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Dispersive treatment of HLbL in four-point kinematics

= + + . . .

Organized in terms of hadronic intermediate states

Scalar functions Π̌i free from kinematic singularities in Mandelstam
variables → enables dispersive treatment in s, t, u (four-point kinematics)
[Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161]

Presence of kinematic singularities in q2
i is inevitable

Residues of singularities vanish due to set of sum rules, but narrow
resonances (apart from pseudoscalars) do not fulfill sum rules individually

New tensor basis for HLbL in four-point kinematics enables evaluation of
axial-vector states for the first time → still kinematic singularities for J ≥ 2

Kinematic singularities can be avoided by working in triangle kinematics →
all redundancies of the BTT set disappear in the g − 2 limit [Lüdtke, Procura,
Stoffer, JHEP 04 (2023) 125] → see talk by Emilis Kaziukenas
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Matching strategy for HLbL

Use momenta variables Q1, Q2, Q3 for matching procedure

Introduce matching scale Q0 ∈
[
1.2, 2.0

]
GeV which separates low-energy

part from high-energy part of HLbL tensor

Symmetric region:
If Q1, Q2, Q3 > Q0: Use quark loop and two-loop gluonic correction with
µ = Q0 in αQCD(µ) [Bijnens et al., JHEP 04 (2021) 240]

If Q1, Q2, Q3 ≤ Q0: Use description in terms of hadronic intermediate states

Mixed region:
If Q1, Q2 ≫ Q3 > Q0 (+ crossed) already well described in terms of quark
loop and gluonic corrections

If Q1, Q2 > Q0, Q3 ≤ Q0 & Q2
3 ≤ r

Q2
1+Q2

2
2 with r ∈ [1/8, 1/2] (+

crossed): can relate HLbL tensor to the V V A correlator
Relation to V V A requires knowledge of longitudinal and transverse form
factors wL,T (q2) → dedicated dispersive analysis for w

(3)
L,T (q2) [Lüdtke,

Procura, Stoffer, JHEP 04 (2025) 130]
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Comparison of OPE expressions and hadronic states for Π̂1

Π̂1(Qsym) := Π̂1(Qsym, Qsym, Qsym), αQCD(µ) with µ = 1.5 GeV

Pseudoscalar and axial-vector states most relevant in the asymptotic regime
for the longitudinal component
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Comparison of OPE expressions and hadronic states for Π̂4

Π̂4(Qsym) := Π̂4(Qsym, Qsym, Qsym), αQCD(µ) with µ = 1.5 GeV

Tensor contribution quite relevant in the asymptotic region for the
transverse component
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Effective Poles

Finite set of hadronic states cannot satisfy the SDCs exactly in four-point
kinematics → Only infinite tower of hadronic states can fulfill the SDCs
Introduce effective poles in triangle kinematics to capture the impact of
missing states in the low-energy region
Pseudoscalar pole for longitudinal component in triangle kinematics

Π̂eff
1 = FP γ∗γ∗(q2

1 , q2
2)FP γ∗γ∗(M2

P , 0)
q2

3 − M2
P

Axial-vector pole for transverse component in triangle kinematics

Π̂eff
4 =

(q2
1 + q2

3 − m2
A)FA

2 (m2
A, 0)

[
2FA

1 (q2
1 , q2

3) + FA
3 (q2

1 , q2
3)

]
2m4

A(q2
2 − m2

A) +
(
q2

1 ↔ q2
2
)

Couplings of effective poles determined such that SDCs are fulfilled by sum
of hadronic states and effective poles in the symmetric limit
Matching looks reasonable in the asymmetric directions
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Stability Plot of the aµ integral under variation of Q0 and r

Very mild dependence on Q0 and r
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Results and uncertainty estimate

aHLbL
µ

∣∣
subleading

[Π̄1,2] = 26.9(2.1)exp(1.0)match(3.7)sys(3.2)eff[5.4]total × 10−11

aHLbL
µ

∣∣
subleading

[Π̄3–12] = 6.3(1.5)exp(1.4)match(0.2)sys(2.2)eff[3.0]total × 10−11

aHLbL
µ

∣∣
subleading

[Π̄1–12] = 33.2(3.3)exp(2.2)match(4.6)sys(3.9)eff[7.2]total × 10−11

Experimental error propagated from two-photon decay widths of heavy
scalars, tensors and axialvector TFFs

Matching uncertainty stems from varying Q0 ∈
[
1.2, 2.0

]
GeV and r ∈

[1/8, 1/2]

Systematic uncertainties: Reflect a 30% error due the use of U(3) relations
for axial-vector states

Added a 100% uncertainty for the tensor contribution in aµ[Π̄1–12] to
protect against the strong cancellation observed between aµ[Π̄1,2] and
aµ[Π̄3–12]

aHLbL
µ

∣∣
total

= aHLbL
µ

∣∣
disp

+ aHLbL
µ

∣∣
subleading

+ aHLbL
µ

∣∣
charm

= 101.9(7.9) × 10−11
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Anomalous magnetic moment of electron and τ lepton

Same matching procedure can be applied to electron and τ

For the electron numerical instabilities arise in the kernel functions
Ti(Q1, Q2, τ, mℓ) entering the master formula for ae → can be solved by
appropriate expansion or higher internal precision

The different masses imply a different scaling of regions in the light-by-light
integral

Most important contribution for e: P = π0, η, η′

Most important contribution for τ : pQCD and OPE

aHLbL
e = 3.51(23) × 10−14

aHLbL
τ = 3.77(29) × 10−8

Relative precision comes out almost identical for all three leptons:

{7, 8, 8}% for aHLbL
ℓ , ℓ ∈ {e, µ, τ}
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Recent work on tensor meson transition form factors
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Tensor mesons in dispersive approach to HLbL
New basis:

P, S, A → Π̌new
i no kinematic singularities✓

T → Π̌new
i still kinematic singularities!

Lorentz decomposition of the amplitude T → γ∗γ∗ yields 5 form factors

Mµναβ =
5∑

i=1
T µναβ

i

1
mni

T

FT
i (q2

1 , q2
2)

No kinematic singularities if only FT
1,3 or only FT

2,3 are present
Dispersive approach for HLbL: tensor mesons included via simple quark
model

FT
1 (q2

1 , q2
2)

FT
1 (0, 0)

=
(

M2
ρ

M2
ρ − q2

1 − q2
2

)2
, FT

2,3,4,5(q2
1 , q2

2) = 0

Simple quark model features:
correct normalization
correct scaling for asymptotic behavior in doubly-virtual limit
realistic mass scale set by Mρ
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Situation for tensors in WP2

Region Dispersive hQCD Regge DSE/BSE

Qi > Q0 6.2+0.2
−0.3 6.3(7) 4.8(1) 2.3(1.5)

Mixed A, S, T 3.8(1.5)
OPE 10.9(0.8)
Effective pole 1.2
Sum 15.9(1.7) 13.5(2.4) 12.8(5) 10.1(3.0)

Qi < Q0 A = f1, f ′
1, a1 12.2(4.3) 13.1(1.5) 10.9(1.0) 8.6(2.6)

S = f0(1370), a0(1450) −0.7(4) −0.8(3)
T = f2, a2 −2.5(8) 2.9(4)
Other 2.0 8.0(9) 3.2(6) 2.8(6)
Sum 11.0(4.4) 24.0(2.8) 14.1(1.2) 10.6(2.7)

Sum 33.2(4.7) 43.8(5.9) 31.7(1.6) 23.0(7.4)

Difference between dispersive approach and hQCD significant for tensors
hQCD states that FT

1 and FT
3 appear at a comparably important level

→ Inclusion of FT
3 leads to the sign change in the evaluation of tensor mesons
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FT
3 transition form factor

Questions:
What is so special about FT

3 ?
Is it a coincidence that our new basis allows for the evaluation if only FT

1
and FT

3 are present?

FT
3 does not appear in the on-shell decay rate or helicity fraction

Γγγ = πα2mT

5

(
|FT

1 (0, 0)|2 + 1
24 |FT

2 (0, 0)|2
)

rh = |FT
λ=0(0, 0)|2

|FT
λ=2(0, 0)|2

= |FT
2 (0, 0)|2

24|FT
1 (0, 0)|2

FT
4,5 contribute to singly-virtual kinematics, but FT

3 only contributes to the
doubly virtual case where no data are available yet → hard to probe FT

3
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Resonance χPT

In hQCD, leading contribution with respect to 1/Nc comes from FT
1 and

FT
3
→ FT

2,4,5 subleading in hQCD

Can we observe the same in RχT?

Use standard counting with symmetric tensor field Tµν

At LO, the only operator contributing to the process T → γ∗γ∗ is

L(0) = c
(0)
1 ⟨Tµν{uµ, uν}⟩

Calculated chiral loops, which generate contributions to all 5 TFFs (FT
1

UV divergent, the others finite)

Divergent expression for FT
1 requires a counter term at NLO:

L(1) = c
(1)
1 ⟨Tµνfµ

+ αfνα
+ ⟩

L(1) only generates a contribution to FT
1
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Resonance χPT

Loops are subdominant and yield too small values for Γγγ and r

Γloop
γγ (f2(1270)) = 0.3 keV Γγγ = 2.6(5) keV PDG

rloop
h (f2(1270)) = 0.019 rh = 0.095(20) Dai, Pennington (2014)

Phenomenological agreement for Γγγ can be enforced by means of c
(1)
1

At NNLO one can write down 13 additional contact operators which
produce contributions to all FT

i → From RχT perspective in
“standard"counting only FT

1 seems to be special

Is it possible to construct a minimal basis? Counting ambiguous because of
derivatives → see talk by Jonas Mager

Maximilian Zillinger Dispersive approach to HLbL 11. September 2025 15 / 26



The process γ∗γ∗ → ππ

To improve on the simple quark model we have to go back to this work

Consider the D-wave of γ∗γ∗ → ππ

The f2(1270) can be understood as an effect of the ππ final-state
rescattering

Expressions for helicity amplitudes already worked out

Inclusion of higher left-hand cuts (V = ρ, ω) necessary to reproduce
observed f2(1270) resonance peak in the on-shell process γγ → ππ

Anomalous thresholds in left-hand cuts can be handled numerically
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The process γ∗γ∗ → ππ

Topologies in the Omnès solution

=
π

+
ρ, ω

+

π

π

Off-shell behavior described by pion VFF F V
π (q2) and vector meson

transition form factors Fωπ(q2)

ρ should be described in terms of the full 2π spectral function → P -wave
amplitude f1(s, q2) for γ∗ → 3π
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Matching of helicity amplitudes onto form factors

Consider f2(1270) as a narrow resonance and match expressions for helicity
amplitudes h2,i(s) onto the form factors FT

i

HJ=2,ππ
λ1λ2

(s, z) = (2 · 2 + 1)dJ=2
m0 (z)hJ=2,λ1λ2(s)

Matching procedure for helicity amplitudes in the limit s → M2
f2

:

iHJ=2,ππ
λ1λ2

(s, z) =

γ∗

γ∗

f2

π

π

M A

lim
s→M2

f2

iHJ=2,ππ
λ1λ2

(s, z) = ελ1
µ (q1)ελ2

ν (q2) lim
s→M2

f2

(
iMµναβ(p, q1, q2)

isT
αβγδ

s − M2
f2

+ iMf2Γf2

iAγδ(p, p1, p2)
)

lim
s→M2

f2

(
s − M2

f2
+ iMf2Γf2

s − 4M2
π

hJ=2,λ1λ2(s)
)

=
5∑

i=1
Ci(q2

1 , q2
2 , M2

f2
)FT

i (q2
1 , q2

2)

Consistency check: z dependence in HJ=2,ππ
λ1λ2

(s, z) drops out
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Modified Omnès representation

h2,i(s) = N2,i(s) + Ω2(s)
π

{ ∫ 0

−∞
ds′ 1

Ω2(s′)Kij(s, s′) Im h2,j(s′)

+
∫ ∞

4M2
π

ds′ sin δ2(s′)
|Ω2(s′)| Kij(s, s′)N2,j(s′)

}

N2,i(s): only Born term as inhomogeneity

Only imaginary part required for higher left hand cuts V = ρ, ω

Kij(s, s′): integration kernels from the full 5 × 5 D-wave Roy-Steiner
system

The imaginary part manifestly cancels in
(

s−M2
f2

+iMf2 Γf2
s−4M2

π
hJ=2,λ1λ2(s)

)
such that form factors FT

i (q2
1 , q2

2) are real in the spacelike region
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Narrow-width approximation for h2,i(s)
Full solution for δ2(s) and Ω2(s) available, but use narrow-width
approximation for the matching to form factors
Narrow-width approximation for phase shift δ2(s) and Ω2(s)

δ2(s) = arctan
(

Mf2Γf2

M2
f2

− s

)
+ πθ

(
s − M2

f2

)
, Ω2(s) =

M2
f2

M2
f2

− s − iMf2Γf2

Phase-shift-dependent fraction in right-hand cut integral reduces to a
constant [Stamen et al., Eur.Phys.J.C 83 (2023) 6, 510]

sin δ2(s)
|Ω2(s)| = Γf2

Mf2

Poor approximation inside the right-hand cut integral → stick to full
solution or use energy-dependent width Γf2(s)
On-shell point q2

1 = q2
2 = 0 investigated with preliminary result: rh in the

same ballpark as expected from chiral loops
How robust is the phenomenological extraction of rh? New input from
BESIII?
Maximilian Zillinger Dispersive approach to HLbL 11. September 2025 20 / 26



Summary & Outlook

Moderate dependence on matching parameters Qmatch and r

Effective poles introduced to fulfill SDCs exactly

Need improvement for TFFs of tensors to reduce the systematic uncertainty

Introduced matching procedure for helicity amplitudes onto form factors →
Check on-shell point q2

1 = q2
2 = 0 and compute Γf2γγ as well as the helicity

fraction rh

Later proceed to doubly-virtual kinematics where input for vector meson
transition form factors FV π(q2) is needed and address their asymptotic
behavior FV π(Q2) ∼ 1/Q4

Does the correct asymptotic behavior for vector mesons imply the correct
asymptotic behavior for tensor TFFs?

Compare different scenarios for vector meson transition form factors with
the available data from BESIII
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Appendix
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Input for Matching (1): Axial-vector TFFs (VMD)

Matrix element for A → γ∗γ∗

Mλ1λ2;λA
(

A → γ∗γ∗
)

= e2ϵλ1
µ ϵλ2

ν ϵ
λA
α Mµνα(q1, q2)

A

BTT decomposition [Hoferichter, Stoffer JHEP 05 (2020) 159]

Mµνα(q1, q2) =
i

m2
A

3∑
i=1

T µνα
i Fi(q2

1 , q2
2)

TFFs free of kinematic singularities and zeros → dispersive treatment
Experimental constraints analyzed and implemented within a VMD model
for A = f1(1285) [Hoferichter, Kubis, Zanke JHEP 08 (2023) 209]

Relate f1(1420) and a1(1260) via U(3) symmetry
Inclusion of 3 multiplets for VMD model:

(ρ, ρ′, ρ′′) for isovector part
(ω, ω′, ω′′) and (ϕ, ϕ′, ϕ′′) for isoscalar part
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Input for Matching (1): Axial-vector TFFs (asymptotic)
Supplement VMD model with asymptotic piece → ensures correct doubly-virtual
behavior [Hoferichter, Stoffer JHEP 05 (2020) 159], [Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106]

Fasym
2 (q2

1 , q2
2) = −F eff

A m3
A

∂

∂q2
1

[
1

π2

∫ ∞

s0

dx

∫ ∞

s0

dy
ρasym(x, y)

(x − q2
1)(y − q2

2)

]
+ O(1/q6

i )

ρasym(x, y) = 3π2xyδ′′(x − y)

Use linear combination of asymptotic pieces with free parameter α to also
ensure correct singly virtual behavior

F̃asym
2 (q2

1 , q2
2) =3F eff

A m3
A

1 + α

( ∫ ∞

s0

dx

[
q2

2x

(x − q2
1)3(x − q2

2) − 3q2
1x

(x − q2
1)4(x − q2

2)

]
+ α

∫ ∞

s0

dx
q2

2(x + q2
1)

(x − q2
1)3(x − q2

2)2

)
Still correct normalization: Fasym

2 (0, 0) = 0, but can choose α such that
Fasym

2 (q2, 0) = 3F eff
A m3

A
q4 + O(1/q6) with correct coefficient

Later: include mass effects → might be sizeable for axial-vector mesons
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Input for Matching (2)

Input for SDC3 (Q2
1 ∼ Q2

2 ∼ Q2
3 ≫ Λ2

QCD)
Usage of Operator Product Expansion (OPE) with background photon field
[Bijnens, Hermansson-Truedsson, Laub, Rodriguez-Sanchez JHEP 04 (2021) 240]

LO contribution given by massless quark loop
NLO contribution given by two-loop gluonic correction (∼ 10% correction
to quark loop)

Gluonic correction requires evaluation of αQCD(µ)
Exact choice of µ is ambiguous
Natural scale for avoiding large logarithms in the perturbative series
amounts to setting µ ∼ Qmatch
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Input for Matching (3)
Input for SDC2 (Q2

1, Q2
2 ≫ Q2

3, Q2
1, Q2

2 ≫ Λ2
QCD)

Standard OPE or OPE with background photon field can be used
→ see talk by N. Hermansson-Truedsson, [Bijnens et. al. JHEP 02 (2023) 167], [Colangelo et. al. JHEP 03 (2020) 101]

For standard OPE: q3, q4 much smaller than q̂ = 1
2 (q1 − q2)

Leading term in OPE can be related to VVA correlator (D = 3)

Πµνλσ(q1, q2, q3) =
2i

q̂2 ϵµναβ q̂α

∫
d4xd4ye−iq3xeiq4y ⟨0|T {jλ(x)jσ(y)jβ

5 (0)}|0⟩

=
2
q̂2 ϵµναβ q̂αW β

λσ
(−q3, q4)

Lorentz decomposition of W
(a)
µνρ(q1, q2) introduces the functions w

(a)
L and w

(a)
T

which at one loop are fixed by the axial anomaly

w
(a)
L (q2

3) =
2Nc

q2
3

, w
(a)
T (q2

3) =
w

(a)
L (q2

3)
2

In the chiral limit: No perturbative or non-perturbative corrections for w
(3,8)
L (q2

3)
In the chiral limit: No perturbative corrections for w

(3,8)
T (q2

3)
OPE expressions for Π̂i agree well with massless pQCD quark loop in the limit
Q2

3 ≫ Λ2
QCD

For Q2
3 ≪ Λ2

QCD chiral corrections become large → Use CMV model, later full
VVA
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