The functional form used
here differs due to the meanings of Rmax and the variable
“jyj” in Ref. [48]. Also, note that the subtraction scheme of
the QED weighting function is also different [46–48,65].
We tried using this fit function to fit other contributions.
The results are shown in Appendix C.
The statistical errors are estimated by assuming the

results from each 48I configuration that we performed
the measurements are statistically independent. We also
tried to bin the data with different lengths in MD time units.
The results are shown in Table III. We can see that the
statistical error does not significantly depend on the binning
sizes. More interestingly, the statistical error calculated by
assuming all the individual samples in each configuration
are independent is only a little bit smaller than the statistical
error calculated from the fluctuation of different configu-
rations. This implies that the current statistical errors still
mainly come from the sampling of the points from each
configuration, instead of from the gauge field fluctuations
sampled by different gauge configurations. Also, this
shows that the strategy using different combinations of
the point source propagators as point pairs to calculate the
connected diagrams is very effective.
The remaining finite volume, pion mass, and nonzero

lattice spacing correctionswill be studied inSecs. IVD–IV F.

B. Strange quark contribution

The contributions from the strange quark connected
diagrams, the disconnected diagrams, and the sum of the
two contributions are plotted in Fig. 7. Note the strange
quark disconnected diagrams include diagrams where one
or both loops are strange quark loops, while the light quark
disconnected diagrams discussed in the previous section
contain only light quarks. As seen in the figure, the
contribution from the strange quark-connected diagrams
is very precise and very small. It can also be clearly seen
that the strange quark contribution vanishes much faster at
long-distance compared to the light quark contribution.
The disconnected diagrams, on the other hand, are much

noisier. However, we still expect the signal to vanish faster
than the light quark contribution due to the absence of the

FIG. 6. Light quark contributions from a special combination of
the connected and disconnected diagrams to cancel the long-
distance π0 exchange contribution [see Eq. (29)]. The upper plot
shows the summand and the lower plot shows the partial sum.
The combined summand vanishes much faster than the light
quark diagrams by themselves. Solid curves represent a fit of the
data to Eq. (30). The fit starts at 0.5 fm. The dashed lines denote
the statistical uncertainty of the fit.
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are denoted as aconμ ðRmax > RÞ and adisconμ ðRmax > RÞ. They
can be calculated with the same summation as in Eq. (8) but
with the additional constraint that Rmax > R, where R is the
long-distance cutoff. Note we take the R → ∞ limit in the
above equation. This ratio is exact in this limit and is not
affected by lattice artifacts or finite volume effects.
Therefore, we can construct the following combination:

ano-pionμ ¼ adisconμ þ 25

34
aconμ ; ð29Þ

where the π0 exchange contribution to ano-pionμ vanishes in the
longdistance.Weplot the summandandpartial sumofano-pionμ

in Fig. 6. Indeed, the partial sumofano-pionμ reaches the plateau
much earlier than the connected or disconnected diagrams.
This trick of combining the connected and disconnected with
appropriate factors to obtain a faster plateau was employed in
Ref. [64]. For ano-pionμ , wewill use 2.0 and 2.5 fm as the upper
limit of Rmax. The results are shown in Table II as “48I light
no-pionRmax < 2.5 fm” or “48I light no-pionRmax < 2 fm.”
In the upper panel of Fig. 6, we fit the summand to the

following empirical form:

fðRmaxÞ ¼ A=fm4 R6
max

R3
max þ ðC fmÞ3

e−BRmax=ðfm·GeVÞ ð30Þ

TABLE II. Light quark contributions computed on the 48I ensemble. Values are different contributions to
aμ × 1010 where aμ ¼ ðgμ − 2Þ=2. The numbers in the square bracket are the statistical and systematic uncertainty
combined in quadrature. The tag “hybrid-” indicates the same quantity obtained using the hybrid approach.

Contribution name aμ × 1010

48I light con Rmax < 2 fm 7.24 ð0.15Þstat
48I light con Rmax < 2.5 fm 10.64 ð0.31Þstat
48I light con Rmax < 4 fm 18.61 ð1.22Þstat
48I light con Rmax > 4 fm 7.56 ð0.42Þstatð1.06Þsyst½1.14&
48I light con FV-corr −1.79 ð0.42Þsyst
48I light con mπ-corr 1.32 ð0.27Þstatð0.66Þsyst½0.72&
48I light con a2-corr 0.00 ð1.49Þsyst
light con 25.70 ð1.33Þstatð1.99Þsyst½2.39&
48I light no-pion Rmax < 2.5 fm 5.09 ð0.76Þstat
48I light no-pion Rmax < 2 fm 4.65 ð0.42Þstat
48I light no-pion Rmax > 2.5 fm 0.31 ð0.22Þstatð0.31Þsyst½0.38&
48I light no-pion Rmax > 2 fm 0.88 ð0.46Þstatð0.88Þsyst½0.99&
48I light discon Rmax < 2 fm −0.67 ð0.41Þstat
48I light discon Rmax < 2.5 fm −2.73 ð0.74Þstat
48I light discon Rmax < 4 fm −7.49 ð1.82Þstat
48I light discon Rmax < 4 fm hybrid-2.5 fm −8.28 ð1.31Þstatð0.31Þsyst½1.35&
48I light discon Rmax < 4 fm hybrid-2 fm −8.15 ð1.24Þstatð0.88Þsyst½1.51&
48I light discon Rmax > 4 fm −5.56 ð0.31Þstatð0.78Þsyst½0.84&
48I light discon FV-corr 1.31 ð0.31Þsyst
48I light discon mπ-corr −0.98 ð0.20Þstatð0.49Þsyst½0.53&
48I light discon a2-corr 0.00 ð0.66Þsyst
light discon −12.71 ð1.87Þstatð1.17Þsyst½2.20&
light discon hybrid-2.5 fm −13.50 ð1.36Þstatð1.21Þsyst½1.82&
light discon hybrid-2 fm −13.37 ð1.29Þstatð1.46Þsyst½1.95&

48I light Rmax < 2 fm 6.57 ð0.43Þstat
48I light Rmax < 2.5 fm 7.90 ð0.78Þstat
48I light Rmax < 4 fm 11.11 ð2.11Þstat
48I light Rmax < 4 fm hybrid-2.5 fm 10.32 ð0.99Þstatð0.31Þsyst½1.04&
48I light Rmax < 4 fm hybrid-2 fm 10.46 ð0.89Þstatð0.88Þsyst½1.25&
48I light Rmax > 4 fm 2.00 ð0.11Þstatð0.28Þsyst½0.30&
48I light FV-corr −0.47 ð0.11Þsyst
48I light mπ-corr 0.35 ð0.07Þstatð0.17Þsyst½0.19&
48I light a2-corr 0.00 ð0.83Þsyst
light total 12.99 ð2.11Þstatð0.90Þsyst½2.29&
light total hybrid-2.5 fm 12.20 ð1.01Þstatð0.95Þsyst½1.38&
light total hybrid-2 fm 12.33 ð0.90Þstatð1.25Þsyst½1.55&
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are denoted as aconμ ðRmax > RÞ and adisconμ ðRmax > RÞ. They
can be calculated with the same summation as in Eq. (8) but
with the additional constraint that Rmax > R, where R is the
long-distance cutoff. Note we take the R → ∞ limit in the
above equation. This ratio is exact in this limit and is not
affected by lattice artifacts or finite volume effects.
Therefore, we can construct the following combination:

ano-pionμ ¼ adisconμ þ 25

34
aconμ ; ð29Þ

where the π0 exchange contribution to ano-pionμ vanishes in the
longdistance.Weplot the summandandpartial sumofano-pionμ

in Fig. 6. Indeed, the partial sumofano-pionμ reaches the plateau
much earlier than the connected or disconnected diagrams.
This trick of combining the connected and disconnected with
appropriate factors to obtain a faster plateau was employed in
Ref. [64]. For ano-pionμ , wewill use 2.0 and 2.5 fm as the upper
limit of Rmax. The results are shown in Table II as “48I light
no-pionRmax < 2.5 fm” or “48I light no-pionRmax < 2 fm.”
In the upper panel of Fig. 6, we fit the summand to the

following empirical form:

fðRmaxÞ ¼ A=fm4 R6
max

R3
max þ ðC fmÞ3

e−BRmax=ðfm·GeVÞ ð30Þ

TABLE II. Light quark contributions computed on the 48I ensemble. Values are different contributions to
aμ × 1010 where aμ ¼ ðgμ − 2Þ=2. The numbers in the square bracket are the statistical and systematic uncertainty
combined in quadrature. The tag “hybrid-” indicates the same quantity obtained using the hybrid approach.

Contribution name aμ × 1010

48I light con Rmax < 2 fm 7.24 ð0.15Þstat
48I light con Rmax < 2.5 fm 10.64 ð0.31Þstat
48I light con Rmax < 4 fm 18.61 ð1.22Þstat
48I light con Rmax > 4 fm 7.56 ð0.42Þstatð1.06Þsyst½1.14&
48I light con FV-corr −1.79 ð0.42Þsyst
48I light con mπ-corr 1.32 ð0.27Þstatð0.66Þsyst½0.72&
48I light con a2-corr 0.00 ð1.49Þsyst
light con 25.70 ð1.33Þstatð1.99Þsyst½2.39&
48I light no-pion Rmax < 2.5 fm 5.09 ð0.76Þstat
48I light no-pion Rmax < 2 fm 4.65 ð0.42Þstat
48I light no-pion Rmax > 2.5 fm 0.31 ð0.22Þstatð0.31Þsyst½0.38&
48I light no-pion Rmax > 2 fm 0.88 ð0.46Þstatð0.88Þsyst½0.99&
48I light discon Rmax < 2 fm −0.67 ð0.41Þstat
48I light discon Rmax < 2.5 fm −2.73 ð0.74Þstat
48I light discon Rmax < 4 fm −7.49 ð1.82Þstat
48I light discon Rmax < 4 fm hybrid-2.5 fm −8.28 ð1.31Þstatð0.31Þsyst½1.35&
48I light discon Rmax < 4 fm hybrid-2 fm −8.15 ð1.24Þstatð0.88Þsyst½1.51&
48I light discon Rmax > 4 fm −5.56 ð0.31Þstatð0.78Þsyst½0.84&
48I light discon FV-corr 1.31 ð0.31Þsyst
48I light discon mπ-corr −0.98 ð0.20Þstatð0.49Þsyst½0.53&
48I light discon a2-corr 0.00 ð0.66Þsyst
light discon −12.71 ð1.87Þstatð1.17Þsyst½2.20&
light discon hybrid-2.5 fm −13.50 ð1.36Þstatð1.21Þsyst½1.82&
light discon hybrid-2 fm −13.37 ð1.29Þstatð1.46Þsyst½1.95&

48I light Rmax < 2 fm 6.57 ð0.43Þstat
48I light Rmax < 2.5 fm 7.90 ð0.78Þstat
48I light Rmax < 4 fm 11.11 ð2.11Þstat
48I light Rmax < 4 fm hybrid-2.5 fm 10.32 ð0.99Þstatð0.31Þsyst½1.04&
48I light Rmax < 4 fm hybrid-2 fm 10.46 ð0.89Þstatð0.88Þsyst½1.25&
48I light Rmax > 4 fm 2.00 ð0.11Þstatð0.28Þsyst½0.30&
48I light FV-corr −0.47 ð0.11Þsyst
48I light mπ-corr 0.35 ð0.07Þstatð0.17Þsyst½0.19&
48I light a2-corr 0.00 ð0.83Þsyst
light total 12.99 ð2.11Þstatð0.90Þsyst½2.29&
light total hybrid-2.5 fm 12.20 ð1.01Þstatð0.95Þsyst½1.38&
light total hybrid-2 fm 12.33 ð0.90Þstatð1.25Þsyst½1.55&
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For each propagator on each lattice site, the above con-
traction corresponds to 4 × 4 complex numbers while the
full propagator takes 12 × 12 complex numbers.

IV. RESULTS

In this section we display several figures of the summand
(integrand) or its partial sum as a function of Rmax

Rmax ¼ maxðjx − yj; jy − zj; jx − zjÞ; ð27Þ

where x, y, and z represent the positions of the three
internal quark-photon vertices. Partial sums are obtained by
summing the corresponding summand from 0 up to the
specified value of Rmax (inclusive). The rightmost value in a
partial-sum plot corresponds to the total contribution.
Since the summand decreases exponentially at large

Rmax, we expect the partial sum to approach a plateau for
large enough Rmax. We usually use the result of the partial
sum at 4 fm, which includes all contributions from the
region Rmax < 4 fm. In the lattice calculation, we calculate
the partial sum with respect to Rmax and save the partial sum
for all integer values (in lattice units) of the upper limit of
Rmax. To compare with results calculated using ensembles
with different lattice spacings, we can linearly interpolate
the partial sum for any upper limit of Rmax. In this work, we
choose to interpolate at integer multiples ×0.1 fm. The
summand is obtained at half-integer multiples ×0.1 fm by
taking the difference of the linearly interpolated partial
sum. Therefore, the data points of the plots shown in this
work always have spacing 0.1 fm, and the data points of the
integrand plots always have its x-axis value equal to half-
integer times 0.1 fm. In this work, we present our results for
the anomalous magnetic moment in the unit of 10−10.

A. Light quark contribution

The contributions from the connected diagrams, the
disconnected diagrams, and the sum of the two contributions
are shown in Fig. 5. As can be seen from the figure, the
statistical error grows as Rmax increases. However, for both
the connected and the disconnected diagrams, there are non-
negligible contributions that come from regions where Rmax
is as large as 3 or 4 fm.The statistical error is quite significant.
Making the situation worse, the contributions from the long-
distance region of the connected and the disconnected
diagrams are opposite in sign, while the statistical error of
the connected and the disconnected diagrams are largely
independent.As a result, the relative uncertaintyon the sum is
much larger than that for the individual contributions. Results
aregiven inTable II as “48I light conRmax < 4 fm,” “48I light
discon Rmax < 4 fm,” and “48I light Rmax < 4 fm.”
To improve the situation, note that the large contribution

and the cancellation between the connected and discon-
nected diagrams at long distance are due to π0 exchange
and are well-understood theoretically [48,61,62]. It has
been shown that, at large Rmax, the ratio of the disconnected

and the connected hadronic four-point function is −25=34.
In our present computational setup, we use the same infinite
volume QCD weighting function for both the connected
and disconnected diagrams, and use the same variable Rmax
to study the partial sum of the connected and disconnected
diagrams. [63] Therefore the same ratio applies to the
contribution to aμ. Formally, we have

lim
R→∞

adisconμ ðRmax > RÞ
aconμ ðRmax > RÞ

¼ − 1

2
·
ðe2u þ e2dÞ2

e4u þ e4d
¼ − 25

34
: ð28Þ

Here,Rmax is defined inEq. (27), being a function of the three
vertex locations x, y, z as shown in Fig. 4. The long-distance
contributions for the connected and disconnected diagrams

FIG. 5. Light quark contributions computed on the 48I ensem-
ble from the connected diagrams, the disconnected diagrams, and
the total. The upper plot shows the corresponding summands and
the lower plot shows the partial sum.
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Long distance dominated by pion pole:

Fit no pion piece

No-pion piece plateaus much sooner

Total is more precise
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RBC setup and previous results

• Don’t assume functional form of pion form factor, calculate 
directly on lattice in Euclidean time and use O(4) rotations

• Same QED weight function as before, randomly choose x,y pairs

• Infinite volume 𝜋! propagator 𝐷"!(𝑥 − 𝑦)

• Approximation: expand derivatives in (B9) in 1/|x-y|, keep leading

Long distance pion pole contribution (use for Rmax > 4 fm)

Note that we have expressed the above relation in an Oð4Þ
rotationally covariant form, so the equation is also valid for
y − z in directions other than the time direction. Then, we can
introduce the infinite-volume free scalar propagator Dπ0ðzÞ,
with physical pion mass. For sufficiently large jx − yj, we
have

hTπ0ðxÞπ0ðyÞi ¼ Dπ0ðx − yÞ: ð41Þ

Now, the relation between Eqs. (33) and (40) is established.
We can approximate the infinite volume hadronic four-point
function illustrated in Fig. 8 in the large jx − yj region in a
similar approach

hTJμ0ðx0ÞJμðxÞJν0ðy0ÞJνðyÞi≈Dπ0ðx− yÞ

×F μ0;μ

!
x0 − x; imπ

x− y
jx− yj

"

×F ν0;ν

!
y0 − y; imπ

y− x
jy− xj

"
:

ð42Þ

In the above approximation, jx − x0j and jy − y0j will not be
too large in order to create localized pion states, so the form
factorF can be computed using a reasonably sized lattice. As
described in Eqs. (33) and (35), we only directly calculate the
transition form factor F for a zero-momentum pion state. To
obtain the form factor needed in Eq. (42) above, we need to
perform Oð4Þ rotations

F μ;νðx̃; imπn̂Þ ¼ Λμ;μ0Λν;ν0F μ0;ν0ðx̃0; imπ t̂Þ; ð43Þ

where x̃ can be either x0 − x or y0 − y in Eq. (42) and n̂ can be
$ðx − yÞ=jx − yj. The Oð4Þ rotation matrix Λ ¼ Λðn̂Þ and
Euclidean space-time coordinate x̃0 satisfy

δμ;ν ¼ Λμ;μ0Λν;ν0δμ0;ν0 ; ð44Þ

n̂μ ¼ Λμ;μ0 t̂μ0 ; ð45Þ

x̃μ ¼ Λμ;μ0 x̃0μ0 : ð46Þ

Wewould like to emphasize again that we do not assume
any particular form of the π0 transition form factor and
perform fits. The inputs to Eq. (42) can be directly obtained
from the Oð4Þ rotation in Eq. (43) and the lattice
QCD calculation of the position-space matrix elements
F μ;νðx; imπ t̂Þ for a zero-momentum π0 state defined in
Eqs. (33) and (35). The only approximation is made in
Eq. (42), which is based on large mπjx − yj.
Using the 48I ensemble to calculate F and making this

approximation, we obtained the long-distance part corre-
sponding to Rmax > 4 fm

aμðRmax > 4 fmÞ × 1010 ≈ aπ
0-exch

μ ðRmax > 4 fmÞ × 1010

¼ 2.00ð11Þstatð28Þsyst; ð47Þ

where we use the same subtracted infinite-volume QED
weighting function as in the direct calculation. We estimate
the relative systematic uncertainty from the approximation
employed in Eq. (42) due to not including the charged loop
contribution as

e−2mπð4 fmÞ

e−mπð4 fmÞ ≈ 6% ð48Þ

and the error from approximating the π0 propagation
direction to be along x − y to be

0.5 fm
4 fm

≈ 13% ð49Þ

where we assume the typical separation for jx − x0j and
jy − y0j to be 0.5 fm and jx − yj to be 4 fm. Combining
these two estimates in quadrature, we assigned 14%
total systematic uncertainty for the long distance part
(Rmax > 4 fm) contribution. Using the ratio between the
connected and disconnected contributions as described in
Eq. (28), we can also properly assign this contribution to
the connected and disconnected diagrams. The results are
shown in Table II with the labels “…Rmax > 4 fm.”

D. Finite volume corrections

The long-distance part of the HLbL contribution usually
suffers the most significant finite volume effects. However,
the long-distance π0 exchange contribution calculated in
Sec. IV C is performed in infinite volume and is free of
finite volume effects. Therefore, we only need to correct for
the finite volume effects for the relatively short-distance
region, where Rmax < 4 fm. These finite volume effects are
expected to be quite small due to the constraint
Rmax < 4 fm. The finite volume effects can be estimated
with the “π0-pole” contribution as defined in Ref. [20].
Similar to Refs. [21,66], we define the π0 transition form
factor in Euclidean space-time as

F μ;νðx;pÞ¼ h0jTJμðxÞJνð0Þjπ0ðp⃗Þi

¼
Z

d4q1
ð2πÞ4

eiq1·x
−i

4π2Fπ
ϵμ;ν;ρ;σq1ρq2σFπ0γγðq21;q22Þ

ð50Þ

where p ¼ q1 þ q2 and p2 ¼ −m2
π . We can convert the

form factor into coordinate space via the following:

Z
d4ueip·uF̃ μ;νðu; x; yÞ ¼ F μ;νðx − y; pÞ: ð51Þ

The solution to the above condition is not unique. Based on
the momentum space form factor Fπ0γγðq21; q22Þ in Eq. (50),
we obtain
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particular function form for the transition form factor.
This form factor can then be used to construct approx-
imations for infinite volume hadronic correlation functions
with large separation. A detailed derivation is given in
Appendix B. Here, we briefly describe the idea. First, we
introduce a properly normalized π0 interpolating field, e.g.,

π0ðxÞ ¼ Z1=2
π

iffiffiffi
2

p ðūðxÞγ5uðxÞ − d̄ðxÞγ5dðxÞÞ: ð36Þ

The normalization constant Zπ is determined by the
following requirement:

h0jπ0ðxÞjπ0ðp⃗Þi ¼ eip·x: ð37Þ

We can then rewrite Eq. (33) in a slightly different form

h0jTJμðxÞJνðyÞjπ0ðp⃗Þi ¼ F μ;νðx − y; pÞh0jπ0ðyÞjπ0ðp⃗Þi:
ð38Þ

The above relation suggest that the time-ordered product
TJμðxÞJνðyÞ, when used in between the vacuum state and a
single π0 state, can be viewed as a properly weighted π0

interpolating field: F μ;νðx − y; pÞπ0ðyÞ. This property can
be used to calculate the following three-point function:

hTJμðxÞJνðyÞπ0ðzÞi ð39Þ

For very large mπjy − zj and y − z along the positive time
direction, i.e. y − z ¼ ðjy − zj; 0⃗Þ, the intermediate states
between TJμðxÞJνðyÞ and π0ðzÞwill bemostly π0 states with
p⃗ ≈ 0⃗.We can employEq. (38)withp ≈ ðimπ; 0⃗Þ and obtain:

hTJμðxÞJνðyÞπ0ðzÞi ≈ F μ;ν

"
x − y; imπ

y − z
jy − zj

#

× hTπ0ðyÞπ0ðzÞi: ð40Þ

TABLE IV. Strange quark contributions computed on the 48I ensemble. Values are different contributions to
aμ × 1010 where aμ ¼ ðgμ − 2Þ=2. The numbers in the square bracket are the statistical and systematic uncertainty
combined in quadrature. The “strange discon” contribution includes disconnected diagrams where one or two loops
are strange quark loops. The tag “hybrid-” indicates the same quantity obtained using the hybrid approach.

Contribution name aμ × 1010

48I strange con Rmax < 4 fm 0.327 ð0.002Þstat
48I strange con a2-corr 0.026 ð0.008Þstat
Strange con 0.353 ð0.007Þstat
48I strange con Rmax > 2.5 fm 0.006 ð0.000Þstat
48I strange con Rmax > 2 fm 0.024 ð0.000Þstat
48I strange discon Rmax < 4 fm −0.380 ð0.607Þstat
48I strange discon Rmax < 2.5 fm −0.357 ð0.223Þstat
48I strange discon Rmax < 2 fm −0.280 ð0.121Þstat
48I strange discon a2-corr 0.000 ð0.029Þsyst
Strange discon −0.380 ð0.607Þstatð0.029Þsyst½0.608%
Strange discon hybrid-2.5 fm −0.357 ð0.223Þstatð0.029Þsyst½0.225%
Strange discon hybrid-2 fm −0.280 ð0.121Þstatð0.037Þsyst½0.126%

48I strange Rmax < 4 fm −0.053 ð0.607Þstat
48I strange Rmax < 4 fm hybrid-2.5 fm −0.030 ð0.222Þstatð0.006Þsyst½0.223%
48I strange Rmax < 4 fm hybrid-2 fm 0.047 ð0.121Þstatð0.024Þsyst½0.123%
48I strange a2-corr 0.026 ð0.008Þstatð0.029Þsyst½0.030%
Strange total −0.027 ð0.607Þstatð0.029Þsyst½0.608%
Strange total hybrid-2.5 fm −0.004 ð0.223Þstatð0.029Þsyst½0.225%
Strange total hybrid-2 fm 0.073 ð0.121Þstatð0.037Þsyst½0.127%

FIG. 8. The long-distance HLbL contribution to the muon g − 2
associated with π0 exchange. The amplitudes inside the boxes are
calculated in lattice QCD while the pion propagator linking them
(solid lines) is given by the analytic, infinite-volume, continuum
expression.
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APPENDIX B: π0 LONG-DISTANCE
CONTRIBUTION

In Eq. (42), we replaced the QCD, Euclidean space-time,
four-current connected Green’s function with the product of
two amplitudes, each coupling a pair of currents to an
on-shell π0. These two amplitudes are joined by a pion
propagator and all amplitudes are expressed in position
space, so they can be directly inserted in our standard
position-space evaluation of the HLbL amplitude. Since the
final expression involves two independent factors evaluat-
ing the πγγ coupling which are connected by an analytic,
position-space pion propagator, this QCD part of the HLbL
amplitude can be evaluated in a “QCD volume” of arbitrary
size. In particular, this volume could be much larger than
that of the gauge configurations used to compute each πγγ
vertex function. Here we work out a concrete derivation of
this formula that can be used to evaluate the long-distance
part of the π0 exchange contribution to the leading order in
1=L. We leave open the possibility that this approach could
be developed further to systematically capture terms falling
with higher powers of 1=L if the large volume π0

contribution is expressed as a power series in 1=Ln where
L is the size of the QCD volume. We assume the QED
volume to be infinite.
We begin with the Euclidean-space Green’s function

defined in Eq. (15)

6e4Hμ0;μ;ν0;νðx0; x; y0; yÞ ¼ hTðJμ0ðx0ÞJμðxÞJν0ðy0ÞJνðyÞÞi:
ðB1Þ

We will choose x0 and x close to each other as are y0 and y.
However, we will assume that the ðx0; xÞ pair is far from the
ðy0; yÞ pair. Define

x̃ ¼ x0 − x; ðB2Þ

ỹ ¼ y0 − y: ðB3Þ

Since Euclidean space-time is rotational invariant, without
loss of generality, we can choose x − y to be along the
Euclidean time direction, with x − y ¼ ðt; 0⃗Þ and t > 0.
We now follow the usual steps to obtain a variant of the

Källen-Lehman representation of the amplitude but keep
only the single π0 intermediate state since, as the lightest
particle, its exchange will dominate this Green’s function
when x and y are far separated

6e4Hπ0
μ0;μ;ν0;νðx

0; x; y0; yÞ

¼
Z

d3p
ð2πÞ3

1

2Eπ;p⃗
h0jTðJμ0ðx0ÞJμðxÞÞjπ0ðp⃗Þi

× hπ0ðp⃗ÞjTðJν0ðy0ÞJνðyÞÞj0i; ðB4Þ

where the superscript π0 indicates that only the π0 con-
tribution to H is represented.

Next we use four-dimensional translational invariance
to remove the variables x and y from the two current-
current-π0 amplitudes. We will also replace these two
Oð4Þ-covariant current-current-π0 amplitudes by functions
of the four momentum p ¼ ðiEπ;p⃗; p⃗Þ. Given the factors of
exp ðip · xÞ and exp ð−ip · yÞ which appear, we can then
replace the four vector pμ by −i∂=∂xμ or i∂=∂yμ as needed.
For example,

h0jTðJμ0ðx0ÞJμðxÞÞjπ0ðp⃗Þi¼ h0jTðJμ0ðx̃ÞJμð0ÞÞjπ0ðp⃗Þieip·x

¼F μ0;μðx̃;pÞeip·x

¼F μ0;μ

!
x̃;−i

∂

∂x

"
eip·x: ðB5Þ

where the definition of the π0 transition form factors
follows Eq. (33).
Using this approach to remove the explicit dependence

of the two amplitudes on pμ, we can then perform the final
step of the usual Källen-Lehman derivation and introduce
the free pion propagator

Z
d3p
ð2πÞ3

1

2Eπ;p⃗
eip·ðx−yÞ ¼

Z
d3p
ð2πÞ3

1

2Eπ;p⃗
eip⃗·ðx⃗−y⃗Þe−Eπ;p⃗ðxt−ytÞ

ðB6Þ

¼
Z

d4p
ð2πÞ4

eip·ðx−yÞ

p2 þm2
π

ðB7Þ

¼ Dπ0ðx − yÞ ðB8Þ

where Dπ0ðx − yÞ is the free Euclidean-space propagator
for a scalar particle of mass mπ .
We can then rewrite Eq. (B4) in terms of F and Dπ0 to

obtain the result

6e4Hπ0
μ0;μ;ν0;νðx

0;x;y0;yÞ¼F μ0;μ

!
x̃;−i

∂

∂xμ

"
F ν0;ν

!
ỹ;−i

∂

∂yμ

"

×Dπ0ðx−yÞ: ðB9Þ

At this step, we have made explicit the Oð4Þ-covariance of
the right-hand side of the equation. So this equation should
hold for an arbitrary orientation of x − y.
So far all of the steps taken have been exact.We expect the

quantity computed, the contribution of a single pion
exchange, to dominate the long distance limit in which
jx − yj is large, i.e., jx − yj≳ L. Now we will evaluate the
derivatives with respect to x and y which appear in these
equations but keep only the leading term in an expansion in
powers of 1=L. For example, to leading order in 1=jx − yj

YN

i¼1

!
∂

∂xρi

"
Dπ0ðx − yÞ ¼

YN

i¼1

!
∂

∂xρi

"
ce−mπ jx−yj

jx − yj3=2
ðB10Þ
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RBC setup and previous results
Total

• No 𝜋! (<2.5 fm) + connected (<4.0 fm)  10.32 (99)(31)[1.04] ×10#$!

• 𝜋! pole long distance (> 4.0 fm)              2.00 (11)(28)[30] ×10#$!

• strange disconnected(< 2.5 fm)             -0.004 (223)(29)[225] ×10#$!

• charm                                                       0.28 (0)(5)[5] ×10#$! (Mainz)

• Sub-leading disconnected                       0.00 (0)(7)[7] ×10#$! (Mainz)

• FV -0.47 (0)(11) ×10#$!

• pion mass retuning 0.35 (7)(17) ×10#$!

loops. The result, shown in Fig. 10, is zero consistent, and
we estimate this contribution to be 0.0ð0.5Þ × 10−10.
In the more recent work by the Mainz group [48], all the

subleading diagrams have been calculated. The result is still
zero consistent but a more stringent bound is obtained.
Therefore, in this work, we use their result to account for the
contribution from all the subleading disconnected diagrams.
The value is shown in Table IX as “subleading discon.”

H. Charm quark contributions

The charm quark contribution is also expected to be very
small due its heavy mass relative to the light quark and
the strange quark. In the 2020 white paper [5], its con-
tribution is included as 0.3ð0.1Þ × 10−10, calculated based
on perturbation theory and consideration of charm meson
resonances [23]. The value is similar to the strange quark

connected diagram contribution due to the heavier mass of
the charm quark and larger electric charge. In a recent work
by the Mainz group [49], the charm quark contribution is
calculated with lattice QCD, including both the charm
quark connected and disconnected diagrams. The result for
the total charm quark contribution is 0.28ð0.05Þ × 10−10,
where the uncertainty is mostly due to the systematic
effects from modeling the lattice spacing and Mηc depend-
ence. In this work, we use this more recent lattice calculated
result to account for the contribution from the charm quark.
The values are shown in Table IX as “charm con,” “charm
discon,” “charm.”

V. CONCLUSION

We summarized all the results discussed above in
Tables II, IV, and IX. Adding all the individual contribu-
tions and corrections, we obtain our final result for the
HLbL contribution to the muon g − 2

aHLbLμ × 1010 ¼ 12.47ð1.15Þstatð0.95Þsyst½1.49%; ð63Þ

where the systematic errors were added in quadrature. We
also give the HLbL contributions to the muon g − 2 from
the connected and disconnected pieces separately

aHLbL;conμ × 1010 ¼ 26.36ð1.33Þstatð1.99Þsyst½2.39%; ð64Þ

aHLbL;disconμ × 1010 ¼−13.89ð1.47Þstatð1.22Þsyst½1.91%: ð65Þ

Numbers in square brackets denote total errors, combining
the statistical uncertainty (“stat”) and systematic ones
(“sys”) in quadrature.

TABLE IX. Summary of final results. Values are different
contributions to aμ × 1010 where aμ ¼ ðgμ − 2Þ=2. The numbers
in the square bracket (except references) are the statistical and
systematic uncertainty combined in quadrature. The “strange
discon” contribution includes disconnected diagrams where one
or two loops are strange quark loops. The tag “hybrid-” indicates
the same quantity obtained using the hybrid approach as
described in Secs. IVA and IV B. The result for “total hybrid-
2.5 fm” is used as our final result.

Contribution aμ×1010

Light con 25.70 ð1.33Þstatð1.99Þsyst½2.39%
Light discon −12.71 ð1.87Þstatð1.17Þsyst½2.20%
Light discon hybrid-2.5 fm −13.50 ð1.36Þstatð1.21Þsyst½1.82%
Light discon hybrid-2 fm −13.37 ð1.29Þstatð1.46Þsyst½1.95%
Light total 12.99 ð2.11Þstatð0.90Þsyst½2.29%
Light total hybrid-2.5 fm 12.20 ð1.01Þstatð0.95Þsyst½1.38%
Light total hybrid-2 fm 12.33 ð0.90Þstatð1.25Þsyst½1.55%
Strange con 0.35 ð0.01Þstat
Strange discon −0.38 ð0.61Þstatð0.03Þsyst½0.61%
Strange discon hybrid-2.5 fm −0.36 ð0.22Þstatð0.03Þsyst½0.22%
Strange discon hybrid-2 fm −0.28 ð0.12Þstatð0.04Þsyst½0.13%
Strange total −0.03 ð0.61Þstatð0.03Þsyst½0.61%
Strange total hybrid-2.5 fm −0.00 ð0.22Þstatð0.03Þsyst½0.23%
Strange total hybrid-2 fm 0.07 ð0.12Þstatð0.04Þsyst½0.13%
Subleading discon 0.00 ð0.07Þsyst [48]
Charm con 0.31 ð0.04Þsyst [49]
Charm discon −0.03 ð0.02Þsyst [49]
Charm total 0.28 ð0.05Þsyst [49]
Con 26.36 ð1.33Þstatð1.99Þsyst½2.39%
Discon −13.12 ð2.30Þstatð1.18Þsyst½2.59%
Discon hybrid-2.5 fm −13.89 ð1.47Þstatð1.22Þsyst½1.91%
Discon hybrid-2 fm −13.68 ð1.35Þstatð1.47Þsyst½1.99%
Total 13.24 ð2.53Þstatð0.90Þsyst½2.68%
Total hybrid-2.5 fm 12.47 ð1.15Þstatð0.95Þsyst½1.49%
Total hybrid-2 fm 12.68 ð0.98Þstatð1.26Þsyst½1.59%

TABLE X. Comparison of this work with our previous QEDL
results [24] plus the charm quark contribution from [5,23]. The
field “all con” includes all connected diagram contributions,
including the charm quark. The field “all discon” includes all the
disconnected diagram contributions, including the subleading
disconnected diagrams and disconnected diagrams including
charm quarks. The fields “all con diff,” “all discon diff,” “total
diff” shows the difference obtained by subtracting the QEDL
results from the new results presented in this work. The statistical
and systematic uncertainties of the two works are almost
independent. We therefore add them in quadrature for the
difference. The numbers in the square bracket are the statistical
and systematic uncertainty combined in quadrature.

aμ×1010

All con QEDL 24.46 ð2.35Þstatð5.11Þsyst½5.62%
All con diff 1.90 ð2.76Þstatð5.48Þsyst½6.14%
All discon QEDL −16.45 ð2.09Þstatð3.99Þsyst½4.50%
All discon diff 2.56 ð2.57Þstatð4.17Þsyst½4.90%
Total QEDL 8.17 ð3.03Þstatð1.77Þsyst½3.51%
Total diff 4.30 ð3.25Þstatð2.01Þsyst½3.82%
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2.36 GeV, 643 lattice update
• 2+1 flavors of MDWF, Iwasaki gluons. Physical masses

• 119 Configurations

• New adaptive sampling method for each configuration

• On average, ~2048 point-sources and ~ 1/32 fraction of sinks

• ~337,000 pairs used per config 

a-1=2.36 GeV (0.084 fm)
L=5.38 fm, 64!×128
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2.36 GeV, 643 lattice update
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2.36 GeV, 643 lattice update
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2.36 GeV, 643 lattice update
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Strange discrepancy with BMW, roughly 2 standard deviations, or 5%.
• In continuum limit (only two points, so could change)
• Need to check finite volume effects and isospin scheme too
• Interpolation of QED weights? 
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2.69 GeV, 963 lattice plan

• 2+1 flavors of MDWF fermions, Iwasaki gluons.

• Physical masses

a-1=2.69 GeV (0.073 fm)
L=7.0 fm, 96!×192
Planned

Goal: Control statistics, continuum limit and FV systematics < 5%

• Large set of point-source propagators
already computed and saved

• Already enough to do strange

• Implement LMA for light quarks

• Continuum limit with 3 lattice spacings
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Pion pole contribution at long distance update [A. Shcherbakov]

x

x′

X

y

y′Y

π0

π0

Figure 1: Long distance ω0 exchange contribution to aµ. Scalar pion propagator is evaluated in the continuum

limit as a function of |R| = |X → Y | where X = x+x→

2
and Y = y+y→

2
. Amplitudes inside of boxes are evaluated

on the lattice as functions of relative coordinates x̃ = x→
→ x and ỹ = y→ → y

.

Z(x, y→, y) =






3 if |y→ → y| < |x→ y→| and |y→ → y| < |x→ y|
3/2 if |y→ → y| = |x→ y→| < |x→ y| or |y→ → y| = |x→ y| < |x→ y→|
1 if |y→ → y| = |x→ y→| = |x→ y|
0 otherwise

(8)

In the long distance region where |y → y→| << min(|x→ y|, |x→ y→|) and Rω = Rlat

ω , the largest contribution
to Hk,ε,ϑ,ϖ comes from the 0 spatial momentum ω0 intermediate state, allowing us to approximate the hardonic
four point function in that region as

Hk,ε,ϑ,ϖ(x
→, x, y→, y) ↑ Hω0

k,ε,ϑ,ϖ(x
→, x, y→, y)

Hω0
k,ε,ϑ,ϖ(x

→, x, y→, y) =

∫
d3q

(2ω)3
1

2Eω,ϱq
↓0|T{Jk(x

→)Jε(x)}|ω
0

ϱq ↔↓ω
0

ϱq |T{Jϑ(y
→)Jϖ(y)}|0↔ (9)

As we will demonstrate in section 1.2, Eq. (9) can be expressed entirely in terms of relative coordinates
in Eq. (5) and is dependent on O-4 rotationally covariant ω0 transition form factors. In the current method,
transition form factors are evaluated on the lattice in terms of relative coordinates x̃lat, ỹlat and Rlat

ω , after which
Eq. (9) is obtained after an appropriate O-4 rotation of the lattice coordinates according to Eq. (6).

Using Eq. (5), Eq. (6) and Eq. (9), we can rewrite Eq. (7) in the long distance region as

aω0-exch
µ =

2me2

3

∫

Rω

Z(ỹ, x̃, Rω)
∑

x̃lat,ỹlat

1

2
εi,j,kx̃j ↗ (6e4)Hω0

k,ε,ϑ,ϖ(x̃, ỹ, Rω)Mi,ε,ϑ,ϖ(
R→ x̃

2
+ C,→

R→ ỹ

2
+ C,→

R+ ỹ

2
+ C)

(10)

The e!ects of the ω0 → exchange contribution can be studied by calculating the partial sum of (10) as a
function of boundaries Rcut

max
, Rcut

ω , rcutω . We define two functions

Rmax = max
(
|x→ y→|, |x→ y|, |y→ → y|

)
= max

(
|Rω →

x̃+ ỹ

2
|, |Rω →

x̃→ ỹ

2
|, |ỹ|

)
(11)

rω = max
(
|x̃|, |ỹ|

)
(12)

and rewrite (10) as

2

New evaluation method

𝑟" = max{ 𝑥 − 𝑥# , 𝑦 − 𝑦# }

Long-Distance ω0 Exchange Contribution

September 5, 2025

1 formulation

The hadronic Light-by-Light contribution (HLBL) to the muon anomaly is expressed in terms of the hadronic
four-point function Hk,ω,ε,ϑ and the QED weighting function Gω,ε,ϑ.

a
HLbL

µ =
2me

2

3

1

V T

∑

x→

∑

x,y→,y

1

2
ωi,j,k

(
x
→
→ xref(x, y, y

→)
)
j
↑ (6e4)Hk,ω,ε,ϑ(x

→
, x, y

→
, y)Mi,ω,ε,ϑ(x, y

→
, y) (1)

Mi,ω,ε,ϑ(x, y, z) =
1

2
Tr

[1
6
i
3
Gω,ε,ϑ(x, y, z)!i

]
. (2)

xref(x, y, y
→) = xref-far(x, y, y

→) (3)

=






x if |y → y
→
| < min(|x→ y|, |x→ y

→
|)

y if |x→ y
→
| < min(|x→ y|, |y → y

→
|)

z if |x→ y| < min(|x→ y
→
|, |y → y

→
|)

1

3
(x+ y + y

→) otherwise

Hk,ω,ε,ϑ represents the quark loop diagram of four QCD vector currents with x
→ being the vertex connecting

external photon to the QCD loop and x, y
→ and y vertices connecting internal photons to the muon line via the

QED weighting function Gω,ε,ϑ.

6e4Hk,ω,ε,ϑ(x
→
, x, y

→
, y) = ↓0|T{Jk(x

→)Jω(x)Jε(y
→)Jϑ(y)}|0↔ (4)

In this calculation we focus specifically on the long-distance ε0→ exchange contribution that comes from the
dominating ε0 intermediate state in Hk,ω,ε,ϑ between two far-separated pairs of vector currents.

We define the following Euclidean space relative coordinates

x̃ = x
→
→ x X =

x
→ + x

2

ỹ = y
→
→ y Y =

y
→ + y

2
Rϖ = X → Y (5)

for the lattice calculation we define x̃
lat and ỹ

lat to be evaluated at lattice sites and define R
lat

ϖ as a continuous
variable along the Euclidean time direction, with R

lat

ϖ = (ϑ0, |Rϖ|). The relative coordinates in Eq. (5) are
obtained by an appropriate O-4 rotation of the lattice coordinates

x̃µ = ”µ,ϱ x̃
lat
ϱ

ỹµ = ”µ,ϱ ỹ
lat
ϱ

Rϖµ = ”µ,ϱR
lat

ϖω

(6)

Since all terms in Eq. (1) are symmetric with respect to permutations of x, y→ and y and their corresponding
Lorentz indices, we can rewrite it as
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1

2 Long-Distance Hadronic Four-Point Function

...
we can rewrite H

ω0
k,ε,ϑ,ϖ in terms of relative coordinates in the following way

(6e4)Hω0
k,ε,ϑ,ϖ(x

→
, x, y

→
, y) =

∫
d
3
q

(2ω)3
1

2Eω,ϱq
→0|T{Jk(x̃)Jε(0)}|ω

0

ϱq ↑→ω
0

ϱq |T{Jϑ(ỹ)Jϖ(0)}|0↑e
iq·(x↑y)

=

∫
d
3
q

(2ω)3
1

2Eω,ϱq
→0|T{Jk(

x̃

2
)Jε(↓

x̃

2
)}|ω0

ϱq ↑→ω
0

ϱq |T{Jϑ(
ỹ

2
)Jϖ(↓

ỹ

2
)}|0↑eiq·

(x̃→ỹ)
2 e

iq·(x↑y)

=

∫
d
3
q

(2ω)3
1

2Eω,ϱq
F̃kε(x̃, q)F̃ϑϖ(ỹ,↓q)eiq·Rω (11)

Additionally, we use the following definition of the matrix-element of two vector currents and ω0 intermediate
state

F̃µ↑µ(x, q) = εµ↑µςφxςqφF̃ω0↼↼(x
2
, q · x)

F̃ω0↼↼(x
2
, q · x) = Fω0↼↼(x

2
, q · x)e↑iq· x2 (12)

Eq. (11) can also be wrtitten in terms of the free euclidean scalar propagator by noting the following relation
∫

d
3
q

(2ω)3
1

2Eω,ϱq
qφe

iq·(X↑Y )|q0=iEω,εq =

∫
d
3
q

(2ω)3
1

2Eω,ϱq
(↓i

ϑ

ϑXφ
)eiq·(X↑Y )|q0=iEω,εq

= ↓i
ϑ

ϑX
φ
Dω(|X ↓ Y |) = i

ϑ

ϑY
φ
Dω(|X ↓ Y |) = ↓i(R̂ω)φD

→
ω(|Rω|) (13)

(14)

Additionally, we note that, in the leading order in 1

|Rω| , the derivative of the propagator can be written as

↓i
ϑ

ϑX
φ
Dω(|X ↓ Y |) =

(
imω

(X ↓ Y )φ
|X ↓ Y |

)
Dω0(|X ↓ Y |) (15)

Then H
ω0
k,ε,ϑ,ϖ can be written in terms of form factors and scalar propagators, with derivatives acting on

the propagators explicitly, but also with the assumption that the form factors are we weakly dependent on the
derivative term, allowing approximation (15) to be made inside the form factor terms only

(6e4)Hω0
k,ε,ϑ,ϖ(x̃, ỹ, X, Y ) ↔ F̃kε(x̃,↓i

ϑ

ϑX
)F̃ϑϖ(ỹ,↓i

ϑ

ϑY
)Dω0(|X ↓ Y |)

= εkεςφεϑϖ↼↽ x̃ςỹ↼F̃
E
ω0↼↼(x̃

2
, imωR̂ω · x̃)F̃E

ω0↼↼(ỹ
2
,↓imωR̂ω · ỹ)

(
↓i

ϑ

ϑX
φ

)(
↓i

ϑ

ϑY
↽

)
Dω0(|X ↓ Y |) (16)

= εkεςφεϑϖ↼↽ x̃ςỹ↼F̃
E
ω0↼↼(x̃

2
, imωR̂ω · x̃)F̃E

ω0↼↼(ỹ
2
,↓imωR̂ω · ỹ)

[
D

→→
ω0(|Rω|)(R̂ω)↽(R̂ω)φ +

D
→
ω0(|Rω|)

|Rω|

(
ϖφ↽ ↓ (R̂ω)↽(R̂ω)φ

)]

Eucledean space scalar propagator and its derivatives can be written in terms of the modified Bessel functions
of the second kind

D
E
ω0(R = |X ↓ Y |) =

mK1(mR)

4ω2R

D
→E
ω0(R) = ↓

m
2
K2(mR)

4ω2R

D
→→E
ω0 (R) =

m
2

4ω2R2

[
(mR)K1(mR) + 3K2(mR)

]
(17)

After some simplifications we arrive at the following result for the H
ω0
k,ε,ϑ,ϖ term

(6e4)Hω0
k,ε,ϑ,ϖ(x̃, ỹ, Rω) = εkεςφεϑϖ↼↽ x̃ςỹ↼F̃

E
ω0↼↼(x̃

2
, imωR̂ω · x̃)F̃E

ω0↼↼(ỹ
2
,↓imωR̂ω · ỹ)Bφ↽(Rω) (18)

Bφ↽(Rω) =
m

2

4ω2R2
ω

[
[(mRω)K1(mRω)] (R̂ω)↽(R̂ω)φ ↓K2(mRω)(ϖφ↽ ↓ 4(R̂ω)↽(R̂ω)φ)

]
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derivative term, allowing approximation (15) to be made inside the form factor terms only

(6e4)Hω0
k,ε,ϑ,ϖ(x̃, ỹ, X, Y ) ↔ F̃kε(x̃,↓i

ϑ

ϑX
)F̃ϑϖ(ỹ,↓i

ϑ

ϑY
)Dω0(|X ↓ Y |)

= εkεςφεϑϖ↼↽ x̃ςỹ↼F̃
E
ω0↼↼(x̃

2
, imωR̂ω · x̃)F̃E

ω0↼↼(ỹ
2
,↓imωR̂ω · ỹ)

(
↓i

ϑ

ϑX
φ

)(
↓i

ϑ

ϑY
↽

)
Dω0(|X ↓ Y |) (16)

= εkεςφεϑϖ↼↽ x̃ςỹ↼F̃
E
ω0↼↼(x̃

2
, imωR̂ω · x̃)F̃E

ω0↼↼(ỹ
2
,↓imωR̂ω · ỹ)

[
D

→→
ω0(|Rω|)(R̂ω)↽(R̂ω)φ +

D
→
ω0(|Rω|)

|Rω|

(
ϖφ↽ ↓ (R̂ω)↽(R̂ω)φ

)]

Eucledean space scalar propagator and its derivatives can be written in terms of the modified Bessel functions
of the second kind

D
E
ω0(R = |X ↓ Y |) =

mK1(mR)

4ω2R

D
→E
ω0(R) = ↓

m
2
K2(mR)

4ω2R

D
→→E
ω0 (R) =

m
2

4ω2R2

[
(mR)K1(mR) + 3K2(mR)

]
(17)

After some simplifications we arrive at the following result for the H
ω0
k,ε,ϑ,ϖ term

(6e4)Hω0
k,ε,ϑ,ϖ(x̃, ỹ, Rω) = εkεςφεϑϖ↼↽ x̃ςỹ↼F̃

E
ω0↼↼(x̃

2
, imωR̂ω · x̃)F̃E

ω0↼↼(ỹ
2
,↓imωR̂ω · ỹ)Bφ↽(Rω) (18)

Bφ↽(Rω) =
m

2

4ω2R2
ω

[
[(mRω)K1(mRω)] (R̂ω)↽(R̂ω)φ ↓K2(mRω)(ϖφ↽ ↓ 4(R̂ω)↽(R̂ω)φ)

]

3
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x′

X
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y′Y

π0

π0

Figure 1: Long distance ω0 exchange contribution to aµ. Scalar pion propagator is evaluated in the continuum

limit as a function of |R| = |X → Y | where X = x+x→

2
and Y = y+y→

2
. Amplitudes inside of boxes are evaluated

on the lattice as functions of relative coordinates x̃ = x→
→ x and ỹ = y→ → y

.

Z(x, y→, y) =






3 if |y→ → y| < |x→ y→| and |y→ → y| < |x→ y|
3/2 if |y→ → y| = |x→ y→| < |x→ y| or |y→ → y| = |x→ y| < |x→ y→|
1 if |y→ → y| = |x→ y→| = |x→ y|
0 otherwise

(8)

In the long distance region where |y → y→| << min(|x→ y|, |x→ y→|) and Rω = Rlat

ω , the largest contribution
to Hk,ε,ϑ,ϖ comes from the 0 spatial momentum ω0 intermediate state, allowing us to approximate the hardonic
four point function in that region as

Hk,ε,ϑ,ϖ(x
→, x, y→, y) ↑ Hω0

k,ε,ϑ,ϖ(x
→, x, y→, y)

Hω0
k,ε,ϑ,ϖ(x

→, x, y→, y) =

∫
d3q

(2ω)3
1

2Eω,ϱq
↓0|T{Jk(x

→)Jε(x)}|ω
0

ϱq ↔↓ω
0

ϱq |T{Jϑ(y
→)Jϖ(y)}|0↔ (9)

As we will demonstrate in section 1.2, Eq. (9) can be expressed entirely in terms of relative coordinates
in Eq. (5) and is dependent on O-4 rotationally covariant ω0 transition form factors. In the current method,
transition form factors are evaluated on the lattice in terms of relative coordinates x̃lat, ỹlat and Rlat

ω , after which
Eq. (9) is obtained after an appropriate O-4 rotation of the lattice coordinates according to Eq. (6).

Using Eq. (5), Eq. (6) and Eq. (9), we can rewrite Eq. (7) in the long distance region as

aω0-exch
µ =

2me2

3

∫

Rω

Z(ỹ, x̃, Rω)
∑

x̃lat,ỹlat

1

2
εi,j,kx̃j ↗ (6e4)Hω0

k,ε,ϑ,ϖ(x̃, ỹ, Rω)Mi,ε,ϑ,ϖ(
R→ x̃

2
+ C,→

R→ ỹ

2
+ C,→

R+ ỹ

2
+ C)

(10)

The e!ects of the ω0 → exchange contribution can be studied by calculating the partial sum of (10) as a
function of boundaries Rcut

max
, Rcut

ω , rcutω . We define two functions

Rmax = max
(
|x→ y→|, |x→ y|, |y→ → y|

)
= max

(
|Rω →

x̃+ ỹ

2
|, |Rω →

x̃→ ỹ

2
|, |ỹ|

)
(11)

rω = max
(
|x̃|, |ỹ|

)
(12)

and rewrite (10) as

2

New evaluation method

3 Results(in progress)

The e!ects of the ω0→ exchange contribution can be studied by calculating the partial sum of (10) as a function
of boundaries Rcut

max
, R

cut

ω , r
cut

ω . We define two functions

Rmax = max
(
|x→ y

→
|, |x→ y|, |y

→
→ y|

)
= max

(
|Rω →

x̃+ ỹ

2
|, |Rω →

x̃→ ỹ

2
|, |ỹ|

)
(19)

rω = max
(
|x̃|, |ỹ|

)
(20)

and rewrite (10) as

a
ω0-exch
µ (Rcut

max
, r

cut

ω , R
cut

ω ) =
2me

2

3

∫

Rω

Z(
Rω → x̃

2
+ C,→

Rω → ỹ

2
+ C,→

Rω + ỹ

2
+ C)

↑

∑

x̃lat,ỹlat

1

2
εi,j,kx̃j ↑ (6e4)Hω0

k,ε,ϑ,ϖ(x̃, ỹ, Rω)

↑Mi,ε,ϑ,ϖ(
Rω → x̃

2
+ C,→

Rω → ỹ

2
+ C,→

Rω + ỹ

2
+ C)

↑”(Rmax →R
cut

max
)↑”(|Rω|→R

cut

ω )↑”(rcutω → rω) (21)

More specifically we want to focus on the region Rmax > 4 fm and compare the results of ω0 → exchange
contribution (21) with the direct calculation of (1) using light quark connected and disconnected contributions.

Form factor (12) is obtained from the 64I and 48I ensamble average of the three-point function of two vector
currents and ω

0-interpolating operator (insert eq here).
Eq. (21) is obtained with Monte Carlo importance sampling ..... , samples sMC = (x̃MC

lat
, ỹ

MC
lat

, R
MC
ω ), with

coordinates generated by the Markov chain method within

a
ω0-exch
µ (Rcut

max
, r

cut

ω , R
cut

ω ) =
1

Ns

Ns∑

sMC

I(sMC
, R

cut

max
, r

cut

ω , R
cut

ω )

w(sMC)
↑ wtot (22)

I(x̃, ỹ, Rω, R
cut

max
, r

cut

ω , R
cut

ω ) =
me

2

3
Z(

Rω → x̃

2
+ C,→

Rω → ỹ

2
+ C,→

Rω + ỹ

2
+ C)εi,j,kx̃j(6e

4)Hω0
k,ε,ϑ,ϖ(x̃, ỹ, Rω)

↑Mi,ε,ϑ,ϖ(
Rω → x̃

2
+ C,→

Rω → ỹ

2
+ C,→

Rω + ỹ

2
+ C)

↑”(Rmax →R
cut

max
)↑”(|Rω|→R

cut

ω )↑”(rcutω → rω)

w(x̃, ỹ, Rω) =
1

|x̃|4 + ã2

1

|ỹ|4 + b̃2

e
(↑m|Rω|)

|Rω|
3/2

wtot =

∫

Rω

∑

x̃,ỹ

w(x̃, ỹ, Rω)

4
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(19)
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Rω → ỹ
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Rω + ỹ
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ω )↑”(rcutω → rω) (21)

More specifically we want to focus on the region Rmax > 4 fm and compare the results of ω0 → exchange
contribution (21) with the direct calculation of (1) using light quark connected and disconnected contributions.

Form factor (12) is obtained from the 64I and 48I ensamble average of the three-point function of two vector
currents and ω

0-interpolating operator (insert eq here).
Eq. (21) is obtained with Monte Carlo importance sampling ..... , samples sMC = (x̃MC

lat
, ỹ

MC
lat

, R
MC
ω ), with

coordinates generated by the Markov chain method within

a
ω0-exch
µ (Rcut
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ω , R
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1
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sMC

I(sMC
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cut

max
, r

cut

ω , R
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ω )
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↑ wtot (22)

I(x̃, ỹ, Rω, R
cut

max
, r

cut

ω , R
cut

ω ) =
me

2

3
Z(

Rω → x̃

2
+ C,→

Rω → ỹ

2
+ C,→

Rω + ỹ

2
+ C)εi,j,kx̃j(6e

4)Hω0
k,ε,ϑ,ϖ(x̃, ỹ, Rω)

↑Mi,ε,ϑ,ϖ(
Rω → x̃

2
+ C,→

Rω → ỹ

2
+ C,→

Rω + ỹ

2
+ C)

↑”(Rmax →R
cut

max
)↑”(|Rω|→R

cut
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w(x̃, ỹ, Rω) =
1

|x̃|4 + ã2

1
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wtot =

∫

Rω

∑

x̃,ỹ

w(x̃, ỹ, Rω)

4

# of configs mω(MeV) a→1(GeV) Ns binsize
48I 119 139 1.73 1500000 100
64I 112 139 2.359 1500000 100

Table 1: lattice parameters for performing the ω0-exchange calculation on 48I and 64I ensambles. The labels
are the number of QCD configurations, ω0 mass, inverse lattice spacing, total number of sMC samples, and the
binsize used for binning s

MC samples.

Figure 2: Long-distance ω
0-exchange contribution expressed in terms of a reverse partial sum as a function of

cuto! R
cut

max
. Reverse partial sums of Rω and rω are calculated up to cuto!s of 1 fm and 3 fm, respectively. At

R
cut

max
= 0 fm, the total sum over Rmax is calculated. At Rcut

max
= 4 fm we obtain a

ω0→exch

µ (Rmax > 4 fm), which
can be compared with the results in Ref. [1]. The calculation was performed on the 48I and 64I ensambles
with the lower plots corresponding to the first version of Hω0

k,ε,ϑ,ϖ in eq.(19), and the upper plots to the second,
improved, version in eq.(20)

6
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Figure 2: ...

5

New

FV estimate from FV form of pion propagator
(FV correction is partial sum, not reverse)

∞V − FV
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Figure 2: ...
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Figure 2: ...
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Old

Difference at small 𝑅()*+,- due to 1/|X-Y| expansion

∞V − FV
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Sign of the disconnected contribution to the Pion form factor
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瀆濼濺瀁 濷瀈濸 瀇瀂 瀇濻濸 CPS (C瀂濿瀈瀀濵濼濴 P濻瀌瀆濼濶瀆 S瀌瀆瀇濸瀀) 濶瀂瀁瀉濸瀁瀇濼瀂瀁 濹瀂瀅 濺濴瀀瀀濴 瀀濴瀇瀅濼濶濸瀆, 瀊濻濼濶濻
瀅濸瀄瀈濼瀅濸瀆 濴瀁 濴濷濷濼瀇濼瀂瀁濴濿 瀀濼瀁瀈瀆 瀆濼濺瀁 濹瀂瀅 �5 . I瀁 瀇濻濸 濹濼瀁濴濿 瀆瀇濸瀃 瀂濹 濴瀁濴濿瀌瀆濼瀆, 瀇濻濼瀆 瀀濼瀁瀈瀆 瀆濼濺瀁 瀊濴瀆
濶瀂瀅瀅濸濶瀇濿瀌 濴瀃瀃濿濼濸濷 瀇瀂 瀇濻濸 濶瀂瀁瀁濸濶瀇濸濷 濶瀂瀁瀇瀅濼濵瀈瀇濼瀂瀁 濵瀈瀇 瀊濴瀆 濼瀁濴濷瀉濸瀅瀇濸瀁瀇濿瀌 瀂瀀濼瀇瀇濸濷 濹瀂瀅 瀇濻濸
濷濼瀆濶瀂瀁瀁濸濶瀇濸濷 瀃濴瀅瀇, 瀅濸瀆瀈濿瀇濼瀁濺 濼瀁 濴瀁 濼瀁濶瀂瀅瀅濸濶瀇 瀅濸濿濴瀇濼瀉濸 瀆濼濺瀁 濵濸瀇瀊濸濸瀁 瀇濻濸 瀇瀊瀂 濶瀂瀁瀇瀅濼濵瀈瀇濼瀂瀁瀆.

S濼瀁濶濸 瀇濻濸 濶瀂瀁瀉濸瀁瀇濼瀂瀁 - 濸瀆瀃濸濶濼濴濿濿瀌 瀇濻濸 瀆濼濺瀁 濶瀂瀁瀉濸瀁瀇濼瀂瀁 濹瀂瀅 �5 濼瀁 濿濴瀇瀇濼濶濸 濶濴濿濶瀈濿濴瀇濼瀂瀁瀆 - 濶濴瀁
濼瀁瀇瀅瀂濷瀈濶濸 濴瀀濵濼濺瀈濼瀇濼濸瀆 濴濹濹濸濶瀇濼瀁濺 瀇濻濸 瀆濼濺瀁 瀂濹 瀇濻濸 濷濼瀆濶瀂瀁瀁濸濶瀇濸濷 濷濼濴濺瀅濴瀀, 瀊濸 濻濴瀉濸 瀆瀈瀀瀀濴瀅濼瀍濸濷
濴濿濿 瀅濸濿濸瀉濴瀁瀇 濶瀂瀁瀉濸瀁瀇濼瀂瀁瀆 瀈瀆濸濷 濼瀁 瀇濻濼瀆 瀊瀂瀅濾 濴瀇:
濻瀇瀇瀃瀆://濽濼瀁濿瀈濶濻濴瀁濺.濺濼瀇濻瀈濵.濼瀂/瀁瀂瀇濴瀇濼瀂瀁瀆/濼瀁濷濸瀋.濻瀇瀀濿 .

3. I瀁 瀇濻濼瀆 瀆瀇瀈濷瀌, 瀊濸 濼濷濸瀁瀇濼濹濼濸濷 瀇濻濸 瀂瀃瀃瀂瀆濼瀇濸 瀆濼濺瀁 瀂濹 瀇濻濸 瀄瀈濴瀅濾-濷濼瀆濶瀂瀁瀁濸濶瀇濸濷 濶瀂瀁瀇瀅濼濵瀈瀇濼瀂瀁, 瀁瀂瀇
瀇濻瀅瀂瀈濺濻 濸瀋濴瀀濼瀁濼瀁濺 Y濼濷濼 Z濻濴瀂'瀆 瀂瀅濼濺濼瀁濴濿 濶瀂濷濸, 濵瀈瀇 瀇濻瀅瀂瀈濺濻 濴 濶瀂瀀瀃濿濸瀇濸濿瀌 濼瀁濷濸瀃濸瀁濷濸瀁瀇
濶濴濿濶瀈濿濴瀇濼瀂瀁 濶濴瀅瀅濼濸濷 瀂瀈瀇 濵瀌 濴瀁瀂瀇濻濸瀅 P濻D 瀆瀇瀈濷濸瀁瀇, T濼濴瀁 L濼瀁. T濼濴瀁 L濼瀁 濼瀁濷濸瀃濸瀁濷濸瀁瀇濿瀌 濷濸瀉濸濿瀂瀃濸濷 濴
濶瀂濷濸 瀇瀂 濶瀂瀀瀃瀈瀇濸 瀇濻濸 濷濼瀆濶瀂瀁瀁濸濶瀇濸濷 濷濼濴濺瀅濴瀀 濹瀂瀅 24D 濴瀁濷 瀂濵瀇濴濼瀁濸濷 瀇濻濸 瀅濸瀆瀈濿瀇 瀊濼瀇濻 瀇濻濸 瀆濴瀀濸

• Result checked with 4 independent codes/4 authors plus 1 automatic contractor

• Result checked against  Mainz, BMW, and ETM setup (see Figure 1.)

• Less tension with experiment decay width

For the results presented in this paper, the connected
three-point correlation function is computed using one
local and one “point-split” current. The latter is given by

Jcμ!xÞ ¼
X

f

Qf

2
!ψ̄f!xþ aμ̂Þ!1þ γμÞU†

μ!xÞψf!xÞ

− ψ̄f!xÞ!1 − γμÞUμ!xÞψf!xþ aμ̂ÞÞ: !29Þ

The Wick contraction is then only slightly modified. The
point-split vector current satisfies the Ward identity and
does not need any renormalization factor, contrary to the
local vector current. In the O!aÞ-improved theory, the
renormalized currents read

Jα;Rμ !xÞ ¼ Zα
V!1þ bαV!g0ÞamqÞ!Jαμ!xÞ þ acαV∂νTμνÞ; !30Þ

where the label α stands for local or conserved and for
isospin I ¼ 0 or I ¼ 1, bαV and cαV are improvement
coefficients and Tμν!xÞ ¼ − 1

2 ψ̄!xÞ½γμ; γν&
τ3
2 ψ!xÞ is the

tensor density (written here for the improvement of the

isovector part of the electromagnetic current). In particular,
Zc;I
V ¼ 1 and bc;IV ¼ 0, while the renormalization constant

Zl;I¼1
V has been computed nonperturbatively in [44,45] with

a relative error below the percent level. In this paper we use
the latter values both for the I ¼ 0 and I ¼ 1 currents. The
improvement coefficients cαV have been evaluated in [46];
however in this study, we neglect the contribution from the
tensor density as well as the improvement coefficient bV .
Thus O!aÞ-improvement is only partially implemented.
For the disconnected contributions, we use two local

vector currents. Wick contractions involving only the pion
do not contribute since the u and d contributions exactly
compensate each other. Therefore, one vector current must
be contracted with the pion which leads to the two diagrams
depicted in Fig. 4. The first diagram in the nf ¼ 2 theory
corresponds to the following contraction,

!31Þ

and the second diagram reads

!32Þ

More details about the numerical evaluation of the disconnected contribution are given in Sec. IV C 4.

FIG. 3. The connected contribution computed using point
sources. The two double lines taken together correspond to
~G!y; z; t0; ~pÞ.

TABLE II. Number of equivalent contributions to A!τÞ for
different values of j~q1j2.

!j~q1j×L=!2πÞÞ2 1 2 3 4 5 6 8 9 10 11 12 13 14

Number 12 48 48 12 96 144 48 156 96 144 48 96 288

FIG. 4. The two disconnected diagrams contributing to the π0 → γ'γ' form factor.
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Figs. From Mainz Group [10.1103/PhysRevD.94.074507]

𝝅𝟎 → 𝜸𝜸

[Rept.Prog.Phys. 88 (2025) 8, 080501]
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