IJCLab Irène Jolliot-Curie Orsay, France 8th to 12th September 2025

A high-precision measurement of the Transition Form Factor of the π^0 at A2/MAMI

Lena Heijkenskjöld Sergey Prakhov <u>Achim Denig</u> JGU Mainz

Importance of Transition Form Factors

Electromagnetic (EM) Transition Form Factors (TFFs) of light mesons M

$$M \leftrightarrow \gamma^{(*)} \gamma^*$$

- → understanding their intrinsic structure
- \rightarrow input to the hadronic light-by-light contribution to $(g-2)_{\mu}$

JHEP 09, 074 (2015) JHEP 10, 141 (2018)

 π^0 , η , η'

Importance of Transition Form Factors

Electromagnetic (EM) Transition Form Factors (TFFs) of light mesons M

$$M \leftrightarrow \gamma^{(*)} \gamma^*$$

- → understanding their intrinsic structure
- \rightarrow input to the hadronic light-by-light contribution to $(g-2)_{\mu}$

JHEP 09, 074 (2015) JHEP 10, 141 (2018)

Important to check internal cosistency

 π^0 , η , η'

Access to Transition Form Factors (TFFs)

Access to Transition Form Factors (TFFs)

Experiment A2: Tagged" bremsstrahlung photon beam

$$E_{\gamma} = E_{MAMI} - E'$$

- 4π calorimeter setup around target Crystal Ball (672 NaI, $20^{\circ}<\Theta<160^{\circ}$)

TAPS (384 BaF₂,1°< Θ <20°, PbWO₄)

RTM2

Non-magnetic detector →
Separation of charged and neutral particles on basis of PID and tracking detector surrounding the LH₂ target

MAMI is a Meson factory: $\gamma p \rightarrow M \gamma$

Depending on photon energy, extremely large cross sections for meson production on p target: ~ 10⁷ ... 10⁹ mesons/beam time (corresponding to ~3 weeks)

A2 setup ideally suited for detection of meson decays

Target: LH₂

A Meson Factory for Measurements of TFFs

Meson Dalitz decays, normalized to $\gamma\gamma$ decays:

$$F(m_{ll}) = rac{1}{1 - rac{m_{ll}^2}{\Lambda^2}}$$
Slope factor Λ

Theoretical predictions based on dispersion relations as well as Padé approximants

A2 Timelike Pion TFF: $\pi^0 \rightarrow e^+e^-\gamma$

Feasibility study already lead to first publication

- $4 \cdot 10^5 \ \pi^0 \rightarrow e^+e^-\gamma$ events
- slope paramete $a_\pi=0.030\pm0.010$ with $a_\pi\sim m_\pi^2/(m_\rho^2+m_\omega^2)$
- competitive with world's most precise NA62 analysis $a_{\pi} = 0.0368 \pm 0.0051$

Phys. Rev. C95 (2017)02502

A2 Timelike Pion TFF: $\pi^0 \rightarrow e^+e^-\gamma$

$$F_{\pi^0 \gamma}(m_{ee}) = 1 + a_\pi \frac{m_{ee}^2}{m_{\pi^0}^2}$$

Feasibility study already lead to first publication

- $4 \cdot 10^5 \ \pi^0 \rightarrow e^+e^-\gamma$ events
- slope paramete $a_{\pi}=0.030\pm0.010$ with $a_{\pi}\sim m_{\pi}^2/(m_{\rho}^{~2}+m_{\omega}^{~2})$
- competitive with world's most precise NA62 analysis $a_{\pi} = 0.0368 \pm 0.0051$

Phys. Rev. C95 (2017)02502

New A2 Measurement of $\pi^0 \rightarrow e^+e^-\gamma$

 Dedicated data taking in 2018 allowed to improve statistics by factor of ~6 with respect to previous result Analysts: Lena Heijkenskjöld Sergey Prakhov

- Searching for $\pi^0 \to e^+e^-\gamma$ in **3- and 4-cluster events**
- Kinematic fitting just assuming $\gamma p \to 3\gamma p$ (electron mass irrelevant); Photon and e^+e^- clusters detected only by the CB;

PID detector is used to identify e^+ and e^-

- Background contributions:
 - random and empty-target runs subtracted directly;

most important background: $\pi^0 \rightarrow \gamma \gamma$ with γ converting in detector material into e^+e^- (conversion)

 \rightarrow suppressed by detecting e^+ and e^- in different PID detector elements;

Monte-Carlo for $\gamma p \rightarrow \pi^0 p \rightarrow e^+e^-\gamma p / \gamma \gamma p$

MC simulation constructed according to the actual $\gamma p \to \pi^0 p \to \gamma \gamma p$ spectra measured in the same experiment,

 $d\Gamma(\pi^0 \to e^+e^-\gamma)/dm_{ee} = |QED_\pi| \cdot |F_\pi(m_{ee})|^2$ dependence and angular decay distribution $f(\theta_e) = 1 + \cos^2\theta_e + (2m_e/m_{ee})^2 \sin^2\theta_e$ folded with radiative corrections, where θ_e is the angle between one lepton in the dilepton rest frame and the dilepton direction in the π^0 rest frame

magnitude radiative corrections

Phys.Rev.D92 (2015) 054027

Invariant Masses $\pi^0 \rightarrow e^+e^-\gamma$

Low background contribution

Invariant Masses $\pi^0 \rightarrow e^+e^-\gamma$

Low background contribution

Analysis strategy: fit π^0 peak (MC spectrum) over background in m_{ee} bins event selection based on different selections cuts -> different background levels

- vary cuts on PID dE/dx
- vary cuts on kinematic fit CL (1%, 2%, 5%, 10%)

JG U

Monte-Carlo Templates $\pi^0 \rightarrow e^+e^-\gamma$

Monte-Carlo Templates $\pi^0 \rightarrow e^+e^-\gamma$

Angular Distribution $\pi^0 \to e^+e^-\gamma$

15 < m_{ee} < 60 MeV

Excellent agreement!

New π^0 Transition Form Factor Result

statistical uncertainty only

New π^0 Transition Form Factor Result

statistical uncertainty only

New π^0 Transition Form Factor Result

Comparison to experimental data from NA62 (2017) and A2/MAMI (2016) and theoretical predictions within Padé approximants and dispersive Analysis

→ world's most precise measurement – agreement with previous data/theory

Systematic Uncertainties

Systematic uncertainty in a_{π} evaluated by :

- changing selection criteria (see before)
- excluding radiative corrections from the Monte Carlo simulation used to determine the experimental acceptance.

The rms of all results obtained for a_{π} was used as systematic uncertainty.

$$a_{\pi}$$
 = 0.0315 ± 0.0026_{stat} ± 0.0010_{syst}

Systematic Uncertainties

Systematic uncertainty in a_{π} evaluated by :

- changing selection criteria (see before)
- excluding radiative corrections from the Monte Carlo simulation used to determine the experimental acceptance.

The rms of all results obtained for a_{π} was used as systematic uncertainty.

$$a_{\pi}$$
 = 0.0315 ± 0.0026_{stat} ± 0.0010_{syst}

Fit without constraining TFF = 1 for zero momentum transfer

Summary

A2 preliminary

$$a_{\pi}$$
 = 0.0315 ± 0.0026_{stat} ± 0.0010_{syst}

- New A2 result improves the experimental uncertainty of the previous A2 measurement by a factor of four, and by a factor of two the NA62 result a_{π} = 0.0368 ± 0.0057_{tot}.
- Paper draft under internal review.
- Excellent agreement with the theoretical calculations within Padé approximants [$a_{\pi}=0.0324\pm0.0020$] and the Dispersive Analysis [$a_{\pi}=0.0315\pm0.0009$]. Experimental accuracy approaching those of the predictions.

Summary

A2 preliminary

$$a_{\pi}$$
 = 0.0315 ± 0.0026_{stat} ± 0.0010_{syst}

- New A2 result improves the experimental uncertainty of the previous A2 measurement by a factor of four, and by a factor of two the NA62 result $a_{\pi} = 0.0368 \pm 0.0057_{\rm tot}$.
- Paper draft under internal review.
- Good agreement with the theoretical calculations within Padé approximants [$a_{\pi} = 0.0324 \pm 0.0020$] and the Dispersive Analysis [$a_{\pi} = 0.0315 \pm 0.0009$].

New MAMI result for timelike TFF together with spacelike measurement from BESIII

→ internal consistency check of pion pole contribution to HLbL currently used for (g-2)_u

Backup

Importance of Transition Form Factors

Determination of electromagnetic (EM)

Transition Form Factors (TFFs) of light mesons M

$$M \leftrightarrow \gamma^{(*)} \gamma^*$$

09, 074 (2015)

- → understanding their intrinsic structure
- \rightarrow input to the hadronic light-by-light contribution to $(g-2)_{\mu}$ (dispersive approach) Whitepaper 25, Phys. Reports

 π^0, η, η'

Pion pole contribution dominating Low virtualities important

Photon Beam Line at MAMI

Converting MAMI electron beam into tagged photon beam via bremsstrahlung process

Energy of electron after bremsstrahlung process measured

in tagger

$$E_{\gamma} = E_{MAMI} - E'$$

Timelike η and $\omega \pi^0$ TFFs

tool to study light-quark dynamics

- $5.4 \cdot 10^4 \; \eta \rightarrow e^+ e^- \gamma$ events, most precise $e^+ e^-$
- slope parameter: $\Lambda^2 = 1.97 \pm 0.11 \, GeV^2$

$\omega \rightarrow \pi^0 e^+ e^-$

large deviation between NA60 and theoretical models?!

- A2 data not yet competitive with NA60
- at given statistics no conflict with theory

JG U

Hadronic Light-by-Light (g-2)_µ

Leading contributions are pole contribution from π^{0} , η , η'

2D integral representation

Pseudoscalar Mesons

 $0.5 Q_1 [GeV]$

 Q_2 [GeV]

Axial Vector Mesons

GeV

 \rightarrow Need doubly virtual form factors of π^{0} , η , η' at low Q^2

Transition Form Factors

