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1 HLbL: current situation

HLbL: current situation and open issues

• HLbL pheno and lattice agree at
the 1.5σ level

• lattice systematically higher

• hQCD suggests explanation:

large tensors and excited states?

→ talk by Jonas Mager

• SDCs understood and under

good control (both pert./non-pert.

corrections) → talk by Hans Bijnens
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Figure 82: Summary of HLbL evaluations, from data-driven methods (green), lattice QCD (blue), and combinations (black). The averages are from
WP20 [1] and WP25, respectively, the other points refer to HSZ-24 [55, 596], RBC/UKQCD-19 [59], Mainz/CLS-21+22 [60, 61], RBC/UKQCD-
23 [62], and BMW-24 [63].

based on data-driven analyses of hadronic e+e� cross-section data. In the meantime lattice-QCD calculations have ma-
tured significantly, allowing for a precise and robust first-principles calculation of the HVP contribution. Two aspects
are particularly important to achieve this. First, the introduction of window observables has proved instrumental for
cross-checking and benchmarking lattice calculations of sub-contributions to HVP with a high level of precision. The
individual windows isolate and separate the di↵erent technical challenges for lattice calculations and allow for tailored
approaches for each window. A diverse set of methods with complementary systematic advantages and disadvantages
employed by the di↵erent lattice-QCD collaborations has led to the consolidation of the individual window contri-
butions one by one. While this process highlights the consistency of the lattice approaches, significant tensions are
observed between lattice and data-driven estimates for the intermediate and long-distance window observables. These
tensions appear to originate from the dominant ⇡+⇡� channel, and would disappear if only CMD-3 data were used.
A second very important development in the lattice community is the broad adoption of blinding procedures to avoid
confirmation bias. This is instrumental in establishing the reliability of the observed consolidation when comparing
independent lattice-QCD results. The review of lattice-QCD results in WP25 is based on seventeen di↵erent papers
from eight independent lattice-QCD collaborations [14–30], including three almost complete lattice calculations of
the entire LO HVP contribution [16, 26, 27]. All available results are combined in various ways, yielding consistent
averages for aHVP, LO

µ —as our final SM prediction of the latter we take the average that includes the maximum num-
ber of independent lattice results from Refs. [14–30]. In summary, our consolidated average of lattice-QCD results
provides a reliable determination of the LO HVP contribution to the SM prediction of aµ.

The hadronic light-by-light (HLbL) contribution was already provided as an average of data-driven and lattice
QCD results in WP20. Since then both data-driven and lattice evaluations have been developed further such that in
this White Paper an update with reduced uncertainty can be provided. At the current level of precision the di↵erent
lattice results as well as the lattice and data-driven average are consistent with each other (the latter two at the level of
1.5�), see Fig. 82.

Adding the LO HVP average from lattice QCD, given in Eq. (3.37), to the NLO and NNLO iterations from e+e�

data, given in Eqs. (2.47) and (2.48), we obtain for the total HVP contribution

aHVP
µ = 7045(61) ⇥ 10�11 . (9.1)

Averaging the data-driven and lattice-QCD evaluations of the HLbL contribution, given in Eqs. (5.69) and (6.34), we
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2 HLbL: dispersive approaches

HLbL: dispersive approach in four-point kinematics

→ talk by Maximilian Zillinger

• complete evaluation available

• tensor-meson contributions based on quark model and only

FT
1 TFF, FT

2,3,4,5 = 0

• low-energy contributions of matching to SDCs: effective P and A poles in

triangle kinematics

• tensor contribution with 100% uncertainty

• uncertainties conservative enough?
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2 HLbL: dispersive approaches

HLbL: dispersive approach in triangle kinematics

→ talks by Emilis Kaziukėnas, Jan-Niklas Toelstede

• offers solution to roadblock for

tensor/spin-2 contributions: no
kinematic singularities

• more complicated unitarity relations

and sub-processes

• dispersive reconstruction in progress

(f2 in NWA and ππ rescattering)

• reshuffling and different matching to

SDCs ⇒ get handle on uncertainties

DR in four-point kinematics

triangle-DR ⇡0, ⌘, ⌘0 2⇡ S A T . . .

⇡0, ⌘, ⌘0 ⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

2⇡

V

S ⇥ ⇥ ⇥ ⇥ ⇥

A ⇥ ⇥ ⇥ ⇥ ⇥

T ⇥ ⇥ ⇥ ⇥ ⇥

. . . . . .

Table 1: Comparison of di↵erent unitarity contributions in the established dispersive approach and the
proposed dispersion relations in triangle kinematics. The soft external photon is denoted by a crossed circle.
The longer dashed line is the primary cut in triangle-kinematics dispersion relations. Cuts through gray
blobs denote even higher intermediate states that need to be covered via the implementation of asymptotic
constraints. Some scalar and tensor resonances correspond to a NWA of two-pion contributions. Depending
on the dispersion relation for the sub-processes, the diagrams in the first row of the V intermediate state
only contribute to normalizations. The light-gray diagrams are already taken into account by implementing
crossing symmetry (which is not shown explicitly), hence these topologies should be excluded in order to
avoid a double counting.

5 Single-particle intermediate states

As shown in Fig. 2 and Tab. 1, the s-channel cut receives single-particle contributions from pseu-

doscalar poles, as well as from resonances in the NWA. The q2
3-channel discontinuity receives

single-particle contributions only in the NWA due to vector-meson resonances.

In Sect. 5.1, we work out the explicit expression for the pion-pole contribution in triangle

kinematics and compare the result to the pion pole in the established dispersion relations in four-

point kinematics. Similar results follow immediately for the other pseudoscalars ⌘ and ⌘0. In Sect. 5.2,

we derive analogous expressions for resonance contributions in the NWA. In Sect. 5.3, we discuss

vector-meson resonances in the q2
3-channel.

– 12 –

→ Lüdtke, Procura, Stoffer (2023)
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3 HLbL: discussion items

HLbL: discussion items 1/2

• input for axial-vector meson TFFs? → talk by Hannah Schäfer

• input for tensor-meson TFFs?
• diverse dispersive approaches → talks by Maximilian Zillinger, Emilis Kaziukėnas, Hannah Schäfer

• model approaches; limitations of RχT → talks by Jonas Mager, Emilio Estrada

• how to validate results for TFFs? (BL, singly-virtual data, γγ → ππ)
• hierarchy FT

1 , FT
3 vs rest?

• how to get tensor contribution to aµ?
• narrow resonances vs rescattering
• imaginary parts of TFFs for heavy resonances
• 4pt kinematics: sum-rule ambiguities
• 3pt kinematics: missing sub-processes
• reshuffling, assessment of matching uncertainties

5



3 HLbL: discussion items

HLbL: discussion items 2/2
• comparison of lattice and data-driven evaluations

• lattice definition of pion pole ↔ dispersive pole in 4pt kinematics: obvious?
• HLbL window quantities?
• position-space 12-term master formula
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4 Reshuffling: VVA example

Reshuffling and matching uncertainties: lessons from VVA?

→ Lüdtke, Procura, Stoffer (2025)
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Figure 15: Individual contributions to W̃(3)
1 in the dispersive framework for fixed photon virtualities.

The orange band shows the uncertainty of the total result, the blue band again shows the result in g � 2
kinematics.

In Fig. 14 we show our solution for di↵erent matching strategies: the orange band shows the result

that we obtain if we do not impose the �PT constraint and implement the asymptotic behavior only

up to O(q�4) by including one e↵ective pole in W̃(3)
2 . The red band is obtained if we implement in

addition the O(q�6) behavior by including a second e↵ective pole, whereas the green band instead

implements the �PT constraint. The blue band is our central result and implements both the

�PT and the O(q�6) behavior by including an e↵ective contribution to the a1 TFF. We find that

for W̃(3)
2 , the dispersive representation alone comes with large uncertainties due to the intricate

cancellation e↵ects between di↵erent hadronic contributions, which however can be well controlled

by making use of low- and high-energy constraints.

In combination with the electron contribution, we obtain the first-family longitudinal and

transverse VVA contributions to aµ

aVVA,L
µ [u, d, e] = �0.892(10) ⇥ 10�11 , aVVA,T

µ [u, d, e] = �1.192(29) ⇥ 10�11 , (8.1)

leading to a total first-family VVA contribution of

aVVA
µ [u, d, e] = �2.08(3) ⇥ 10�11 . (8.2)

Without implementing the �PT and O(q�6) constraints in the transverse function, we would

instead obtain a much larger uncertainty of 0.3 ⇥ 10�11. Therefore, it is the combination of the

dispersive analysis with low- and high-energy constraints that allows us to obtain the result (8.2)

with uncertainties improved by roughly an order of magnitude compared to the model of Ref. [10].

8.2 Dispersive results for fixed photon virtualities

We next consider the dispersion relations for fixed photon virtualities (FPV). In Fig. 15, we show

the result for the longitudinal function W̃(3)
1 . We now split the total into individual contributions

according to the columns of Tab. 2, i.e., the pion pole, axial pole, and the asymptotic matching, which

requires three e↵ective poles in order to match both the �PT constraint and the O(q�4) behavior.

Without imposing the �PT constraint, the normalization comes out smaller in magnitude, but still

compatible with Eq. (6.4). We observe a few important di↵erences to the dispersion relations in g�2

kinematics. First, the pion pole alone is no longer a good approximation of the full longitudinal VVA

– 42 –
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Figure 11: Singly-virtual axial TFF Fa1
2 in the space-like region. The VMD parametrization of Ref. [72] is

shown without an asymptotic contribution that can be used to match the BL limit [40].
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Figure 12: Individual contributions to W̃(3)
1 in the dispersive framework in g � 2 kinematics. The blue

band shows the uncertainty of the total result.

8 Results and first-family VVA contribution to aµ

In the following, we compare the results of the two dispersive approaches, in particular the di↵erence

related to truncation e↵ects as well as the low-energy and asymptotic constraints on VVA and on

the sub-amplitudes. We also compare the dispersive results to the hadronic models discussed in

Sect. 2.5 and provide results for aVVA
µ .

8.1 Dispersive results in g � 2 kinematics

In Fig. 12, we show our central result for the longitudinal VVA function W̃(3)
1 , obtained in the dis-

persive representation in g�2 kinematics. As discussed in Sect. 7.4, the representation automatically

fulfills the low-energy �PT constraint and we implement the asymptotic behavior up to O(q�4) by

including one e↵ective pole. In Fig. 12, we split the contributions to W̃(3)
1 according to the di↵erent

rows in Tab. 2. The pure pion pole dominates the whole function. We observe a partial cancellation

between the small contributions of the isoscalar vector-meson ! and the isovector two-pion state.
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