### Discussion session: data-driven / analytic HLbL

#### Peter Stoffer

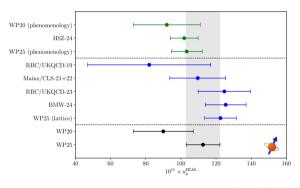
University of Zurich and Paul Scherrer Institut

#### September 12, 2025

8th Plenary workshop of the Muon q-2 Theory Initiative 2025 – IJCLab, Orsay








# 1

### HLbL: current situation and open issues

- HLbL pheno and lattice agree at the  $1.5\sigma$  level
- lattice systematically higher
- hQCD suggests explanation: large tensors and excited states?
  - ightarrow talk by Jonas Mager

 SDCs understood and under good control (both pert./non-pert. corrections) → talk by Hans Bijnens



→ Image: WP25

### HLbL: dispersive approach in four-point kinematics

- → talk by Maximilian Zillinger
- complete evaluation available
- tensor-meson contributions based on quark model and only  $\mathcal{F}_1^T$  TFF,  $\mathcal{F}_{2,3,4,5}^T=0$
- low-energy contributions of matching to SDCs: effective P and A poles in triangle kinematics
- tensor contribution with 100% uncertainty
- uncertainties conservative enough?



### HLbL: dispersive approach in triangle kinematics

→ talks by Emilis Kaziukėnas, Jan-Niklas Toelstede

- offers solution to roadblock for tensor/spin-2 contributions: no kinematic singularities
- more complicated unitarity relations and sub-processes
- dispersive reconstruction in progress  $(f_2 \text{ in NWA and } \pi\pi \text{ rescattering})$
- reshuffling and different matching to SDCs ⇒ get handle on uncertainties

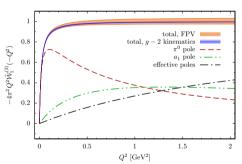
| triangle-DR          | DR in four-point kinematics |            |                      |                                         |          |        |
|----------------------|-----------------------------|------------|----------------------|-----------------------------------------|----------|--------|
|                      | $\pi^0, \eta, \eta'$        | $2\pi$     | S                    | A                                       | T        |        |
| $\pi^0, \eta, \eta'$ | ,30 Ow                      | ×          | ×                    | ×                                       | ×        | ×      |
| $2\pi$               | ×                           | , baow     | ×                    | ×                                       | ×        | ×      |
|                      | , a a a a a                 | bio        | , o a a              | , a a a a                               | ~~       | 340    |
|                      | سطة عر                      | ,pillow    | سطة <del>ا</del> ط,  | ,po å cq,                               | سملهٔ در | ,      |
| V                    | ,3010 om                    | mo otof,   | ,3010 o              | ,3010 om                                | , bolo o | 300    |
|                      | , po   å   ct.,             | ,901 de om | o å d <sub>1,1</sub> | ,p-18-0m                                | , \$ de  | ,#\$ O |
| S                    | ×                           | ×          | ,30 Om               | ×                                       | ×        | ×      |
| A                    | ×                           | ×          | ×                    | ~o.d.                                   | ×        | ×      |
| T                    | ×                           | ×          | ×                    | ×                                       | ~0 of    | ×      |
|                      | 30                          | 3000       | 300                  | ,}o e>                                  | 3000     |        |
|                      |                             | m 3 100    | - 13 da              | , p = = = = = = = = = = = = = = = = = = | - Bar    |        |

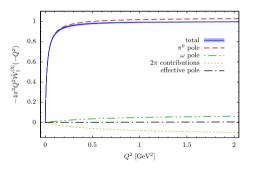
→ Lüdtke, Procura, Stoffer (2023)

#### HLbL: discussion items 1/2

- input for axial-vector meson TFFs? → talk by Hannah Schäfer
- input for tensor-meson TFFs?
  - diverse dispersive approaches → talks by Maximilian Zillinger, Emilis Kaziukėnas, Hannah Schäfer
  - model approaches; limitations of  $R\chi T \rightarrow talks$  by Jonas Mager, Emilio Estrada
  - how to validate results for TFFs? (BL, singly-virtual data,  $\gamma\gamma \to \pi\pi$ )
  - hierarchy  $\mathcal{F}_1^T$ ,  $\mathcal{F}_3^T$  vs rest?
- how to get tensor contribution to  $a_{\mu}$ ?
  - narrow resonances vs rescattering
  - imaginary parts of TFFs for heavy resonances
  - 4pt kinematics: sum-rule ambiguities
  - 3pt kinematics: missing sub-processes
  - reshuffling, assessment of matching uncertainties




#### HLbL: discussion items 2/2


- comparison of lattice and data-driven evaluations
  - lattice definition of pion pole ↔ dispersive pole in 4pt kinematics: obvious?
  - HLbL window quantities?
  - position-space 12-term master formula



## Reshuffling and matching uncertainties: lessons from VVA?

→ Lüdtke, Procura, Stoffer (2025)



