Dispersive approach to hadronic light-by-light scattering in four-point kinematics

Maximilian Zillinger

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

11. September 2025

UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

mainly based on

M. Hoferichter, P. Stoffer, M. Zillinger, JHEP 02 (2025) 121 and work in progress

Dispersive treatment of HLbL in four-point kinematics

- Organized in terms of hadronic intermediate states
- Scalar functions $\check{\Pi}_i$ free from kinematic singularities in Mandelstam variables \to enables dispersive treatment in s,t,u (four-point kinematics) [Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161]
- Presence of kinematic singularities in q_i^2 is inevitable
- Residues of singularities vanish due to set of sum rules, but narrow resonances (apart from pseudoscalars) do not fulfill sum rules individually
- New tensor basis for HLbL in four-point kinematics enables evaluation of axial-vector states for the first time \rightarrow still kinematic singularities for $J \ge 2$
- Kinematic singularities can be avoided by working in triangle kinematics \rightarrow all redundancies of the BTT set disappear in the g-2 limit [Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125] \rightarrow see talk by Emilis Kaziukenas

Matching strategy for HLbL

- ullet Use momenta variables Q_1,Q_2,Q_3 for matching procedure
- Introduce matching scale $Q_0 \in [1.2, 2.0] \, \text{GeV}$ which separates low-energy part from high-energy part of HLbL tensor
- Symmetric region:
 - If $Q_1,Q_2,Q_3>Q_0$: Use quark loop and two-loop gluonic correction with $\mu=Q_0$ in $\alpha_{\rm QCD}(\mu)$ [Bijnens et al., JHEP 04 (2021) 240]
 - If $Q_1,Q_2,Q_3 \leq Q_0$: Use description in terms of hadronic intermediate states
- Mixed region:
 - If $Q_1,Q_2\gg Q_3>Q_0$ (+ crossed) already well described in terms of quark loop and gluonic corrections
 - If $Q_1,Q_2>Q_0$, $Q_3\leq Q_0$ & $Q_3^2\leq r\frac{Q_1^2+Q_2^2}{2}$ with $r\in[1/8,1/2]$ (+ crossed): can relate HLbL tensor to the VVA correlator
 - Relation to VVA requires knowledge of longitudinal and transverse form factors $w_{L,T}(q^2) \to \text{dedicated dispersive analysis for } w_{L,T}^{(3)}(q^2)$ [Lüdtke, Procura, Stoffer, JHEP 04 (2025) 130]

Comparison of OPE expressions and hadronic states for $\hat{\Pi}_1$

• $\hat{\Pi}_1(Q_{\mathrm{sym}}) := \hat{\Pi}_1(Q_{\mathrm{sym}}, Q_{\mathrm{sym}}, Q_{\mathrm{sym}}), \ \alpha_{\mathrm{QCD}}(\mu) \ \text{with} \ \mu = 1.5 \, \mathrm{GeV}$

 Pseudoscalar and axial-vector states most relevant in the asymptotic regime for the longitudinal component

Comparison of OPE expressions and hadronic states for $\hat{\Pi}_4$

• $\hat{\Pi}_4(Q_{\mathrm{sym}}) := \hat{\Pi}_4(Q_{\mathrm{sym}}, Q_{\mathrm{sym}}, Q_{\mathrm{sym}}), \ \alpha_{\mathrm{QCD}}(\mu)$ with $\mu = 1.5\,\mathrm{GeV}$

 Tensor contribution quite relevant in the asymptotic region for the transverse component

- Finite set of hadronic states cannot satisfy the SDCs exactly in four-point kinematics → Only infinite tower of hadronic states can fulfill the SDCs
- Introduce effective poles in triangle kinematics to capture the impact of missing states in the low-energy region
- Pseudoscalar pole for longitudinal component in triangle kinematics

$$\hat{\Pi}_{1}^{\mathrm{eff}} = \frac{F_{P\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})F_{P\gamma^{*}\gamma^{*}}(M_{P}^{2},0)}{q_{3}^{2}-M_{P}^{2}}$$

Axial-vector pole for transverse component in triangle kinematics

$$\hat{\Pi}_{4}^{\mathrm{eff}} = \frac{\left(q_{1}^{2} + q_{3}^{2} - m_{A}^{2}\right)\mathcal{F}_{2}^{A}(m_{A}^{2}, 0)\left[2\mathcal{F}_{1}^{A}(q_{1}^{2}, q_{3}^{2}) + \mathcal{F}_{3}^{A}(q_{1}^{2}, q_{3}^{2})\right]}{2m_{A}^{4}(q_{2}^{2} - m_{A}^{2})} + \left(q_{1}^{2} \leftrightarrow q_{2}^{2}\right)$$

- Couplings of effective poles determined such that SDCs are fulfilled by sum of hadronic states and effective poles in the symmetric limit
- Matching looks reasonable in the asymmetric directions

Stability Plot of the a_μ integral under variation of Q_0 and r

ullet Very mild dependence on Q_0 and r

Results and uncertainty estimate

$$\begin{split} a_{\mu}^{\rm HLbL}\big|_{\rm subleading}[\bar{\Pi}_{1,2}] &= 26.9(2.1)_{\rm exp}(1.0)_{\rm match}(3.7)_{\rm sys}(3.2)_{\rm eff}[5.4]_{\rm total}\times 10^{-11}\\ a_{\mu}^{\rm HLbL}\big|_{\rm subleading}[\bar{\Pi}_{3-12}] &= 6.3(1.5)_{\rm exp}(1.4)_{\rm match}(0.2)_{\rm sys}(2.2)_{\rm eff}[3.0]_{\rm total}\times 10^{-11}\\ a_{\mu}^{\rm HLbL}\big|_{\rm subleading}[\bar{\Pi}_{1-12}] &= 33.2(3.3)_{\rm exp}(2.2)_{\rm match}(4.6)_{\rm sys}(3.9)_{\rm eff}[7.2]_{\rm total}\times 10^{-11} \end{split}$$

- Experimental error propagated from two-photon decay widths of heavy scalars, tensors and axialvector TFFs
- Matching uncertainty stems from varying $Q_0 \in [1.2, 2.0] \, \mathrm{GeV}$ and $r \in [1/8, 1/2]$
- Systematic uncertainties: Reflect a 30% error due the use of U(3) relations for axial-vector states
- Added a 100% uncertainty for the tensor contribution in $a_{\mu}[\bar{\Pi}_{1-12}]$ to protect against the strong cancellation observed between $a_{\mu}[\bar{\Pi}_{1,2}]$ and $a_{\mu}[\bar{\Pi}_{3-12}]$

$$\bullet \ a_{\mu}^{\rm HLbL}\big|_{\rm total} = a_{\mu}^{\rm HLbL}\big|_{\rm disp} + a_{\mu}^{\rm HLbL}\big|_{\rm subleading} + a_{\mu}^{\rm HLbL}\big|_{\rm charm} = 101.9(7.9) \times 10^{-11}$$

Maximilian Zillinger

Anomalous magnetic moment of electron and au lepton

- \bullet Same matching procedure can be applied to electron and τ
- For the electron numerical instabilities arise in the kernel functions $T_i(Q_1,Q_2,\tau,m_\ell)$ entering the master formula for $a_e \to \text{can}$ be solved by appropriate expansion or higher internal precision
- The different masses imply a different scaling of regions in the light-by-light integral
- Most important contribution for ${\it e}$: $P=\pi^0,\eta,\eta'$
- Most important contribution for τ : pQCD and OPE

$$a_e^{\mathrm{HLbL}} = 3.51(23) \times 10^{-14}$$

 $a_{\tau}^{\mathrm{HLbL}} = 3.77(29) \times 10^{-8}$

• Relative precision comes out almost identical for all three leptons:

$$\{7, 8, 8\}\%$$
 for $a_{\ell}^{\text{HLbL}}, \ell \in \{e, \mu, \tau\}$

Tensor mesons in dispersive approach to HLbL

- New basis:

 - $\begin{array}{ll} \bullet \ P,S,A \to \check{\Pi}_i^{\rm new} & \text{no kinematic singularities} \, \checkmark \\ \bullet \ T \to \check{\Pi}_i^{\rm new} & \text{still kinematic singularities!} \end{array}$
- Lorentz decomposition of the amplitude $T \to \gamma^* \gamma^*$ yields 5 form factors

$$M^{\mu\nu\alpha\beta} = \sum_{i=1}^5 T_i^{\mu\nu\alpha\beta} \frac{1}{m_T^{n_i}} \mathcal{F}_i^T(q_1^2, q_2^2)$$

- ullet No kinematic singularities if only $\mathcal{F}_{1,3}^T$ or only $\mathcal{F}_{2,3}^T$ are present
- Dispersive approach for HLbL: tensor mesons included via simple quark model

$$\frac{\mathcal{F}_1^T(q_1^2, q_2^2)}{\mathcal{F}_1^T(0, 0)} = \left(\frac{M_\rho^2}{M_\rho^2 - q_1^2 - q_2^2}\right)^2, \qquad \mathcal{F}_{2,3,4,5}^T(q_1^2, q_2^2) = 0$$

- Simple quark model features:
 - correct normalization
 - correct scaling for asymptotic behavior in doubly-virtual limit
 - realistic mass scale set by M_o

Situation for tensors in WP2

Region		Dispersive	hQCD	Regge	DSE/BSE
$Q_i > Q_0$		$6.2^{+0.2}_{-0.3}$	6.3(7)	4.8(1)	2.3(1.5)
Mixed	A, S, T	3.8(1.5)			
	OPE	10.9(0.8)			
	Effective pole	1.2			
	Sum	15.9(1.7)	13.5(2.4)	12.8(5)	10.1(3.0)
$Q_i < Q_0$	$A = f_1, f'_1, a_1$	12.2(4.3)	13.1(1.5)	10.9(1.0)	8.6(2.6)
	$S = f_0(1370), a_0(1450)$	-0.7(4)			-0.8(3)
	$T = f_2, a_2$	-2.5(8)	2.9(4)		
	Other	2.0	8.0(9)	3.2(6)	2.8(6)
	Sum	11.0(4.4)	24.0(2.8)	14.1(1.2)	10.6(2.7)
Sum		33.2(4.7)	43.8(5.9)	31.7(1.6)	23.0(7.4)

- Difference between dispersive approach and hQCD significant for tensors
- \bullet hQCD states that \mathcal{F}_1^T and \mathcal{F}_3^T appear at a comparably important level
- ightarrow Inclusion of \mathcal{F}_3^T leads to the sign change in the evaluation of tensor mesons

\mathcal{F}_3^T transition form factor

- Questions:
 - What is so special about \mathcal{F}_3^T ?
 - Is it a coincidence that our new basis allows for the evaluation if only \mathcal{F}_1^T and \mathcal{F}_3^T are present?
- ullet \mathcal{F}_3^T does not appear in the on-shell decay rate or helicity fraction

$$\Gamma_{\gamma\gamma} = \frac{\pi\alpha^2 m_T}{5} \left(|\mathcal{F}_1^T(0,0)|^2 + \frac{1}{24} |\mathcal{F}_2^T(0,0)|^2 \right)$$
$$r_h = \frac{|\mathcal{F}_{\lambda=0}^T(0,0)|^2}{|\mathcal{F}_{\lambda=2}^T(0,0)|^2} = \frac{|\mathcal{F}_2^T(0,0)|^2}{24|\mathcal{F}_1^T(0,0)|^2}$$

ullet $\mathcal{F}^T_{4,5}$ contribute to singly-virtual kinematics, but \mathcal{F}^T_3 only contributes to the doubly virtual case where no data are available yet o hard to probe \mathcal{F}^T_3

Resonance χ PT

- In hQCD, leading contribution with respect to $1/N_c$ comes from \mathcal{F}_1^T and \mathcal{F}_3^T
 - $ightarrow \ \mathcal{F}^T_{2,4,5}$ subleading in hQCD

Resonance χ PT

- In hQCD, leading contribution with respect to $1/N_c$ comes from \mathcal{F}_1^T and \mathcal{F}_3^T \to $\mathcal{F}_{2.4.5}^T$ subleading in hQCD
- Can we observe the same in $R\chi T$?
- ullet Use standard counting with symmetric tensor field $T_{\mu
 u}$
- \bullet At LO, the only operator contributing to the process $T \to \gamma^* \gamma^*$ is

$$\mathcal{L}^{(0)} = c_1^{(0)} \langle T_{\mu\nu} \{ u^{\mu}, u^{\nu} \} \rangle$$

- Calculated chiral loops, which generate contributions to all 5 TFFs (\mathcal{F}_1^T UV divergent, the others finite)
- Divergent expression for \mathcal{F}_1^T requires a counter term at NLO:

$$\mathcal{L}^{(1)} = c_1^{(1)} \langle T_{\mu\nu} f^{\mu}_{+\alpha} f^{\nu\alpha}_{+} \rangle$$

 \bullet $\,\mathcal{L}^{(1)}$ only generates a contribution to \mathcal{F}_1^T

Resonance χ PT

- ullet Loops are subdominant and yield too small values for $\Gamma_{\gamma\gamma}$ and r
 - $\Gamma^{\text{loop}}_{\gamma\gamma}(f_2(1270)) = 0.3 \text{ keV}$ $\Gamma_{\gamma\gamma} = 2.6(5) \text{ keV PDG}$ • $r_h^{\text{loop}}(f_2(1270)) = 0.019$ $r_h = 0.095(20) \text{ Dai, Pennington (2014)}$
- \bullet Phenomenological agreement for $\Gamma_{\gamma\gamma}$ can be enforced by means of $c_1^{(1)}$
- At NNLO one can write down 13 additional contact operators which produce contributions to all $\mathcal{F}_i^T \to \operatorname{From} \, \operatorname{R}\chi\operatorname{T}$ perspective in "standard" counting only \mathcal{F}_1^T seems to be special
- ullet Is it possible to construct a minimal basis? Counting ambiguous because of derivatives o see talk by Jonas Mager

The process $\gamma^* \gamma^* \to \pi \pi$

• To improve on the simple quark model we have to go back to this work

Dispersion relations for $\gamma^*\gamma^*\to\pi\pi\colon$ helicity amplitudes, subtractions, and anomalous thresholds

Martin Hoferichter^a and Peter Stoffer^b

- Consider the *D*-wave of $\gamma^* \gamma^* \to \pi \pi$
- The $f_2(1270)$ can be understood as an effect of the $\pi\pi$ final-state rescattering
- Expressions for helicity amplitudes already worked out
- Inclusion of higher left-hand cuts $(V=\rho,\omega)$ necessary to reproduce observed $f_2(1270)$ resonance peak in the on-shell process $\gamma\gamma\to\pi\pi$
- Anomalous thresholds in left-hand cuts can be handled numerically

The process $\gamma^* \gamma^* \to \pi \pi$

Topologies in the Omnès solution

- Off-shell behavior described by pion VFF $F_\pi^V(q^2)$ and vector meson transition form factors $F_{\omega\pi}(q^2)$
- ρ should be described in terms of the full 2π spectral function $\to P$ -wave amplitude $f_1(s,q^2)$ for $\gamma^* \to 3\pi$

Matching of helicity amplitudes onto form factors

• Consider $f_2(1270)$ as a narrow resonance and match expressions for helicity amplitudes $h_{2,i}(s)$ onto the form factors \mathcal{F}_i^T

$$\bullet \ H^{J=2,\pi\pi}_{\lambda_1\lambda_2}(s,z) = (2\cdot 2+1) d^{J=2}_{m0}(z) h_{J=2,\lambda_1\lambda_2}(s)$$

• Matching procedure for helicity amplitudes in the limit $s \to M_{f_2}^2$:

$$iH^{J=2,\pi\pi}_{\lambda_1\lambda_2}(s,z) \qquad = \qquad \qquad \underbrace{\begin{matrix} \gamma^* & \pi \\ M & f_2 \end{matrix}}_{\pi}$$

$$\begin{split} & \lim_{s \to M_{f_2}^2} i H_{\lambda_1 \lambda_2}^{J=2,\pi\pi}(s,z) = \varepsilon_{\mu}^{\lambda_1}(q_1) \varepsilon_{\nu}^{\lambda_2}(q_2) \lim_{s \to M_{f_2}^2} \left(i M^{\mu\nu\alpha\beta}(p,q_1,q_2) \frac{i s_{\alpha\beta\gamma\delta}^T}{s - M_{f_2}^2 + i M_{f_2} \Gamma_{f_2}} i A^{\gamma\delta}(p,p_1,p_2) \right) \\ & \lim_{s \to M_{f_2}^2} \left(\frac{s - M_{f_2}^2 + i M_{f_2} \Gamma_{f_2}}{s - 4 M_{\pi}^2} h_{J=2,\lambda_1 \lambda_2}(s) \right) = \sum_{i=1}^5 C_i(q_1^2,q_2^2,M_{f_2}^2) \mathcal{F}_i^T(q_1^2,q_2^2) \end{split}$$

 \bullet Consistency check: z dependence in $H^{J=2,\pi\pi}_{\lambda_1\lambda_2}(s,z)$ drops out

Modified Omnès representation

$$\begin{split} h_{2,i}(s) &= N_{2,i}(s) + \frac{\Omega_2(s)}{\pi} \bigg\{ \int_{-\infty}^0 ds' \frac{1}{\Omega_2(s')} K_{ij}(s,s') \operatorname{Im} h_{2,j}(s') \\ &+ \int_{4M_\pi^2}^\infty ds' \frac{\sin \delta_2(s')}{|\Omega_2(s')|} K_{ij}(s,s') N_{2,j}(s') \bigg\} \end{split}$$

- $N_{2,i}(s)$: only Born term as inhomogeneity
- Only imaginary part required for higher left hand cuts $V=\rho,\omega$
- $K_{ij}(s,s')$: integration kernels from the full 5×5 D-wave Roy-Steiner system
- The imaginary part manifestly cancels in $\left(\frac{s-M_{f_2}^2+iM_{f_2}\Gamma_{f_2}}{s-4M_\pi^2}h_{J=2,\lambda_1\lambda_2}(s)\right)$ such that form factors $\mathcal{F}_i^T(q_1^2,q_2^2)$ are real in the spacelike region

Narrow-width approximation for $h_{2,i}(s)$

- \bullet Full solution for $\delta_2(s)$ and $\Omega_2(s)$ available, but use narrow-width approximation for the matching to form factors
- ullet Narrow-width approximation for phase shift $\delta_2(s)$ and $\Omega_2(s)$

$$\delta_2(s) = \arctan\left(\frac{M_{f_2}\Gamma_{f_2}}{M_{f_2}^2 - s}\right) + \pi\theta\left(s - M_{f_2}^2\right), \quad \Omega_2(s) = \frac{M_{f_2}^2}{M_{f_2}^2 - s - iM_{f_2}\Gamma_{f_2}}$$

 Phase-shift-dependent fraction in right-hand cut integral reduces to a constant [Stamen et al., Eur.Phys.J.C 83 (2023) 6, 510]

$$\frac{\sin \delta_2(s)}{|\Omega_2(s)|} = \frac{\Gamma_{f_2}}{M_{f_2}}$$

- Poor approximation inside the right-hand cut integral \to stick to full solution or use energy-dependent width $\Gamma_{f_2}(s)$
- \bullet On-shell point $q_1^2=q_2^2=0$ investigated with preliminary result: r_h in the same ballpark as expected from chiral loops
- How robust is the phenomenological extraction of r_h ? New input from BESIII?

Maximilian Zillinger

Summary & Outlook

- ullet Moderate dependence on matching parameters $Q_{
 m match}$ and r
- Effective poles introduced to fulfill SDCs exactly
- Need improvement for TFFs of tensors to reduce the systematic uncertainty
- Introduced matching procedure for helicity amplitudes onto form factors \to Check on-shell point $q_1^2=q_2^2=0$ and compute $\Gamma_{f_2\gamma\gamma}$ as well as the helicity fraction r_h
- Later proceed to doubly-virtual kinematics where input for vector meson transition form factors $F_{V\pi}(q^2)$ is needed and address their asymptotic behavior $F_{V\pi}(Q^2) \sim 1/Q^4$
- Does the correct asymptotic behavior for vector mesons imply the correct asymptotic behavior for tensor TFFs?
- Compare different scenarios for vector meson transition form factors with the available data from BESIII

Appendix

Input for Matching (1): Axial-vector TFFs (VMD)

 \bullet Matrix element for $A \to \gamma^* \gamma^*$

$$\mathcal{M}^{\lambda_1 \lambda_2; \lambda_A} \left(A \to \gamma^* \gamma^* \right) = e^2 \epsilon_{\mu}^{\lambda_1} \epsilon_{\nu}^{\lambda_2} \epsilon_{\alpha}^{\lambda_A} \mathcal{M}^{\mu \nu \alpha} (q_1, q_2)$$

BTT decomposition [Hoferichter, Stoffer JHEP 05 (2020) 159]

$$\mathcal{M}^{\mu\nu\alpha}(q_1,q_2) = \frac{i}{m_A^2} \sum_{i=1}^3 T_i^{\mu\nu\alpha} \mathcal{F}_i(q_1^2,q_2^2)$$

- ullet TFFs free of kinematic singularities and zeros o dispersive treatment
- Experimental constraints analyzed and implemented within a VMD model for $A=f_1(1285)$ [Hoferichter, Kubis, Zanke JHEP 08 (2023) 209]
- Relate $f_1(1420)$ and $a_1(1260)$ via U(3) symmetry
- Inclusion of 3 multiplets for VMD model:
 - (ρ, ρ', ρ'') for isovector part
 - $(\omega, \omega', \omega'')$ and (ϕ, ϕ', ϕ'') for isoscalar part

Input for Matching (1): Axial-vector TFFs (asymptotic)

 Supplement VMD model with asymptotic piece → ensures correct doubly-virtual behavior [Hoferichter, Stoffer JHEP 05 (2020) 159], [Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106]

$$\mathcal{F}_{2}^{\text{asym}}(q_{1}^{2}, q_{2}^{2}) = -F_{A}^{\text{eff}} m_{A}^{3} \frac{\partial}{\partial q_{1}^{2}} \left[\frac{1}{\pi^{2}} \int_{s_{0}}^{\infty} dx \int_{s_{0}}^{\infty} dy \frac{\rho^{\text{asym}}(x, y)}{(x - q_{1}^{2})(y - q_{2}^{2})} \right] + \mathcal{O}(1/q_{i}^{6})$$

$$\rho^{\text{asym}}(x, y) = 3\pi^{2} x y \delta''(x - y)$$

ullet Use linear combination of asymptotic pieces with free parameter lpha to also ensure correct singly virtual behavior

$$\begin{split} \tilde{\mathcal{F}}_{2}^{\text{asym}}(q_{1}^{2},q_{2}^{2}) = & \frac{3F_{A}^{\text{eff}}m_{A}^{3}}{1+\alpha} \left(\int_{s_{0}}^{\infty} dx \left[\frac{q_{2}^{2}x}{(x-q_{1}^{2})^{3}(x-q_{2}^{2})} - \frac{3q_{1}^{2}x}{(x-q_{1}^{2})^{4}(x-q_{2}^{2})} \right] \right. \\ & + \alpha \int_{s_{0}}^{\infty} dx \frac{q_{2}^{2}(x+q_{1}^{2})}{(x-q_{1}^{2})^{3}(x-q_{2}^{2})^{2}} \right) \end{split}$$

- Still correct normalization: $\mathcal{F}_2^{\mathrm{asym}}(0,0)=0$, but can choose α such that $\mathcal{F}_2^{\mathrm{asym}}(q^2,0)=\frac{3F_A^{\mathrm{eff}}m_A^3}{q^4}+\mathcal{O}(1/q^6)$ with correct coefficient
- ullet Later: include mass effects o might be sizeable for axial-vector mesons

Input for Matching (2)

- Input for SDC3 $(Q_1^2 \sim Q_2^2 \sim Q_3^2 \gg \Lambda_{\rm QCD}^2)$
 - Usage of Operator Product Expansion (OPE) with background photon field [Bijnens, Hermansson-Truedsson, Laub, Rodriguez-Sanchez JHEP 04 (2021) 240]
- LO contribution given by massless quark loop
- NLO contribution given by two-loop gluonic correction ($\sim 10\%$ correction to quark loop)

- Gluonic correction requires evaluation of $\alpha_{\rm QCD}(\mu)$
- ullet Exact choice of μ is ambiguous
- Natural scale for avoiding large logarithms in the perturbative series amounts to setting $\mu \sim Q_{\rm match}$

Input for Matching (3)

- Input for SDC2 $(Q_1^2, Q_2^2 \gg Q_3^2, Q_1^2, Q_2^2 \gg \Lambda_{\rm OCD}^2)$
 - Standard OPE or OPE with background photon field can be used

→ see talk by N. Hermansson-Truedsson, [Bijnens et. al. JHEP 02 (2023) 167], [Colangelo et. al. JHEP 03 (2020) 101]

- For standard OPE: q_3, q_4 much smaller than $\hat{q} = \frac{1}{2}(q_1 q_2)$
- Leading term in OPE can be related to VVA correlator (D=3)

$$\Pi_{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \frac{2i}{\hat{q}^2} \epsilon_{\mu\nu\alpha\beta} \hat{q}^{\alpha} \int d^4x d^4y e^{-iq_3x} e^{iq_4y} \langle 0|T\{j_{\lambda}(x)j_{\sigma}(y)j_5^{\beta}(0)\}|0\rangle
= \frac{2}{\hat{g}^2} \epsilon_{\mu\nu\alpha\beta} \hat{q}^{\alpha} W_{\lambda\sigma}^{\beta}(-q_3, q_4)$$

• Lorentz decomposition of $W^{(a)}_{\mu\nu\rho}(q_1,q_2)$ introduces the functions $w^{(a)}_L$ and $w^{(a)}_T$ which at one loop are fixed by the axial anomaly

$$w_L^{(a)}(q_3^2) = \frac{2N_c}{q_3^2}, \qquad w_T^{(a)}(q_3^2) = \frac{w_L^{(a)}(q_3^2)}{2}$$

- In the chiral limit: No perturbative or non-perturbative corrections for $w_L^{(3,8)}(q_3^2)$
- In the chiral limit: No perturbative corrections for $w_{_T}^{(3,8)}(q_3^2)$
- OPE expressions for $\hat{\Pi}_i$ agree well with massless pQCD quark loop in the limit $Q_3^2 \gg \Lambda_{\rm QCD}^2$
- ullet For $Q_3^2 \ll \Lambda_{
 m OCD}^2$ chiral corrections become large o Use CMV model, later full VVA