Experimental input from **E5** III for the HLbL contribution

8th Plenary Workshop of the Muon g-2 Theory Initiative

2025-09-11 | Christoph Florian Redmer

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

BESIII at BEPCII

Drift Chamber

Solenoid

- Center-of-mass energies from 2 5 GeV
- Design luminosity exceeded: 1.1×10³³ cm⁻²s⁻¹ at 3.77 GeV

Worlds largest τ-charm data sets in e⁺e⁻ collisions

Experimental Access to TFFs

Meson Dalitz Decays

$$m_{II}^2 < q^2 < m_P^2$$

Radiative Meson Production

$$q^2 = s; \quad q^2 > m_P^2$$

time-like

Two-photon collisions

$$q_1^2 = -Q_1^2; \quad q_2^2 = -Q_2^2$$

space-like

"Wish Lists" from WPs 20 & 25

Table 14 Priorities for new experimental input and cross-checks.

issue	experimental input [I] or cross-checks [C]
axials, tensors, higher pseudoscalars missing states	$\gamma^{(*)}\gamma^* \to 3\pi$, 4π , $K\bar{K}\pi$, $\eta\pi\pi$, $\eta'\pi\pi$ [I] inclusive $\gamma^{(*)}\gamma^* \to \text{hadrons at 1-3 GeV}$ [I]
dispersive analysis of $\eta^{(\prime)}$ TFFs	$e^{+}e^{-} o \eta \pi^{+}\pi^{-}$ [I] $\eta' o \pi^{+}\pi^{-}\pi^{+}\pi^{-}$ [I] $\eta' o \pi^{+}\pi^{-}e^{+}e^{-}$ [I] $\gamma \pi^{-} o \pi^{-}\eta$ [C]
dispersive analysis of π^0 TFF	$\gamma\pi \to \pi\pi$ [I] high accuracy Dalitz plot $\omega \to \pi^+\pi^-\pi^0$ [C] $e^+e^- \to \pi^+\pi^-\pi^0$ [C] $\omega, \phi \to \pi^0 l^+ l^-$ [C]
pseudoscalar TFF pion, kaon, $\pi\eta$ loops (including scalars and tensors)	$\gamma^{(*)}\gamma^* \to \pi^0$, η , η^\prime at arbitrary virtualities [I,C] $\gamma^{(*)}\gamma^* \to \pi\pi$, $K\bar{K}$, $\pi\eta$ at arbitrary virtualities, partial waves [I,C]

	Experimental input
Axial-vector TFFs	$e^+e^- \rightarrow e^+e^-A$, $A = f_1, f_1', a_1$ Radiative decays $A \rightarrow V\gamma$, $V = \rho, \omega, \phi$ Dilepton decays $A \rightarrow e^+e^-$
Scalar and tensor TFFs	$\gamma^* \gamma^{(*)} \to \pi \pi, \pi \eta, \bar{K} K, \pi \pi \pi$
Pseudoscalar TFFs	$\gamma \gamma \to \eta, \eta'$ $e^+ e^- \to e^+ e^- (\gamma^* \gamma^{(*)} \to \pi^0, \eta, \eta')$ $e^+ e^- \to e^+ e^- (\gamma \gamma \to P), P = \pi(1300), \eta(1295), \eta(1405)$

Table 30: Examples of useful experimental inputs related to the exclusive hadronic channels.

Phys.Rept. 887 (2020) 1 - 166

$\gamma^{(*)}\gamma^*$ results to be expected from BESIII

Worlds largest τ-charm data sets in e⁺e⁻ collisions

- Richest data above open charm threshold
 - Access to
 - Hadronic masses up to 2 GeV
 - $0.2 \le Q^2 [\text{GeV}^2] \le 3$
- Access to smaller Q² values at $\sqrt{s}\approx 2\,\mathrm{GeV}$ (limited statistics)

New data at 3.77 GeV most relevant!

Data taking finished June 2024

$$\gamma^{(*)}\gamma^* o \pi^0, \eta, \eta'$$

2.9 fb⁻¹, 3.773 GeV

Two-photon collision events:

- Single-tag measurements
 - Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum

- Single-tag measurements
 - Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum

arXiv:2509.07685

Missing Polar Angle [cosθ_{miss}*q_{tan}]

-0.95

-0.8

-0.85

- Single-tag measurements
 - Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum
- Reduce background by adequate conditions

2.9 fb⁻¹, 3.773 GeV

- Single-tag measurements
 - Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum
- Reduce background by adequate conditions
- Subtract background in bins of Q²

$$\gamma\gamma^* o \pi^0$$

- Single-tag measurements
 - Require one quasi-real photon
- Select
 - One scattered lepton & meson decay products
 - Require small scattering angle of missing momentum
- Reduce background by adequate conditions
- Subtract background in bins of Q²

$$|\mathcal{F}(Q^2)|^2 = \frac{N_{\text{sig}}}{\Delta Q^2 \,\mathcal{L} \,\varepsilon \,(1+\delta) \,\mathcal{B}_{\gamma\gamma}} \left(\frac{\mathrm{d}\sigma_{\mathrm{WZW}}}{\mathrm{d}Q^2}\right)^{-1}$$

- Divide by point-like cross section
- Correct for radiative effects
- Correct for impact of finite 2nd virtuality

- Radiative effects at full NLO in Ekhara3.0
- NNLO calculations missing!
- Rule of thumb estimate suggested by Henryk:
 - 10% of reconstructed LO-NLO difference
- 1% uncertainty

- Comparison with TFF models for $|\mathcal{F}(Q^2,0)|$
- Consistent deviation of 2% found

$\gamma\gamma^* o\eta,\eta'$

- Full 20 fb⁻¹ data
- Single-tag analysis using kinematic fit
- Using two decay modes

- Radiative corrections with Ekhara3.0
 - Rule-of-thumb estimate does not seem to work!
 - NNLO corrections needed!

- First direct measurement at Q²<0.3 GeV²
- Significant improvement compared to existing data expected

Simulations using full 20 fb⁻¹

$\gamma^*\gamma^* o\pi^0,\eta,\eta'$

- Full 20 fb⁻¹ data
- Begin with $\gamma^* \gamma^* \to \eta, \eta'$
 - Favorable background situation
- Feasibility studies performed
- Results at $Q_1^2 \approx Q_2^2 \approx 1 \, \mathrm{GeV}^2$ expected
- s-channel process needs to be understood
- Data analysis ongoing for $\gamma^* \gamma^* \to \eta, \eta'$
- Follow-up: $\gamma^* \gamma^* \to \pi^0$

Simulation of expected yields for 13 fb⁻¹ of data at $\sqrt{s} \ge 3.773\,\text{GeV}$

- Classic single-tag event selection
- Background
 - Muon production

■ Time-like pion production

- Classic single-tag event selection
- Background
 - Muon production → machine learning for separation
 - Time-like pion production → precise/tuned event generators to subtract distributions
- Invariant masses from threshold to 2 GeV
- $0.2 \le Q^2 [\mathrm{GeV}^2] \le 3$
- Full coverage of helicity angle
- Analysis transferred to new 20fb⁻¹ data set
 - Reduced systematic effects
 - New training of PID time consuming

$\gamma\gamma^* o \pi^0\pi^0$

- Full new 20 fb⁻¹ data
- New strategy: Kinematic fit with missing track
 - improved resolution of 2nd virtuality
- Similar parameter ranges as for $\gamma \gamma^* \to \pi^+ \pi^-$
 - $0.3 \le W[\text{GeV}] \le 2$
 - $0.1 \le Q^2 [\text{GeV}^2] \le 4$
 - $|\cos \theta^*| \leq 1$

Two-Pion Invariant Mass W / GeV

ρ-pole TFF model for illustration of expected uncertainties

Luminosity function needed to determine relevant cross sections

$$d\sigma_{ee} = \frac{\alpha^2}{16\pi^4 q_1^2 q_2^2} \sqrt{\frac{(q_1 \cdot q_2)^2 - q_1^2 q_2^2}{(p_1 \cdot p_2)^2 - m_e^4}} \left[4\rho_1^{++} \rho_2^{++} \sigma_{TT} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} \right] \frac{d^3 p_1' d^3 p_1'}{E_1' E_2'}$$

$$\frac{d^2\sigma_{ee}}{dQ^2dW} = \frac{d\mathcal{L}_{\gamma\gamma}}{dQ^2dW} \left(\sigma_{TT}(Q^2, 0, W) + \varepsilon\sigma_{TL}(Q^2, 0, W)\right)$$

Analytic evaluation:

Using: Phys. Rept. 15 (1975) 181 Nucl.Phys. B54 (1973) 573

Model dependent assumptions for finite 2nd virtuality necessary

Numerical approach:

Combine cross section equation with phase space generation algorithm by Schuler et al.

Agreement with analytic determination for all

- Energies
- Ranges of Q²
- Hadronic masses

Extend it to be an event generator for Hadron production in Two-Photon Scattering

- Allow for any number of particles
- Assume flat phase space distribution
- Need input for two-photon cross sections

Extend it to be an event generator for Hadron production in Two-Photon Scattering

- Allow for any number of particles
- Assume flat phase space distribution
- Need input for two-photon cross sections
 - $\gamma\gamma \to \pi^+\pi^-/\pi^0\pi^0$ from dispersive analysis (Danilkin *et al.*, Phys.Rev.D 101 (2020) 054008)
 - $\gamma\gamma \to \pi^0\eta$ from dispersive analysis (Deneika *et al.*, Phys.Rev.D 111 (2025) 034009)
 - $\gamma \gamma \rightarrow \pi^+ \pi^- \eta$ from phenomenology (Ren *et al.*, Phys. Rev. D 110 (2024) 094043)
 - **E** Experimental results from Belle and BESIII on $K\bar{K},\eta\eta$

Additional degree of freedom for two-body final states

- Formalism previously established for $e^+e^- \rightarrow e^+e^- X$
- Extended in collaboration with Marc Vanderhaeghen

New event generator: **HadroTOPS**

- Essential, since development of established generator (Ekhara) came to an end
- Publication in preparation

$\gamma\gamma^* o f_1(1285)$

• Reconstructing $f_1(1285) \rightarrow \pi^+\pi^-\eta$

- Possibility to separate helicity states from fit to angular distributions
- PWA required due to inseparable intermediate states $a_0^{\pm}(980)\pi^{\mp}\longleftrightarrow f_0(500)\eta$
 - Amplitude based on Phys. Rev. D 110 (2024) 094043

Only available data:

$\gamma\gamma^* o f_1(1285)$

Possibility to separate helicity states from fit to angular distributions

- Applied on full 20 fb⁻¹ data
- Systematic uncertainties under evaluation

Summary

$rac{1}{2} = 1$ is an ideal laboratory to study two-photon reactions at $Q^2 pprox 1$ GeV 2

- Single pseudocalar meson TFFs
 - Single-tag measurements
 - $0.1 \le Q^2 [\text{GeV}^2] \le 5.0$
 - First TFF measurement released
 - High statistics results on π^0 , η , η' in preparation
 - Double-tag measurements of π^0, η, η' in preparation
- Multi meson systems
 - Single-tag measurements
 - $\pi^0 \pi^0 / \pi^+ \pi^$
 - masses from threshold to 2 GeV
 - virtualities from 0.2 to 2 GeV²
 - full helicity angle coverage
 - $f_1(1285) o \pi^+\pi^-\eta$ with PWA to separate helicity amplitudes of TFF

Development of new MC Generator facilitates studies of further multi meson systems

Summary

$rac{1}{2} = 1$ is an ideal laboratory to study two-photon reactions at $Q^2 pprox 1 \, { m GeV}^2$

- Single pseudocalar meson TFFs
 - Single-tag measurements

■
$$0.1 \le Q^2 [\text{GeV}^2] \le 5.0$$

- First TFF measurement released
- High statistics results on π^0 , η , η' in preparation
- Double-tag measurements of π^0 , η , η' in preparation
- Multi meson systems
 - Single-tag measurements

$$\pi^0 \pi^0 / \pi^+ \pi^-$$

- masses from threshold to 2 GeV
- virtualities from 0.2 to 2 GeV²
- full helicity angle coverage
- $f_1(1285) o \pi^+\pi^-\eta$ with PWA to separate helicity amplitudes of TFF

arXiv:2509.07685

Preliminary results by the end of this year!

Development of new MC Generator facilitates studies of further multi meson systems