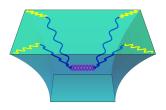
HLbL: Update on hQCD

Jonas Mager

Institute for Theoretical Physics TU Wien, Vienna, Austria

with L. Cappiello, J. Leutgeb and A. Rebhan



Holographic QCD (hQCD) is a class of models of large N_c QCD

Based on gauge gravity duality:

Strongly coupled QFT \leftrightarrow Theories of gravity in higher dimensions

Holographic QCD (hQCD) is a class of models of large N_c QCD

Based on gauge gravity duality:

Strongly coupled QFT \leftrightarrow Theories of gravity in higher dimensions

In the context of HLbL scattering:

- Natural implementation of short-distance constraints in axial sector emphasizing importance of axial-vector mesons
- Quite successful quantitatively with minimal set of parameters and not too model dependent
- Interesting predictions for contributions with large error estimates in conventional approaches

Holographic QCD (hQCD) is a class of models of large N_c QCD

Based on gauge gravity duality:

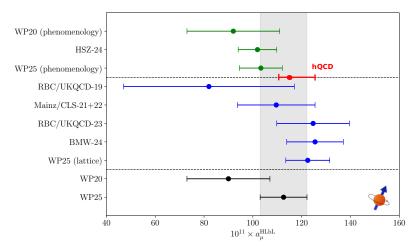
Strongly coupled QFT \leftrightarrow Theories of gravity in higher dimensions

In the context of HLbL scattering:

- Natural implementation of short-distance constraints in axial sector emphasizing importance of axial-vector mesons
- Quite successful quantitatively with minimal set of parameters and not too model dependent
- Interesting predictions for contributions with large error estimates in conventional approaches

WP2: $\sim 400\%$ error for **tensor contribution** of -1×10^{-11}

CLMR 2501.09699, 2501.19293: still underestimated! (tensor effective poles!)



hQCD: completed by negative contribution from pseudoscalar boxes (dispersive)
[Eq. (5.52) in WP2]

Overview of new results since 2024 workshop

- Pseudoscalars and Axial Vectors
 - WP 2025: IR, Mixed and UV breakdown of hQCD results
 - In depth comparison to dispersive results
 - $f_1, f_1' \to e^+e^-$
 - Excited states in Soft Wall models

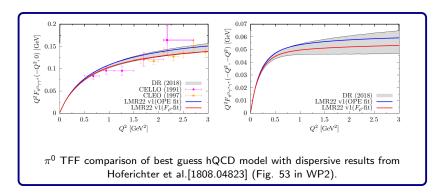
Overview of new results since 2024 workshop

- Pseudoscalars and Axial Vectors
 - WP 2025: IR, Mixed and UV breakdown of hQCD results
 - In depth comparison to dispersive results
 - $f_1, f_1' \to e^+e^-$
 - Excited states in Soft Wall models
- Tensor mesons
 - TFF and nonzero $\mathcal{F}_3^T o$ opposite sign a_μ for groundstate when compared to quark model
 - Excited states: short distance constraints and tensor effective poles
 - $\hat{\Pi}_i$ from model vs. from 4-point kinematic disp. approach
 - hQCD and $R\chi T$

• 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]

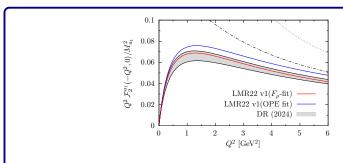
• 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark

[Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]



- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: *a*₁, *a*₁*, ..., TFF asymptotics √, MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]

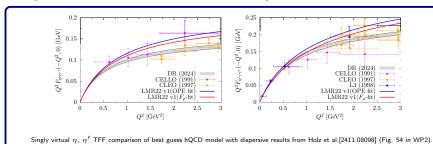
- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: *a*₁, *a*₁*, ..., TFF asymptotics √, MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]



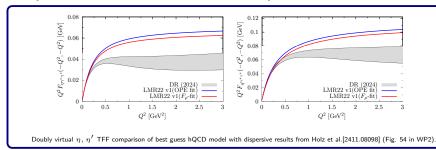
a₁ TFF comparison of best guess hQCD model with dispersive results from Lüdtke et al.[2410.11946] (Fig. 55 in WP2).

- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: *a*₁, *a*₁*, ..., TFF asymptotics ✓, MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]
- 2022-2024: m_s , $U(1)_A$ anomaly, $\eta, \eta', ..., f_1, f'_1, ...$; scalars [LMR 2211.16562, 2411.10432; CCD 2110.05962]

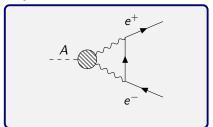
- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: *a*₁, *a*₁*, ..., TFF asymptotics √, MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]
- 2022-2024: m_s , $U(1)_A$ anomaly, $\eta, \eta', ..., f_1, f'_1, ...$; scalars [LMR 2211.16562, 2411.10432; CCD 2110.05962]



- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: *a*₁, *a*₁*, ..., TFF asymptotics √, MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]
- 2022-2024: m_s , $U(1)_A$ anomaly, $\eta, \eta', ..., f_1, f'_1, ...$; scalars [LMR 2211.16562, 2411.10432; CCD 2110.05962]



- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: $a_1, a_1^*, ...$, TFF asymptotics \checkmark , MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]
- 2022-2024: m_s , $U(1)_A$ anomaly, $\eta, \eta', ..., f_1, f_1', ...$; scalars [LMR 2211.16562, 2411.10432; CCD 2110.05962]



Improved f_1, f_1' mixing angles through Superconnections:

$$B_{e^+e^-}^{f_1} = 3.25 \times 10^{-9}$$

$$B_{e^+e^-}^{f_1} = 3.25 \times 10^{-9}$$

 $B_{e^+e^-}^{f_1'} = 1.79 \times 10^{-9}$

(SND:
$$B_{e^+e^-}^{f_1} = 5.1_{-2.7}^{+3.7} \times 10^{-9}$$
)

- 2010, 2019: In chiral limit π^0 , TFF asymptotics \checkmark [Cappiello et al. 1009.1161, Leutgeb et al. 1906.11795]
- 2019-2022: *a*₁, *a*₁*, ..., TFF asymptotics √, MV SDC; massive quarks [LR 1912.01596, CCDGI 1912.02779; LR 2108.12345]
- 2022-2024: m_s , $U(1)_A$ anomaly, $\eta, \eta', ..., f_1, f'_1, ...$; scalars [LMR 2211.16562, 2411.10432; CCD 2110.05962]

2025: IR, mixed and UV splits, tensor mesons

Recap of Pseudoscalars

Using the LMR22(F_{ρ}) model [2212.05547]:*

	Dispersive [WP2]	hQCD
π^0	$63.0^{+2.7}_{-2.1}$	63.4(2.7)
η	14.7(9)	17.6(1.7)
η'	13.5(7)	14.9(2.0)
Sum	$91.2^{+2.9}_{-2.4}$	95.9(3.8)

For pseudoscalars and axial vectors:

Holographic a_μ formula for $\hat{\Pi}_i \equiv \mathsf{Dispersive}$ pole a_μ formula for $\hat{\Pi}_i$

^{*}In units of 10^{-11}

Excited pions

Excited pions in HW models [2108.12345]: $\sum_n a_\mu^{\pi^{*^n}} \simeq (0.8^\dagger \dots 1.8) \times 10^{-11}$

Excited pions

Excited pions in HW models [2108.12345]: $\sum_{n} a_{\mu}^{\pi^{*^{n}}} \simeq (0.8^{\dagger}...1.8) \times 10^{-11}$

†: chiral HW1 model

Soft-wall model [Bari group, 2301.06456 & 2402.07579]: Besides excessive contribution from π^0 ($a_{\mu}^{\pi^0} = 75.2 \times 10^{-11}$) divergent contribution from infinite tower of excited pions: [25xx.xxxxx]

Excited pions

Excited pions in HW models [2108.12345]: $\sum_n a_\mu^{\pi^{*^n}} \simeq (0.8^\dagger \dots 1.8) \times 10^{-11}$

Soft-wall model [Bari group, 2301.06456 & 2402.07579]:

Besides excessive contribution from π^0 ($a_{\mu}^{\pi^0}=75.2\times 10^{-11}$)

divergent contribution from infinite tower of excited pions: [25xx.xxxxx]

	m	$a_{\mu} imes 10^{11}$	m	$a_{\mu} imes 10^{11}$
	2.080	1.706	8.032	0.233
	3.023	0.633	8.536	0.238
	3.821	0.428	9.026	0.244
	4.538	0.329	9.503	0.254
	5.200	0.282	9.967	0.266
	5.820	0.255	10.422	0.279
	6.409	0.241	10.866	0.295
	6.971	0.233	11.302	0.314
	7.511	0.231	11.729	0.334
$ldsymbol{ldsymbol{ldsymbol{eta}}}$		'	1	'

$$\int_{-\infty}^{\infty} a_{\mu}^{\pi^{*^{n}}} = \infty$$

similarly for tower of axials! Therefore excluded from hQCD results for WP2 (could be repaired with scalar-extended CS term and in modified soft-wall-like models)

Axial vectors and SDCs overview

WP 2020 estimate:
$$a_{\mu}^{\mathrm{axials+SDC}} = 21(16) imes 10^{-11}$$

Axial vectors and SDCs overview

WP 2020 estimate:
$$a_{\mu}^{\text{axials+SDC}} = 21(16) \times 10^{-11}$$

hQCD model [LMR22] prediction considerably larger:†

$$a_{\mu}^{\rm axials+MV-SDC+\textit{P}^*} = 32.7^{+3.0}_{-0.0} \times 10^{-11}$$

Axial vectors and SDCs overview

WP 2020 estimate:
$$a_{\mu}^{\text{axials+SDC}} = 21(16) \times 10^{-11}$$

hQCD model [LMR22] prediction considerably larger:†

$$a_{\mu}^{ ext{axials}+ ext{MV-SDC}+P^*}=32.7^{+3.0}_{-0.0} imes10^{-11}$$

Confirmed beautifully by Hoferichter et al. [HSZ 2412.00178 w/o {S,T}_{IR}]:

$$a_{\mu, ext{dispersive}}^{ ext{asials+SDC}+P^*} = 36.4(4.6) imes 10^{-11}$$

[†]Range of models considered in LMR24 around "best-guess" model LMR22(F_{ρ} -fit)

Axials and SDCs

Region	$a_{\mu}^{} imes10^{11}$	$hQCD_{[LMR22(\mathcal{F}_{ ho}-fit)]}$	dispersive[нsz]
IR	a_1	4.2	3.8(7)
	f_1+f_1'	8.9	8.4(1.4)
	AV^*	0.7	
	PS*	1.7	
	eff.poles		2.0
	Sum	15.4	14.2(1.6)
Mixed	a_1	2.4	
	f_1+f_1'	7.1	
	AV^*	1.9	
	PS*	-0.04	
	Sum	11.4^{\dagger}	15.9(1.7)
UV		5.7 [†]	$6.2^{+0.2}_{-0.3}$
IR+Mixed	Sum	26.8	30.1(1.9)

 $^\dagger\colon {11.4 \to 13.5 \atop 5.7 \to 6.3}$ once tensors are included (see below)

 hQCD agrees with light-cone asymptotics of TFFs of pseudoscalars and axials, takes care of MV-SDC, and is consistent with dispersive approach also quantitatively.

- hQCD agrees with light-cone asymptotics of TFFs of pseudoscalars and axials, takes care of MV-SDC, and is consistent with dispersive approach also quantitatively.
 - Amazing agreement in individual subcontributions for the LMR22(F_{ρ}) model ("best-guess" hQCD model) with dispersive approach.

- hQCD agrees with light-cone asymptotics of TFFs of pseudoscalars and axials, takes care of MV-SDC, and is consistent with dispersive approach also quantitatively.
 - Amazing agreement in individual subcontributions for the LMR22(F_{ρ}) model ("best-guess" hQCD model) with dispersive approach.
 - Considering a whole class of hQCD models + $\mathcal{O}(1/N_c)$ corrections $\rightarrow 10-15\%$ variation but still decent match in whole $a_{\mu}^{\text{Axials}+\text{SDC}+P^*}$.

- hQCD agrees with light-cone asymptotics of TFFs of pseudoscalars and axials, takes care of MV-SDC, and is consistent with dispersive approach also quantitatively.
 - Amazing agreement in individual subcontributions for the LMR22(F_{ρ}) model ("best-guess" hQCD model) with dispersive approach.
 - Considering a whole class of hQCD models + $\mathcal{O}(1/N_c)$ corrections $\to 10-15\%$ variation but still decent match in whole $a_{\mu}^{\text{Axials}+\text{SDC}+P^*}$.

But: Discrepancy for **tensors** and *tensor effective poles* w.r.t. Quark Model ansatz as used by HSZ

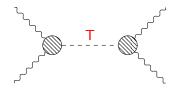
- hQCD agrees with light-cone asymptotics of TFFs of pseudoscalars and axials, takes care of MV-SDC, and is consistent with dispersive approach also quantitatively.
 - Amazing agreement in individual subcontributions for the LMR22(F_{ρ}) model ("best-guess" hQCD model) with dispersive approach.
 - Considering a whole class of hQCD models $+ \mathcal{O}(1/N_c)$ corrections ightarrow 10-15% variation but still decent match in whole $a_{\scriptscriptstyle II}^{\rm Axials+SDC+}P^*$.

But: Discrepancy for **tensors** and *tensor effective poles* w.r.t. Quark Model ansatz as used by HSZ

$$a_{\mu}({
m QM}) = -2.5 + \underline{0}, \quad a_{\mu}({
m hQCD}) = +2.9 + \underline{5.6}$$
 (in units of 10^{-11})

Tensor mesons

$$T = f_2(1270), a_2(1320), f'_2(1430), ...$$



TFF decomposition:

$$\mathcal{M}^{\mu
ulphaeta}(q_1^2,q_2^2) = \sum_{i=1}^5 rac{\mathcal{F}_i^{\,T}(q_1^2,q_2^2)}{m_{\,T}^{n_i}} T_i^{\mu
ulphaeta},$$

Tensor mesons

hQCD describes tensors via metric fluctuations h_{MN} [Katz et al. 0510388]

$$S = -2k_T \int d^5x \sqrt{g} \left(\mathcal{R} + 2\Lambda \right) + \frac{1}{2g_5^2} \operatorname{tr} \int d^5x \sqrt{g} F_{MN} F^{MN}$$

Only 1 new parameter k_T compared to LMR22. Fitted using symmetric LSDC (see later).

Tensor mesons

hQCD describes tensors via metric fluctuations h_{MN} [Katz et al. 0510388]

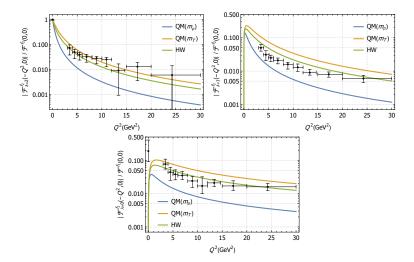
$$S = -2k_T \int d^5x \sqrt{g} \left(\mathcal{R} + 2\Lambda \right) + \frac{1}{2g_5^2} \text{tr} \int d^5x \sqrt{g} F_{MN} F^{MN}$$

Only 1 new parameter k_T compared to LMR22. Fitted using symmetric LSDC (see later). Non-zero \mathcal{F}_{i}^{T} : [CLMR 2501.09699]

$$\begin{split} \mathcal{F}_{1}^{T}(-Q_{1}^{2},-Q_{2}^{2}) &= -m_{T}\frac{1}{g_{5}^{2}}\text{tr}\mathcal{Q}^{2}\int\frac{dz}{z}h_{n}(z)\mathcal{J}(z,Q_{1})\mathcal{J}(z,Q_{2}),\\ \mathcal{F}_{3}^{T}(-Q_{1}^{2},-Q_{2}^{2}) &= -m_{T}^{3}\frac{1}{g_{5}^{2}}\text{tr}\mathcal{Q}^{2}\int\frac{dz}{z}h_{n}(z)\frac{\partial_{z}\mathcal{J}(z,Q_{1})}{Q_{1}^{2}}\frac{\partial_{z}\mathcal{J}(z,Q_{2})}{Q_{2}^{2}}. \end{split}$$

 \mathcal{F}_1^T and \mathcal{F}_3^T originate both from 5d covariant $F_{MN}F^{MN}$. Quark model ansatz (QM) only has nonzero \mathcal{F}_{1}^{T} . Neither QM nor hQCD tensor TFFs reproduce the LC asymptotics

- $m_T = 1235 \text{ MeV (experimentally: } 1275.4(8) \text{ MeV)}$
- $\Gamma_{\gamma\gamma} = 2.3 \text{ keV (experimentally: } 2.65(45) \text{ keV)}$



Nice agreement with singly virtual data but no sensitivity to \mathcal{F}_3^T .

Tensors and g-2 in 4pt. kinematics

$\overline{k_T}$	M_T [GeV]	$Γ_{\gamma\gamma}$ [keV]	IR	Mixed	$a_{\mu} [10^{-11}]$
F_{ρ} fit	1.235	2.3+0.8+0.2	2.93	0.23	3.17
OPE fit	1.235	2.6+0.9+0.2	3.28	0.25	3.55
by $\Gamma_{\gamma\gamma}$	1.2754(8)	2.65(45)	2.28	0.16	2.4(4)
	1.3182(6)	1.01(9)	0.85	0.05	0.9(1)
	1.5173(24)	0.08(2)	0.06	0.003	0.06(2)
	$f_2 + a_2 + f_2'$		3.19	0.21	3.4(4)

For hQCD model at low energies (IR: $Q_i < 1.5 \text{ GeV}$):

$$a_{\mu \ IR}^{f_2+a_2+f_2'}=+2.9(4)\times 10^{-11}$$

Quark model (only $\mathcal{F}_1^T \neq 0$) as in HSZ:

$$a_{\mu \; ext{IR}}^{f_2+a_2+f_2'}[ext{QM}(m_
ho)] = -2.5(8) imes 10^{-11}$$

Excited states and SDCs

hQCD has ∞ number of excited states, similar to Kaluza-Klein theories.

Excited states and SDCs

hQCD has ∞ number of excited states, similar to Kaluza-Klein theories. Excited states crucial in understanding MV and symmetric SDCs:

[Melnikov-Vainshtein 2003], [Bijnens et al. 2019]

$$egin{aligned} \mathcal{C}_{\mathrm{MV}} &= \lim_{Q_3 o \infty} \lim_{Q o \infty} Q^2 Q_3^2 ar{\Pi}_1(Q,Q,Q_3) = -rac{2}{3\pi^2}, \ \mathcal{C}_{\mathrm{sym}} &= \lim_{Q o \infty} Q^4 ar{\Pi}_1(Q,Q,Q) = -rac{4}{9\pi^2}, \end{aligned}$$

Excited states and SDCs

hQCD has ∞ number of excited states, similar to Kaluza-Klein theories. Excited states crucial in understanding MV and symmetric SDCs:

[Melnikov-Vainshtein 2003], [Bijnens et al. 2019]

$$egin{aligned} \mathcal{C}_{\mathrm{MV}} &= \lim_{Q_3 o \infty} \lim_{Q o \infty} Q^2 Q_3^2 ar{\Pi}_1(Q,Q,Q_3) = -rac{2}{3\pi^2}, \ \mathcal{C}_{\mathrm{sym}} &= \lim_{Q o \infty} Q^4 ar{\Pi}_1(Q,Q,Q) = -rac{4}{9\pi^2}, \end{aligned}$$

hQCD axials contribution after resummation (in OPE fit):

$$\begin{split} \mathcal{C}_{\mathrm{MV}}^{A} &= \mathcal{C}_{\mathrm{MV}} \\ \mathcal{C}_{\mathrm{sym}}^{A} &= 0.81 \; \mathcal{C}_{\mathrm{sym}} \end{split}$$

Tensor contributions can be resummed similarly

$$\begin{split} \bar{\Pi}_1(Q,Q,Q_3) &= -\frac{4}{k_T} (\frac{\text{tr} \mathcal{Q}^2}{g_5^2})^2 \iint_0^{z_0} \frac{dzdz'}{zz'} \\ &\times \mathcal{J}(z,Q) \mathcal{J}(z',Q) \frac{\partial_{z'} \mathcal{J}(z',Q_3)}{Q_3^2} \partial_{z'} G(z,z';0). \end{split}$$

Tensor contributions can be resummed similarly

$$\begin{split} \bar{\Pi}_1(Q,Q,Q_3) &= -\frac{4}{k_T} (\frac{\mathrm{tr} Q^2}{g_5^2})^2 \iint_0^{z_0} \frac{dzdz'}{zz'} \\ &\times \mathcal{J}(z,Q) \mathcal{J}(z',Q) \frac{\partial_{z'} \mathcal{J}(z',Q_3)}{Q_3^2} \partial_{z'} G(z,z';0). \end{split}$$

Excited tensors contribute to symmetric SDC but not to MV SDC!

Tensor contributions can be resummed similarly

$$\begin{split} \bar{\Pi}_1(Q,Q,Q_3) &= -\frac{4}{k_T} (\frac{\text{tr} Q^2}{g_5^2})^2 \iint_0^{z_0} \frac{dzdz'}{zz'} \\ &\times \mathcal{J}(z,Q) \mathcal{J}(z',Q) \frac{\partial_{z'} \mathcal{J}(z',Q_3)}{Q_3^2} \partial_{z'} G(z,z';0). \end{split}$$

Excited tensors contribute to symmetric SDC but not to MV SDC!

Fitting k_T s.t. tensors supply missing 19% also yields $\Gamma_{\gamma\gamma}$ in superb agreement with data.

Tensor contributions can be resummed similarly

$$\begin{split} \bar{\Pi}_1(Q,Q,Q_3) &= -\frac{4}{k_T} (\frac{\text{tr} Q^2}{g_5^2})^2 \iint_0^{z_0} \frac{dzdz'}{zz'} \\ &\times \mathcal{J}(z,Q) \mathcal{J}(z',Q) \frac{\partial_{z'} \mathcal{J}(z',Q_3)}{Q_3^2} \partial_{z'} G(z,z';0). \end{split}$$

Excited tensors contribute to symmetric SDC but not to MV SDC!

Fitting k_T s.t. tensors supply missing 19% also yields $\Gamma_{\gamma\gamma}$ in superb agreement with data.

In F_{ρ} fit (best guess), both constraints are satsified at $\sim 90\%$ level in accordance with α_s corrections at large but finite Q.

Transverse SDCs (Preliminary)

Symmetric limit of $\hat{\Pi}_i$ compared to the quark loop (QL):[‡]

$$\lim_{Q\to\infty}Q^{a_i}\hat\Pi_i(Q,Q,Q):$$

î	Α	Τ	A/QL	T/QL	sum
1	-0.03657	-0.00846	81.22	18.78	100 %
4	-0.0061	-0.01144	37.50	70.40	108 %
7	-0.0061	-0.00256	75.00	31.55	107 %
17	+0.0061	+0.00034	59.04	3.33	62 %
39	+0.0183	+0.00769	68.80	28.94	98 %

Tensors improve all transverse SDCs significantly (except $\hat{\Pi}_{17}$).

 $^{^{\}dagger}a_{i} = 4$ for i = 1, 4 and $a_{i} = 6$ else.

Low-energy contributions of whole tower:

$$a_{\mu}^{
m eff.tensor\,poles}|_{
m IR}=5.6(7) imes10^{-11}$$

Low-energy contributions of whole tower:

$$a_{\mu}^{ ext{eff.tensor poles}}|_{ ext{IR}} = 5.6(7) imes 10^{-11}$$

Large compared to contribution from ground state multiplet

$$a_{\mu}^{f_2+a_2+f_2'}|_{\mathsf{IR}} = 2.9(4) \times 10^{-11}$$

Low-energy contributions of whole tower:

$$a_{\mu}^{ ext{eff.tensor poles}}|_{ ext{IR}} = 5.6(7) imes 10^{-11}$$

Large compared to contribution from ground state multiplet

$$a_{\mu}^{f_2+a_2+f_2'}|_{\mathsf{IR}} = 2.9(4) \times 10^{-11}$$

• Excited f_2 in IR $a_{tt} \sim 2.26 \times 10^{-11}$.

Low-energy contributions of whole tower:

$$a_{\mu}^{ ext{eff.tensor poles}}|_{ ext{IR}} = 5.6(7) imes 10^{-11}$$

Large compared to contribution from ground state multiplet

$$a_{\mu}^{f_2+a_2+f_2'}|_{\mathsf{IR}} = 2.9(4) \times 10^{-11}$$

- Excited f_2 in IR $a_{\mu} \sim 2.26 \times 10^{-11}$.
- In model: m=2.2 GeV and $\Gamma_{\gamma\gamma}=0.56$ keV.

Low-energy contributions of whole tower:

$$a_{\mu}^{ ext{eff.tensor poles}}|_{ ext{IR}} = 5.6(7) imes 10^{-11}$$

Large compared to contribution from ground state multiplet

$$a_{\mu}^{f_2+a_2+f_2'}|_{\mathsf{IR}} = 2.9(4) \times 10^{-11}$$

- Excited f_2 in IR $a_{\mu} \sim 2.26 \times 10^{-11}$.
- In model: m=2.2 GeV and $\Gamma_{\gamma\gamma}=0.56$ keV.
- In nature: even lighter $f_2(1565)$ with larger $\Gamma_{\gamma\gamma}=0.7\pm0.14$ keV!

Low-energy contributions of whole tower:

$$a_{\mu}^{ ext{eff.tensor poles}}|_{ ext{IR}} = 5.6(7) imes 10^{-11}$$

Large compared to contribution from ground state multiplet

$$a_{\mu}^{f_2+a_2+f_2'}|_{\mathsf{IR}} = 2.9(4) \times 10^{-11}$$

- Excited f_2 in IR $a_u \sim 2.26 \times 10^{-11}$.
- In model: m=2.2 GeV and $\Gamma_{\gamma\gamma}=0.56$ keV.
- In nature: even lighter $f_2(1565)$ with larger $\Gamma_{\gamma\gamma}=0.7\pm0.14$ keV!

large excited state contributions within 4pt. kinematics dispersive approach plausible!

4pt. dispersive kinematics vs hQCD model a_{μ}

Dispersive reconstruction of $\hat{\Pi}_i$ vs (pole+non-pole) hQCD model $\hat{\Pi}_i$:

M_T [GeV]	$\Gamma_{\gamma\gamma}$ [keV]	$a_{\mu}^{ m pole} \ [10^{-11}]$	$a_{\mu}^{ m full} \ [10^{-11}]$
1.235	2.46	7.43 - 5.12 = 2.31	9.33 - 3.24 = 6.09
2.262	0.60	2.17 + 0.57 = 2.74	1.30 - 0.22 = 1.08
3.280	1.91	0.96 + 0.30 = 1.26	0.54 - 0.11 = 0.43
4.295	0.75	0.42 + 0.14 = 0.56	0.22 - 0.04 = 0.19
5.310	1.75	0.25 + 0.09 = 0.34	0.13 - 0.02 = 0.11
[1.2-5.3]		11.23 - 4.02 = 7.21	11.52 - 3.63 = 7.89
[1.2–10.4]		11.62 - 3.87 = 7.76	11.71 - 3.66 = 8.05
[1.2–10.4] _{IR}		9.72 - 3.60 = 6.12	9.73 - 3.53 = 6.20

Individual contributions reshuffled, overall the same.

 ${\sf a}_{\mu}^{
m full}$ converges faster, bulk of contribution given by first mode already.

[§]KLS value for k_T . Our value of k_T : multiply a_μ by ≈ 1.373 for F_ρ -fit

4pt. dispersive kinematics vs hQCD model a_{μ}

Dispersive reconstruction of $\hat{\Pi}_i$ vs (pole+non-pole) hQCD model $\hat{\Pi}_i$:

M_T [GeV]	$\Gamma_{\gamma\gamma}$ [keV]	$a_{\mu}^{ m pole} \ [10^{-11}]$	$a_{\mu}^{ m full} \ [10^{-11}]$
1.235	2.46	7.43 - 5.12 = 2.31	9.33 - 3.24 = 6.09
2.262	0.60	2.17 + 0.57 = 2.74	1.30 - 0.22 = 1.08
3.280	1.91	0.96 + 0.30 = 1.26	0.54 - 0.11 = 0.43
4.295	0.75	0.42 + 0.14 = 0.56	0.22 - 0.04 = 0.19
5.310	1.75	0.25 + 0.09 = 0.34	0.13 - 0.02 = 0.11
[1.2-5.3]		11.23 - 4.02 = 7.21	11.52 - 3.63 = 7.89
[1.2–10.4]		11.62 - 3.87 = 7.76	11.71 - 3.66 = 8.05
$[1.2-10.4] _{\rm IR}$		9.72 - 3.60 = 6.12	9.73 - 3.53 = 6.20

Individual contributions reshuffled, overall the same.

 a_{μ}^{full} converges faster, bulk of contribution given by first mode already. Reshuffling expected also in 3pt kinematics (See talks by Emilis K. and Maximilian Z.)

 \rightarrow hQCD could be used to compare 3pt. and 4pt. kinematics.

KLS value for k_T . Our value of k_T : multiply a_μ by pprox 1.373 for $F_
ho$ -fit

hQCD can be rewritten as a R χ T with ∞ many resonances and predetermined couplings with the external electromagnetic potential a_{μ} .

hQCD can be rewritten as a R χ T with ∞ many resonances and predetermined couplings with the external electromagnetic potential a_{μ} .

$$S = \sum_{n} S_{\text{Proca}}[V_{\mu}^{n}(x)] + \sum_{n} S_{\text{Fierz-Pauli}}[h_{\mu\nu}^{n}(x)]$$
$$+ \sum_{n} S_{\gamma V}[V_{\mu}^{n}(x), a_{\mu}(x)] + S_{\text{TFF}}[V_{\mu}^{n}(x), a_{\mu}(x), h_{\mu\nu}^{m}(x)]$$

hQCD can be rewritten as a R χ T with ∞ many resonances and predetermined couplings with the external electromagnetic potential a_{μ} .

$$S = \sum_{n} S_{\text{Proca}}[V_{\mu}^{n}(x)] + \sum_{n} S_{\text{Fierz-Pauli}}[h_{\mu\nu}^{n}(x)]$$
$$+ \sum_{n} S_{\gamma V}[V_{\mu}^{n}(x), a_{\mu}(x)] + S_{\text{TFF}}[V_{\mu}^{n}(x), a_{\mu}(x), h_{\mu\nu}^{m}(x)]$$

Mathieu et al. [2005.01617] got nonzero $\mathcal{F}_3^{\mathcal{T}}$ from lowest dim. interaction $\sim h_{\mu\nu}V^{\mu}V^{\nu}$ with $\tilde{\mathcal{S}}_{\gamma V}\sim\int d^4x~a^{\mu}V_{\mu}^n$, but violate gauge invariance.

hQCD can be rewritten as a R χ T with ∞ many resonances and predetermined couplings with the external electromagnetic potential a_{μ} .

$$\begin{split} S &= \sum_{n} S_{\mathsf{Proca}}[V_{\mu}^{n}(x)] + \sum_{n} S_{\mathsf{Fierz-Pauli}}[h_{\mu\nu}^{n}(x)] \\ &+ \sum_{n} S_{\gamma V}[V_{\mu}^{n}(x), \mathbf{a}_{\mu}(\mathbf{x})] + S_{\mathsf{TFF}}[V_{\mu}^{n}(x), \mathbf{a}_{\mu}(\mathbf{x}), h_{\mu\nu}^{m}(\mathbf{x})] \end{split}$$

Mathieu et al. [2005.01617] got nonzero $\mathcal{F}_3^{\mathcal{T}}$ from lowest dim. interaction $\sim h_{\mu\nu}V^{\mu}V^{\nu}$ with $\tilde{S}_{\gamma V}\sim \int d^4x \; \mathsf{a}^{\mu}V_{\mu}^n$, but violate gauge invariance. hQCD avoids these issues by using $S_{\gamma V}\sim \int d^4x\; \mathsf{f}^{\mu\nu}(\partial_{\mu}V_{\nu}^n-\partial_{\nu}V_{\mu}^n)$.

hQCD can be rewritten as a R χ T with ∞ many resonances and predetermined couplings with the external electromagnetic potential a_{μ} .

$$\begin{split} S &= \sum_{n} S_{\mathsf{Proca}}[V_{\mu}^{n}(x)] + \sum_{n} S_{\mathsf{Fierz-Pauli}}[h_{\mu\nu}^{n}(x)] \\ &+ \sum_{n} S_{\gamma V}[V_{\mu}^{n}(x), a_{\mu}(x)] + S_{\mathsf{TFF}}[V_{\mu}^{n}(x), a_{\mu}(x), h_{\mu\nu}^{m}(x)] \end{split}$$

Mathieu et al. [2005.01617] got nonzero \mathcal{F}_3^T from lowest dim. interaction $\sim h_{\mu\nu}V^{\mu}V^{\nu}$ with $\tilde{S}_{\gamma V}\sim \int d^4x \; a^{\mu}V_{\mu}^n$, but violate gauge invariance. hQCD avoids these issues by using $S_{\gamma V}\sim \int d^4x \; f^{\mu\nu}(\partial_{\mu}V_{\nu}^n-\partial_{\nu}V_{\mu}^n)$. There is a field redefinition transforming $S_{\gamma V}\sim \tilde{S}_{\gamma V}$. Then same setup as

There is a field redefinition transforming $S_{\gamma V} \to \tilde{S}_{\gamma V}$. Then same setup as [2005.01617] but still gauge invariant!

Vector mesons can be modeled also with antisymmetric tensor fields $V_{\mu\nu}$. See talk by Emilio E.

On shell:
$$V_{\mu}^{(n)} = \frac{1}{m_n} \partial^{\nu} V_{\nu\mu}^{(n)}$$

Vector mesons can be modeled also with antisymmetric tensor fields $V_{\mu\nu}$. See talk by Emilio E.

On shell:
$$V_{\mu}^{(n)}=rac{1}{m_n}\partial^{
u}V_{
u\mu}^{(n)}$$

Proca fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu}(\mathcal{F}_V)_\mu{}^\alpha(\mathcal{F}_V)_{\nu\alpha} \Longrightarrow \text{ dim. 5}$
- $\mathcal{F}_3^{\mathcal{T}}$ generating interactions $\supset h^{\mu\nu} V_{\mu} V_{\nu}$ \Longrightarrow dim. 3

Antisymmetric fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu}V_{\mu}^{\ \alpha}V_{\nu\alpha}$ \Longrightarrow dim. 3
- \mathcal{F}_3^T generating interactions $\supset h^{\mu\nu}\partial^{\rho}V_{\mu\rho}\partial^{\sigma}V_{\nu\sigma} \implies \text{dim. 5}$

Vector mesons can be modeled also with antisymmetric tensor fields $V_{\mu\nu}$. See talk by Emilio E.

On shell:
$$V_{\mu}^{(n)}=rac{1}{m_n}\partial^{
u}V_{
u\mu}^{(n)}$$

Proca fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu}(\mathcal{F}_V)_\mu{}^\alpha(\mathcal{F}_V)_{\nu\alpha} \Longrightarrow \text{ dim. 5}$
- \mathcal{F}_3^T generating interactions $\supset h^{\mu\nu} V_\mu V_
 u$ \Longrightarrow dim. 3

Antisymmetric fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu} V_\mu{}^\alpha V_{\nu\alpha} \implies \text{dim. } 3$
- \mathcal{F}_3^T generating interactions $\supset h^{\mu\nu}\partial^{\rho}V_{\mu\rho}\partial^{\sigma}V_{\nu\sigma} \implies$ dim. 5

Interpretation of this result:

- ullet $\mathcal{F}_1^{\mathcal{T}}$ and $\mathcal{F}_3^{\mathcal{T}}$ are on same footing at low energy
- Dimension of operator O_i generating \mathcal{F}_i^T depends on model for vector mesons.

Vector mesons can be modeled also with antisymmetric tensor fields $V_{\mu\nu}$. See talk by Emilio E.

On shell:
$$V_{\mu}^{(n)}=rac{1}{m_n}\partial^{
u}V_{
u\mu}^{(n)}$$

Proca fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu}(\mathcal{F}_V)_\mu{}^\alpha(\mathcal{F}_V)_{\nu\alpha} \Longrightarrow \text{ dim. 5}$
- $\mathcal{F}_3^{\mathcal{T}}$ generating interactions $\supset h^{\mu\nu} V_{\mu} V_{\nu}$ \Longrightarrow dim. 3

Antisymmetric fields:

- $\mathcal{F}_{\underline{1}}^T$ generating interactions $\supset h^{\mu\nu} V_{\mu}{}^{\alpha} V_{\nu\alpha} \implies \text{dim. } 3$
- \mathcal{F}_3^T generating interactions $\supset h^{\mu\nu}\partial^{\rho}V_{\mu\rho}\partial^{\sigma}V_{\nu\sigma} \implies$ dim. 5

Interpretation of this result:

- ullet $\mathcal{F}_1^{\mathcal{T}}$ and $\mathcal{F}_3^{\mathcal{T}}$ are on same footing at low energy
- Dimension of operator O_i generating \mathcal{F}_i^T depends on model for vector mesons. Apparent importance is reshuffled!

Vector mesons can be modeled also with antisymmetric tensor fields $V_{\mu\nu}$. See talk by Emilio E.

On shell:
$$V_{\mu}^{(n)}=rac{1}{m_n}\partial^{
u}V_{
u\mu}^{(n)}$$

Proca fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu}(\mathcal{F}_V)_{\mu}{}^{\alpha}(\mathcal{F}_V)_{\nu\alpha} \Longrightarrow \text{ dim. 5}$
- $\mathcal{F}_3^{\mathcal{T}}$ generating interactions $\supset h^{\mu\nu} V_{\mu} V_{\nu}$ \Longrightarrow dim. 3

Antisymmetric fields:

- \mathcal{F}_1^T generating interactions $\supset h^{\mu\nu} V_\mu{}^\alpha V_{\nu\alpha} \implies \text{dim. } 3$
- \mathcal{F}_3^T generating interactions $\supset h^{\mu\nu}\partial^{\rho}V_{\mu\rho}\partial^{\sigma}V_{\nu\sigma} \implies$ dim. 5

Interpretation of this result:

- ullet $\mathcal{F}_1^{\mathcal{T}}$ and $\mathcal{F}_3^{\mathcal{T}}$ are on same footing at low energy
- Dimension of operator O_i generating \mathcal{F}_i^T depends on model for vector mesons. Apparent importance is reshuffled! Not just limited to $\mathcal{F}_1^T, \mathcal{F}_3^T$, or tensor TFFs, it concerns all of R χ T.

Open Issues

Tensor meson implementation in hQCD needs further improvements:

- Flavor multiplets of tensor mesons
- Tensor TFFs not agreeing with LC asymptotics (all 5 TFFs needed!)
- Transverse SDCs much improved, but still incomplete

Conclusions

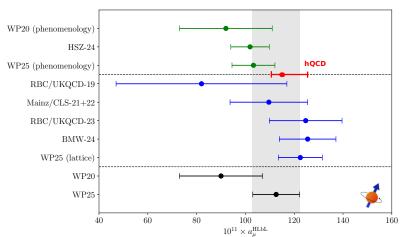
- hQCD in excellent shape wrt. pseudoscalars, axial vectors and SDCs
- ullet Opposite sign a_μ contribution for tensors compared to quark model
- Nonzero \mathcal{F}_3^T responsible for sign flip, but no crosschecks with data possible at present
- Large tensor effective poles plausible in 4pt. kinematics

hQCD prediction for subleading contributions:

$$a_{\mu}^{
m Axials+SDCs+P^*+Tensors+Tensor} = {
m effective\ poles} \sim (33+11) imes 10^{-11}$$
 dispersive [HSZ]: $a_{\mu}^{
m subleading} = (35.7-2.5)(\pm 4.7) imes 10^{-11}$

hQCD prediction for subleading contributions:

a^Axials+SDCs+P*+Tensors+Tensor effective poles
$$\sim (33+11) imes 10^{-11}$$



hQCD: completed by negative contribution from pseudoscalar boxes (dispersive) $\bullet = LMR22(F_o\text{-fit}) + \text{tensor contributions [CLMR25]}$