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The long-distance contribution of QED corrections to the hadronic vacuum polarization is par-
ticularly challenging to compute in lattice QCD+QED. Currently, it is one of the limiting factors
towards matching the precision of the recent result by the Fermilab E989 experiment for the muon
g-2. In this work, we present a method for obtaining high-precision results for this contribution
by reconstructing exclusive finite-volume state contributions. We find relations between the pion-
photon contributions of individual diagrams and demonstrate the reconstruction method with lattice
QCD+QED data at a single lattice spacing of a→1 → 1.73 GeV and mω → 275 MeV.

PACS numbers: 12.38.Gc

I. INTRODUCTION

In the recent whitepaper of the Muon g-2 Theory Initiative [1], lattice QCD+QED calculations have for the first
time been used to provide the standard model result for the hadronic vacuum polarization contribution to the muon
g-2. This has been made possible by a concerted e!ort of the lattice community over the past decade to subdivide the
calculation into individual contributions with specific challenges that are then addressed in a targeted approach. The
calculations are typically organized as an expansion around an isospin symmetric QCD calculation, and correctons
are added to leading order in the fine-structure constant ω = e2/(4ε) as well as the mass di!erence of up- and
down-quarks. The currently available results [2–6] unfortunately do not compute the long distance part of the QED
corrections from first principles but instead either truncate at some distance or replace the long distance part with a
model such as the phenomenological model of Ref. [7].

For the isospin symmetric QCD contribution, the challenges of large statistical noise and finite-volume e!ects at
long distances have recently been successfully addressed by a reconstruction of the long-distance part from a dedicated
study of exclusive finite-volume states [6, 8] completing an e!ort started many years ago that even included a study
of four-pion states [9]. In the current paper, we extend this idea to QCD+QED calculations by providing a method
to reconstruct the long-distance part of the QED corrections to the hadronic vacuum polarization.

In Sec. II, we describe the method and provide a first numerical demonstration in Sec. III for a single lattice spacing
of a↑1 = 1.7312(28) GeV, mω = 274.8(2.5) MeV, mK = 530.1(3.1) MeV with mωL = 3.8 on a 243 → 48→ 24 Mobius
Domain Wall ensemble with Iwasaki gauge action [8, 10]. We use the QEDL [11] but our results directly translate to
other QED regulators with a well-defined transfer matrix such as QEDr [12].

II. METHODOLOGY

A. QCD + QED correlation functions

Let us consider the spectral representation of the light vector-vector correlator G(t) in Euclidean QCD+QED at
second order in the electromagnetic charge e,

G(t) ↑ 1

3

∑

i

↓Vi(t, ϑp = 0)V †
i
(t = 0, ϑp = 0)↔ = G(0)(t) + e2G(2)(t) (1)
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3
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, (2)

where u and d are the up and down quark fields and L3 is the spatial volume. Performing the Wick contractions gives
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(d) (F) (Td) (D1d) (D2d) (D3)

(L) (LT) (LR) (Ld) (LTd)

FIG. 1: QCD + QED diagrams considered in this work. Diagrams related by symmetry are identified by their
common topology. The black dots represent the insertion of an external operator.

with diagrams defined in Fig. 1. Symmetry factors, signs related to fermion loops, and the →ie charge factors are
kept explicit throughout this paper. Suppressing the coordinates, diagram (c) therefore stands for Tr[D→1ωiD→1ωi]
for a fixed value of spatial i. Since the vector currents transform in the three-dimensional Tu

1 representation of the
octahedral symmetry group, each fixed value of spatial i gives the same result. We can therefore equivalently consider
the diagrams to represent the average over the spatial i.

For su!ciently long temporal extents, the correlators can be written in terms of sums over all eigenstates n of the
finite-volume Hamiltonian

G(t) =
∑

n

cne
→Ent =

∑

n
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n
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n
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(0)
n t (4)

with cn = c(0)n +e2c(2)n = |↑0|Vi|n↓|2 and En = E(0)
n +e2E(2)

n . Linear terms in e are absent due to the charge-conjugation
symmetry of the theory. The sum over n is over all states of the QCD+QED system, i.e., it includes ε+ε→ states,
a ϑ state, as well as states with a photon such as ε0ω. States including a photon do not contribute in leading order

and, therefore, must have c(0)n = 0 in this expression. The contribution of the ε0ω state in the second-order diagrams

in e therefore can be written simply as e2c(2)ωε e→E
(0)
ωε t. States that are already present in pure QCD such as the ϑ or

εε states receive a correction to both their amplitude and their energy.
The external vector currents need to be renormalized by multiplying appropriate factors of the vector current

renormalization factor ZV = ZQCD
V
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Two additional powers of ZQCD
V

for the e2 term need to be included if local currents are used to couple to the photons
in the action. We adopt this choice in this work and therefore additional photon tadpole diagrams are absent in Fig. 1.

The amplitudes c(2)n for states that are already present in pure QCD are therefore modified by this renormalization

procedure, however, the energy corrections E(2)
n and the new state amplitudes such as c(2)ωε are well-defined even without

the inclusion of ZQED
V

. Note that additional diagrams to account for shifts of the quark masses need to be included
as well to complete the renormalization of the theory but this is not needed for the long-distance reconstruction
considered in this work.

In order to reconstruct the long-distance behavior of G(2), we need to determine c(2)n and E(0)
n for the new states

including a photon as well as c(0)n , c(2)n , E(0)
n , and E(2)

n for the states already present in pure QCD. This can be achieved
by studying a correlation matrix

Cij = ↑OiO
†
j
↓ , (6)
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3

where one of the operators needs to be Vi and the other operators serve the purpose to project to the states n. In the
pure QCD case such a correlation matrix is then used to solve a generalized eigenvalue problem (GEVP)

C(t) = V Diag(e→E1t, . . . , e→Ent)V † , (7)

C(t)ωvn = e→En(t→t0)C(t0)ωvn (8)

with Vin = →0|Oi|n↑. This is usually studied by considering

C(t)C(t0)
→1 = V Diag(e→E1(t→t0), . . . , e→En(t→t0))V →1 (9)

and solving for the eigenvalues and eigenvectors of this matrix for su!ciently large t and t0.
In the case of QCD+QED calculations, however,

V = V (0) + eV (1) + e2V (2) , (10)

and a perturbative expansion in e using a wise power-counting scheme for the operators Oi may be more e!cient. To
simplify the discussion, we consider only a two-operator system, where the first operator O1 = Vi which serves the
purpose to illustrate the pure QCD sector and O2 = Oωε which should create the lowest-lying pion-gamma state. Our
method extends without loss of generality to the general case with additional multi-pion and pion-photon operators.
In practice, our choice of heavier pion mass for the numerical demonstration in Sec. III makes this two-operator setup
already very e!cient for the long-distance reconstruction of G(2). We discuss the construction of the pion-photon
operators in Sec. II B.

For su!ciently heavy pion mass the long-distance part of the correlator is dominated by two states n = ε and
n = ϑϖ, such that the correlation matrix becomes

C(t) =

(
V1,ϑ V1,ωε

V2,ϑ V2,ωε

)(
e→Eωt 0
0 e→Eεϑt

)(
V ↑
1,ϑ V ↑

2,ϑ

V ↑
1,ωε V ↑
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)
(11)

=
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1,ωεe

→Eεϑt |V2,ϑ|2e→Eωt + |V2,ωε |2e→Eεϑt

)
. (12)

For physical pion mass, two-pion operators and corresponding states need to be added to complete the low-lying
spectrum which dominates the long-distance part of C. For the numerical demonstration provided in Sec. III, the
lowest two states are the ε and the ϑϖ state with smallest relative momentum allowed by the finite volume.

It is convenient to adopt a power-counting in which Oωε is counted as order e, e.g., by multiplying the photon
operator with an explicit power of e. We then find

V =

(
V (0)
1,ϑ + e2V (2)

1,ϑ eV (1)
1,ωε

e2V (2)
2,ϑ eV (1)

2,ωε

)
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and therefore
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(14)

In the present work, we first determine E(0)
ωε and |V (1)

2,ωε | from a fit to C22 before determining |V (1)
1,ωε | from a fit

to C21. With this knowledge, we subtract the ϑϖ contribution from C11 and fit the subtracted correlator to obtain

Re(V (0)
1,ϑ V

2,↑
1,ϑ ) and E(2)

ϑ . Combined with V (0)
1,ϑ and E(0)

ϑ , which can be obtained from a leading-order GEVP study [8],
we can then reconstruct both the new ϑϖ state contribution as well as the QED corrections to the ε state.

Our method also allows for a separation of the pion-gamma contribution or more general of the new states including
a photon such that they can be computed independently from the remainder of the inclusive QED corrections. This
also makes it possible to subtract the QEDL pion-photon contribution and to add it back from an infinite-volume
QED calculation.
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C(t)C(t0)
→1 = V Diag(e→E1(t→t0), . . . , e→En(t→t0))V →1 (9)

and solving for the eigenvalues and eigenvectors of this matrix for su!ciently large t and t0.
In the case of QCD+QED calculations, however,

V = V (0) + eV (1) + e2V (2) , (10)

and a perturbative expansion in e using a wise power-counting scheme for the operators Oi may be more e!cient. To
simplify the discussion, we consider only a two-operator system, where the first operator O1 = Vi which serves the
purpose to illustrate the pure QCD sector and O2 = Oωε which should create the lowest-lying pion-gamma state. Our
method extends without loss of generality to the general case with additional multi-pion and pion-photon operators.
In practice, our choice of heavier pion mass for the numerical demonstration in Sec. III makes this two-operator setup
already very e!cient for the long-distance reconstruction of G(2). We discuss the construction of the pion-photon
operators in Sec. II B.

For su!ciently heavy pion mass the long-distance part of the correlator is dominated by two states n = ε and
n = ϑϖ, such that the correlation matrix becomes

C(t) =

(
V1,ϑ V1,ωε

V2,ϑ V2,ωε

)(
e→Eωt 0
0 e→Eεϑt

)(
V ↑
1,ϑ V ↑

2,ϑ

V ↑
1,ωε V ↑

2,ωε

)
(11)

=

(
|V1,ϑ|2e→Eωt + |V1,ωε |2e→Eεϑt V1,ϑV ↑

2,ϑe
→Eωt + V1,ωεV ↑

2,ωεe
→Eεϑt

V2,ϑV ↑
1,ϑe

→Eωt + V2,ωεV ↑
1,ωεe

→Eεϑt |V2,ϑ|2e→Eωt + |V2,ωε |2e→Eεϑt

)
. (12)

For physical pion mass, two-pion operators and corresponding states need to be added to complete the low-lying
spectrum which dominates the long-distance part of C. For the numerical demonstration provided in Sec. III, the
lowest two states are the ε and the ϑϖ state with smallest relative momentum allowed by the finite volume.

It is convenient to adopt a power-counting in which Oωε is counted as order e, e.g., by multiplying the photon
operator with an explicit power of e. We then find

V =

(
V (0)
1,ϑ + e2V (2)

1,ϑ eV (1)
1,ωε

e2V (2)
2,ϑ eV (1)

2,ωε

)
(13)

and therefore

C(t) =

(
|V (0)

1,ϑ |2e→E
(0)
ω t 0

0 0

)

+ e2
(
(2Re(V (0)

1,ϑ V
(2),↑
1,ϑ )↓ t|V (0)

1,ϑ |2E
(2)
ϑ )e→E

(0)
ω t + |V (1)

1,ωε |2e→E
(0)
εϑ t V (0)

1,ϑ V
(2),↑
2,ϑ e→E

(0)
ω t + V (1)

1,ωεV
(1),↑
2,ωε e→E

(0)
εϑ t

V (2)
2,ϑ V

(0),↑
1,ϑ e→E

(0)
ω t + V (1)

2,ωεV
(1),↑
1,ωε e→E

(0)
εϑ t |V (1)

2,ωε |2e→E
(0)
εϑ t

)
.

(14)

In the present work, we first determine E(0)
ωε and |V (1)

2,ωε | from a fit to C22 before determining |V (1)
1,ωε | from a fit

to C21. With this knowledge, we subtract the ϑϖ contribution from C11 and fit the subtracted correlator to obtain

Re(V (0)
1,ϑ V

2,↑
1,ϑ ) and E(2)

ϑ . Combined with V (0)
1,ϑ and E(0)

ϑ , which can be obtained from a leading-order GEVP study [8],
we can then reconstruct both the new ϑϖ state contribution as well as the QED corrections to the ε state.

Our method also allows for a separation of the pion-gamma contribution or more general of the new states including
a photon such that they can be computed independently from the remainder of the inclusive QED corrections. This
also makes it possible to subtract the QEDL pion-photon contribution and to add it back from an infinite-volume
QED calculation.
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Idea: study larger operator basis that includes operators that project to individual states

Minimal example: vector current and a separate operator for lowest-lying pion-photon state

The correlation matrix

needs new diagrams

Full analysis allows for determination of individual state contributions to G(t).
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B. Pion-photon operators

In this section we discuss the construction of the pion-photon operator for general relative momentum between the
pion and photon for the total system at rest. The construction of a real photon interpolation operator is most straight-
forward in Coulomb gauge in which unphysical longitudinal contributions do not propagate. For ease of combination
with the usual QCD+QED calculation of the hadronic vacuum polarization correlators, we adopt Feynman gauge in
this calculation and benefit from gauge invariance removing the propagation of additional longitudinal states in G(2).
We need to prepare a transverse-polarized photon with momentum ωp combined with a pion state with momentum →ωp
and combine the operators such as to create a three-dimensional operator Oωε,i that transforms in the Tu

1 irreducible
representation of the octahedral group.

We first define a charged pion operator

Oω(t, ωp) =
i↑
L3

∑

ϑx

eiϑxϑpū(x)ε5d(x), (15)

and defer the discussion of the general case to Sec. II C. The photon operator is given by

Ai(t, ωp) =
1↑
L3

∑

ϑx

eiϑxϑpÃi(x) (16)

with photon field Ãi(x) of the QED action. We project to transversal photons by considering

AT

j
(t, ωp) =

(
ϑjm → p̂j p̂m

)
Am(t, ωp) , p̂ =

ωp

|ωp| . (17)

Let H(ωp) be the orbit under the chiral octahedral group with 24 elements of a representative momentum vector ωp
(e.g., choose the representative with the first nonzero component positive). Then there is a unique combination of
the operators defined above that transforms in Tu

1 of the full octahedral group,

Oωε,ϑp,i(t) =
e

2

∑

ϑq→H(ϑp)

([
q̂ ↓ ωAT (t, ωq)

]
i
Oω(t,→ωq) →

[
q̂ ↓ ωAT (t,→ωq)

]
i
Oω(t,+ωq)

)
(18)

=
e

2

∑

ϑq→H(ϑp)

([
q̂ ↓ ωA(t, ωq)

]
i
Oω(t,→ωq) →

[
q̂ ↓ ωA(t,→ωq)

]
i
Oω(t,+ωq)

)
. (19)

We note that the projection to the transversal photon is redundant for this operator. For the smallest allowed
momentum we simply find

Oωε,100,i(t) =
e

2

∑

j,k

ϖijk(Oω(t, ωp = |ωp|êk)Aj(t, ωp = →|ωp|êk)→Oω(t, ωp = →|ωp|êk)Aj(t, ωp = |ωp|êk)) (20)

with |ωp| = 2ϱ/L and unit vector êk in the k direction. We use this operator for Oωε in Sec. III.

C. Isospin decomposition and relations between diagrams

It is instructive to not only consider the physical vector current Vi defined in Eq. (2) with quark charges qu = 2/3
and qd = →1/3 but instead to consider a general isospin decomposition and charge configurations. This will allow
us to isolate the pion-photon contributions of subsets of diagrams and identify relations between the pion-photon
contributions of individual diagrams. We define

Oω(I3=↑1) = iūε5d , Oω(I3=0) =
i↑
2

(
ūε5u→ d̄ε5d

)
, Oω(I3=1) = id̄ε5u , (21)

V j

I=1,I3=↑1 = iūεjd , V j

I=1,I3=0 =
i↑
2

(
ūεju→ d̄εjd

)
, V j

I=1,I3=1 = id̄εju , (22)

V j

I=0 =
i↑
2

(
ūεju+ d̄εjd

)
. (23)
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ūε5u→ d̄ε5d

)
, Oω(I3=1) = id̄ε5u , (21)

V j

I=1,I3=↑1 = iūεjd , V j
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ūεju+ d̄εjd

)
. (23)

Pion-photon operator in finite volume: 

• Needs to transform in  irrep. of octahedral group 

• Here: use Feynman gauge but only couple to transversal photons 
• Photon and pion have fixed back-to-back momentum

Tu
1

Unique operator satisfying these conditions:

with  being the orbit under chiral octahedral group (24 elements) of vector H( ⃗p) ⃗p
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We first consider isospin I = 1 and di!erent charge assignments for the quark QED charges. We begin our investigation
by keeping the sum of charges constant

→VI=1,I3=→1V
†
I=1,I3=→1↑qu=1,qd=1 = (c) + e2 ((D1)↓ 2(D2) + 4(T )↓ 2(S)↓ (V )) , (24)

→VI=1,I3=0V
†
I=1,I3=0↑qu=1,qd=1 = (c) + e2 ((D1)↓ 2(D2) + 4(T )↓ 2(S)↓ (V )) , (25)

→VI=1,I3=→1V
†
I=1,I3=→1↑qu=2,qd=0 = (c) + e2 (2(D1)↓ 2(D2) + 4(T )↓ 4(S)) , (26)

→VI=1,I3=0V
†
I=1,I3=0↑qu=2,qd=0 = (c) + e2 (2(D1)↓ 2(D2) + 4(T )↓ 4(S) + 2(F )↓ 2(V )) (27)

such that the correlators including the pion-photon operator remain identical, i.e.,

→Oω(I3=→1),εV
†
I=1,I3=→1↑qu=1,qd=1 = e2 (↓2i(LT ) + 2i(L)) , (28)

→Oω(I3=0),εV
†
I=1,I3=0↑qu=1,qd=1 = e2 (↓2i(LT ) + 2i(L)) , (29)

→Oω(I3=→1),εV
†
I=1,I3=→1↑qu=2,qd=0 = e2 (↓2i(LT ) + 2i(L)) , (30)

→Oω(I3=0),εV
†
I=1,I3=0↑qu=2,qd=0 = e2 (↓2i(LT ) + 2i(L)) , (31)

→Oω(I3=→1),εO
†
ω(I3=→1),ε↑ = e2(LR) . (32)

From this, we infer that the pion-photon contributions, which only depend on |V (1)
1,ωε |2 determined by the unchanged

pion-photon operator correlators, obey the relations

(F ) = (V ) , 2(S)↓ (D1) = (V ) . (33)

Based on these relations, we could construct correlators in which the pion-photon contribution is absent as has been
done for the hadronic light-by-light contribution’s pion pole [13]. In the present work, however, it is our intention to
reconstruct this contribution instead by studying the enlarged operator basis.

If we let the charges sum to zero instead, the o!-diagonal correlators vanish,

→Oω(I3=→1),εV
†
I=1,I3=→1↑qu=1,qd=→1 = 0 , (34)

→Oω(I3=0),εV
†
I=1,I3=0↑qu=1,qd=→1 = 0 (35)

and

→VI=1,I3=→1V
†
I=1,I3=→1↑qu=1,qd=→1 = (c) + e2 ((D1)↓ 2(S) + (V )) , (36)

→VI=1,I3=0V
†
I=1,I3=0↑qu=1,qd=→1 = (c) + e2 ((D1)↓ 2(S) + 2(F )↓ (V )) . (37)

The pion-photon contributions need to cancel in these linear combinations of diagrams and using Eqs. (33), we see
that this is indeed the case.
Next, we consider the I = 0 case for which an isospin symmetric charge assignment yields

→VI=0V
†
I=0↑qu=1,qd=1 = (c)↓ 2(d) + e2

(
4(T )↓ 8(Td)↓ 2(D1d) + 4(D3) + 4(D2d)↓ 2(D2) + (D1)

+ 2(F )↓ (V )↓ 2(S)
)
, (38)

→Oω(I3=0),εV
†
I=0↑qu=1,qd=1 = 0 (39)

and the pion-photon contribution in the linear combination of diagrams in Eq. (38) needs to vanish.
Combined with Eq. (33) the pion-photon relations can be written as

(F ) = (V ) , 2(S)↓ (D1) = (V ) , 2(T )↓ 4(Td)↓ (D1d) + 2(D3) + 2(D2d)↓ (D2) = 0 . (40)

If we collect the pion photon contribution from diagrams (V), (S), (D1), and (F) in the total hadronic vacuum
polarization contribution given in Eq. (3), we find

↓e2
9

162
((V ) + 2(S)) . (41)

We observe that the pion-photon contribution is strongly suppressed due to a cancellation between the (F), (D1), (S)
and (V) diagrams. To obtain the total contribution of the pion-photon states created by the physical V †

i
, we need

→Oω(I3=0),εV
†↑ = e2

(
↓
↔
2

6
i((LT ) + (Ld)) +

↔
2

3
i(L)

)
. (42)

4

B. Pion-photon operators

In this section we discuss the construction of the pion-photon operator for general relative momentum between the
pion and photon for the total system at rest. The construction of a real photon interpolation operator is most straight-
forward in Coulomb gauge in which unphysical longitudinal contributions do not propagate. For ease of combination
with the usual QCD+QED calculation of the hadronic vacuum polarization correlators, we adopt Feynman gauge in
this calculation and benefit from gauge invariance removing the propagation of additional longitudinal states in G(2).
We need to prepare a transverse-polarized photon with momentum ωp combined with a pion state with momentum →ωp
and combine the operators such as to create a three-dimensional operator Oωε,i that transforms in the Tu

1 irreducible
representation of the octahedral group.

We first define a charged pion operator

Oω(t, ωp) =
i↑
L3

∑

ϑx

eiϑxϑpū(x)ε5d(x), (15)

and defer the discussion of the general case to Sec. II C. The photon operator is given by

Ai(t, ωp) =
1↑
L3

∑

ϑx

eiϑxϑpÃi(x) (16)

with photon field Ãi(x) of the QED action. We project to transversal photons by considering

AT

j
(t, ωp) =

(
ϑjm → p̂j p̂m

)
Am(t, ωp) , p̂ =

ωp

|ωp| . (17)

Let H(ωp) be the orbit under the chiral octahedral group with 24 elements of a representative momentum vector ωp
(e.g., choose the representative with the first nonzero component positive). Then there is a unique combination of
the operators defined above that transforms in Tu

1 of the full octahedral group,

Oωε,ϑp,i(t) =
e

2

∑

ϑq→H(ϑp)

([
q̂ ↓ ωAT (t, ωq)

]
i
Oω(t,→ωq) →

[
q̂ ↓ ωAT (t,→ωq)

]
i
Oω(t,+ωq)

)
(18)

=
e

2

∑

ϑq→H(ϑp)

([
q̂ ↓ ωA(t, ωq)

]
i
Oω(t,→ωq) →

[
q̂ ↓ ωA(t,→ωq)

]
i
Oω(t,+ωq)

)
. (19)

We note that the projection to the transversal photon is redundant for this operator. For the smallest allowed
momentum we simply find

Oωε,100,i(t) =
e

2

∑

j,k

ϖijk(Oω(t, ωp = |ωp|êk)Aj(t, ωp = →|ωp|êk)→Oω(t, ωp = →|ωp|êk)Aj(t, ωp = |ωp|êk)) (20)

with |ωp| = 2ϱ/L and unit vector êk in the k direction. We use this operator for Oωε in Sec. III.

C. Isospin decomposition and relations between diagrams

It is instructive to not only consider the physical vector current Vi defined in Eq. (2) with quark charges qu = 2/3
and qd = →1/3 but instead to consider a general isospin decomposition and charge configurations. This will allow
us to isolate the pion-photon contributions of subsets of diagrams and identify relations between the pion-photon
contributions of individual diagrams. We define

Oω(I3=↑1) = iūε5d , Oω(I3=0) =
i↑
2

(
ūε5u→ d̄ε5d

)
, Oω(I3=1) = id̄ε5u , (21)

V j

I=1,I3=↑1 = iūεjd , V j

I=1,I3=0 =
i↑
2

(
ūεju→ d̄εjd

)
, V j

I=1,I3=1 = id̄εju , (22)

V j

I=0 =
i↑
2

(
ūεju+ d̄εjd

)
. (23)

2

(c) (V) (S) (T) (D1) (D2)
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FIG. 1: QCD + QED diagrams considered in this work. Diagrams related by symmetry are identified by their
common topology. The black dots represent the insertion of an external operator.

with diagrams defined in Fig. 1. Symmetry factors, signs related to fermion loops, and the →ie charge factors are
kept explicit throughout this paper. Suppressing the coordinates, diagram (c) therefore stands for Tr[D→1ωiD→1ωi]
for a fixed value of spatial i. Since the vector currents transform in the three-dimensional Tu

1 representation of the
octahedral symmetry group, each fixed value of spatial i gives the same result. We can therefore equivalently consider
the diagrams to represent the average over the spatial i.

For su!ciently long temporal extents, the correlators can be written in terms of sums over all eigenstates n of the
finite-volume Hamiltonian

G(t) =
∑

n

cne
→Ent =

∑

n

c(0)
n

e→E
(0)
n t + e2

∑

n

(c(2)
n

→ tE(2)
n

c(0)
n

)e→E
(0)
n t (4)

with cn = c(0)n +e2c(2)n = |↑0|Vi|n↓|2 and En = E(0)
n +e2E(2)

n . Linear terms in e are absent due to the charge-conjugation
symmetry of the theory. The sum over n is over all states of the QCD+QED system, i.e., it includes ε+ε→ states,
a ϑ state, as well as states with a photon such as ε0ω. States including a photon do not contribute in leading order

and, therefore, must have c(0)n = 0 in this expression. The contribution of the ε0ω state in the second-order diagrams

in e therefore can be written simply as e2c(2)ωε e→E
(0)
ωε t. States that are already present in pure QCD such as the ϑ or

εε states receive a correction to both their amplitude and their energy.
The external vector currents need to be renormalized by multiplying appropriate factors of the vector current

renormalization factor ZV = ZQCD
V

ZQED
V

. If conserved vector currents are used in the lattice calculation, we have

ZQCD
V

= 1. It is useful to write ZQED
V

= 1 + e2ZQED,(2)
V

such that at second order in e the renormalized correlator is

Gren(t) = Z2
V
G(t) = (ZQCD

V
)2

∑

n

c(0)
n

e→E
(0)
n t + e2(ZQCD

V
)2

∑

n

((c(2)
n

+ 2ZQED,(2)
V

c(0)
n

)→ tE(2)
n

c(0)
n

)e→E
(0)
n t . (5)

Two additional powers of ZQCD
V

for the e2 term need to be included if local currents are used to couple to the photons
in the action. We adopt this choice in this work and therefore additional photon tadpole diagrams are absent in Fig. 1.

The amplitudes c(2)n for states that are already present in pure QCD are therefore modified by this renormalization

procedure, however, the energy corrections E(2)
n and the new state amplitudes such as c(2)ωε are well-defined even without

the inclusion of ZQED
V

. Note that additional diagrams to account for shifts of the quark masses need to be included
as well to complete the renormalization of the theory but this is not needed for the long-distance reconstruction
considered in this work.

In order to reconstruct the long-distance behavior of G(2), we need to determine c(2)n and E(0)
n for the new states

including a photon as well as c(0)n , c(2)n , E(0)
n , and E(2)

n for the states already present in pure QCD. This can be achieved
by studying a correlation matrix

Cij = ↑OiO
†
j
↓ , (6)

It is useful to consider I=0, I=1, and several QED charge assignments separately with

We show in the paper that various versions have the identical pion-photon contribution, which 
allows us to derive relations of the pion-photon contributions between individual diagrams:

5

We first consider isospin I = 1 and di!erent charge assignments for the quark QED charges. We begin our investigation
by keeping the sum of charges constant

→VI=1,I3=→1V
†
I=1,I3=→1↑qu=1,qd=1 = (c) + e2 ((D1)↓ 2(D2) + 4(T )↓ 2(S)↓ (V )) , (24)

→VI=1,I3=0V
†
I=1,I3=0↑qu=1,qd=1 = (c) + e2 ((D1)↓ 2(D2) + 4(T )↓ 2(S)↓ (V )) , (25)

→VI=1,I3=→1V
†
I=1,I3=→1↑qu=2,qd=0 = (c) + e2 (2(D1)↓ 2(D2) + 4(T )↓ 4(S)) , (26)

→VI=1,I3=0V
†
I=1,I3=0↑qu=2,qd=0 = (c) + e2 (2(D1)↓ 2(D2) + 4(T )↓ 4(S) + 2(F )↓ 2(V )) (27)

such that the correlators including the pion-photon operator remain identical, i.e.,

→Oω(I3=→1),εV
†
I=1,I3=→1↑qu=1,qd=1 = e2 (↓2i(LT ) + 2i(L)) , (28)

→Oω(I3=0),εV
†
I=1,I3=0↑qu=1,qd=1 = e2 (↓2i(LT ) + 2i(L)) , (29)

→Oω(I3=→1),εV
†
I=1,I3=→1↑qu=2,qd=0 = e2 (↓2i(LT ) + 2i(L)) , (30)

→Oω(I3=0),εV
†
I=1,I3=0↑qu=2,qd=0 = e2 (↓2i(LT ) + 2i(L)) , (31)

→Oω(I3=→1),εO
†
ω(I3=→1),ε↑ = e2(LR) . (32)

From this, we infer that the pion-photon contributions, which only depend on |V (1)
1,ωε |2 determined by the unchanged

pion-photon operator correlators, obey the relations

(F ) = (V ) , 2(S)↓ (D1) = (V ) . (33)

Based on these relations, we could construct correlators in which the pion-photon contribution is absent as has been
done for the hadronic light-by-light contribution’s pion pole [13]. In the present work, however, it is our intention to
reconstruct this contribution instead by studying the enlarged operator basis.

If we let the charges sum to zero instead, the o!-diagonal correlators vanish,

→Oω(I3=→1),εV
†
I=1,I3=→1↑qu=1,qd=→1 = 0 , (34)

→Oω(I3=0),εV
†
I=1,I3=0↑qu=1,qd=→1 = 0 (35)

and

→VI=1,I3=→1V
†
I=1,I3=→1↑qu=1,qd=→1 = (c) + e2 ((D1)↓ 2(S) + (V )) , (36)

→VI=1,I3=0V
†
I=1,I3=0↑qu=1,qd=→1 = (c) + e2 ((D1)↓ 2(S) + 2(F )↓ (V )) . (37)

The pion-photon contributions need to cancel in these linear combinations of diagrams and using Eqs. (33), we see
that this is indeed the case.
Next, we consider the I = 0 case for which an isospin symmetric charge assignment yields

→VI=0V
†
I=0↑qu=1,qd=1 = (c)↓ 2(d) + e2

(
4(T )↓ 8(Td)↓ 2(D1d) + 4(D3) + 4(D2d)↓ 2(D2) + (D1)

+ 2(F )↓ (V )↓ 2(S)
)
, (38)

→Oω(I3=0),εV
†
I=0↑qu=1,qd=1 = 0 (39)

and the pion-photon contribution in the linear combination of diagrams in Eq. (38) needs to vanish.
Combined with Eq. (33) the pion-photon relations can be written as

(F ) = (V ) , 2(S)↓ (D1) = (V ) , 2(T )↓ 4(Td)↓ (D1d) + 2(D3) + 2(D2d)↓ (D2) = 0 . (40)

If we collect the pion photon contribution from diagrams (V), (S), (D1), and (F) in the total hadronic vacuum
polarization contribution given in Eq. (3), we find

↓e2
9

162
((V ) + 2(S)) . (41)

We observe that the pion-photon contribution is strongly suppressed due to a cancellation between the (F), (D1), (S)
and (V) diagrams. To obtain the total contribution of the pion-photon states created by the physical V †

i
, we need

→Oω(I3=0),εV
†↑ = e2

(
↓
↔
2

6
i((LT ) + (Ld)) +

↔
2

3
i(L)

)
. (42)

Collecting pion-photon contributions to HVP from diagrams (S), (V), (F), (D1) then gives

with a small QED charge pre-factor of 9/162.
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FIG. 2: Analysis of diagram (LR). The left plot shows the e!ective masses separately obtained for the photon and
pion factors of the diagram. The right plot shows the fitted normalization of the pion-photon state with fit range

[t,24].

FIG. 3: Analysis of diagrams (L) and (LT). The diagram (LT) is numerically negligible compared to (L) as shown in
the left plot. On the right side, we show the fitted overlap factors to the ω and εϑ states with fit range [t,24].

III. RESULTS

In this section, we provide a numerical demonstration of our approach. We use data at a single lattice spacing of
a→1 = 1.7312(28) GeV, mω = 274.8(2.5) MeV, mK = 530.1(3.1) MeV with mωL = 3.8 on a 243 → 48 → 24 Mobius
Domain Wall ensemble with Iwasaki gauge action. This corresponds to “ensemble 4” of Refs. [8, 10]. For this pion
mass, the lowest two states are the ω and the εϑ state with lowest relative momentum. We proceed as outlined in
Sec. II.

In Fig. 2, we show results for E(0)
ωε = Eω +Eε and |V (1)

2,ωε | from a fit to C22. With these values fixed, we determine

|V (1)
1,ωε | from a fit to C21 as shown in the right panel of Fig. 3. The left panel of this figure shows the contribution of

the individual diagrams to C21 we note that diagram (LT) is numerically negligible compared to (L).
Using the relations of Eq. 40, we reconstruct the pion-gamma contribution to individual diagrams (V), (S), and (F)

assuming dominance over diagram (D1) for now. In Fig. 4, we compare this reconstruction to the individual diagrams
for a t4 integrand which behaves similarly as the time-momentum representation kernel [14] for the muon g-2. We note
that the combination (V )+2(S), which also appears for the hadronic vacuum polarization 3, is well approximated by
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a→1 = 1.7312(28) GeV, mω = 274.8(2.5) MeV, mK = 530.1(3.1) MeV with mωL = 3.8 on a 243 → 48 → 24 Mobius
Domain Wall ensemble with Iwasaki gauge action. This corresponds to “ensemble 4” of Refs. [8, 10]. For this pion
mass, the lowest two states are the ω and the εϑ state with lowest relative momentum. We proceed as outlined in
Sec. II.

In Fig. 2, we show results for E(0)
ωε = Eω +Eε and |V (1)

2,ωε | from a fit to C22. With these values fixed, we determine

|V (1)
1,ωε | from a fit to C21 as shown in the right panel of Fig. 3. The left panel of this figure shows the contribution of
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FIG. 1: QCD + QED diagrams considered in this work. Diagrams related by symmetry are identified by their
common topology. The black dots represent the insertion of an external operator.

with diagrams defined in Fig. 1. Symmetry factors, signs related to fermion loops, and the →ie charge factors are
kept explicit throughout this paper. Suppressing the coordinates, diagram (c) therefore stands for Tr[D→1ωiD→1ωi]
for a fixed value of spatial i. Since the vector currents transform in the three-dimensional Tu

1 representation of the
octahedral symmetry group, each fixed value of spatial i gives the same result. We can therefore equivalently consider
the diagrams to represent the average over the spatial i.

For su!ciently long temporal extents, the correlators can be written in terms of sums over all eigenstates n of the
finite-volume Hamiltonian

G(t) =
∑

n

cne
→Ent =

∑

n

c(0)
n

e→E
(0)
n t + e2

∑

n

(c(2)
n

→ tE(2)
n

c(0)
n

)e→E
(0)
n t (4)

with cn = c(0)n +e2c(2)n = |↑0|Vi|n↓|2 and En = E(0)
n +e2E(2)

n . Linear terms in e are absent due to the charge-conjugation
symmetry of the theory. The sum over n is over all states of the QCD+QED system, i.e., it includes ε+ε→ states,
a ϑ state, as well as states with a photon such as ε0ω. States including a photon do not contribute in leading order

and, therefore, must have c(0)n = 0 in this expression. The contribution of the ε0ω state in the second-order diagrams

in e therefore can be written simply as e2c(2)ωε e→E
(0)
ωε t. States that are already present in pure QCD such as the ϑ or

εε states receive a correction to both their amplitude and their energy.
The external vector currents need to be renormalized by multiplying appropriate factors of the vector current

renormalization factor ZV = ZQCD
V

ZQED
V

. If conserved vector currents are used in the lattice calculation, we have

ZQCD
V

= 1. It is useful to write ZQED
V

= 1 + e2ZQED,(2)
V

such that at second order in e the renormalized correlator is

Gren(t) = Z2
V
G(t) = (ZQCD

V
)2

∑

n

c(0)
n

e→E
(0)
n t + e2(ZQCD

V
)2

∑

n

((c(2)
n

+ 2ZQED,(2)
V

c(0)
n

)→ tE(2)
n

c(0)
n

)e→E
(0)
n t . (5)

Two additional powers of ZQCD
V

for the e2 term need to be included if local currents are used to couple to the photons
in the action. We adopt this choice in this work and therefore additional photon tadpole diagrams are absent in Fig. 1.

The amplitudes c(2)n for states that are already present in pure QCD are therefore modified by this renormalization

procedure, however, the energy corrections E(2)
n and the new state amplitudes such as c(2)ωε are well-defined even without

the inclusion of ZQED
V

. Note that additional diagrams to account for shifts of the quark masses need to be included
as well to complete the renormalization of the theory but this is not needed for the long-distance reconstruction
considered in this work.

In order to reconstruct the long-distance behavior of G(2), we need to determine c(2)n and E(0)
n for the new states

including a photon as well as c(0)n , c(2)n , E(0)
n , and E(2)

n for the states already present in pure QCD. This can be achieved
by studying a correlation matrix

Cij = ↑OiO
†
j
↓ , (6)

3

where one of the operators needs to be Vi and the other operators serve the purpose to project to the states n. In the
pure QCD case such a correlation matrix is then used to solve a generalized eigenvalue problem (GEVP)

C(t) = V Diag(e→E1t, . . . , e→Ent)V † , (7)

C(t)ωvn = e→En(t→t0)C(t0)ωvn (8)

with Vin = →0|Oi|n↑. This is usually studied by considering

C(t)C(t0)
→1 = V Diag(e→E1(t→t0), . . . , e→En(t→t0))V →1 (9)

and solving for the eigenvalues and eigenvectors of this matrix for su!ciently large t and t0.
In the case of QCD+QED calculations, however,

V = V (0) + eV (1) + e2V (2) , (10)

and a perturbative expansion in e using a wise power-counting scheme for the operators Oi may be more e!cient. To
simplify the discussion, we consider only a two-operator system, where the first operator O1 = Vi which serves the
purpose to illustrate the pure QCD sector and O2 = Oωε which should create the lowest-lying pion-gamma state. Our
method extends without loss of generality to the general case with additional multi-pion and pion-photon operators.
In practice, our choice of heavier pion mass for the numerical demonstration in Sec. III makes this two-operator setup
already very e!cient for the long-distance reconstruction of G(2). We discuss the construction of the pion-photon
operators in Sec. II B.

For su!ciently heavy pion mass the long-distance part of the correlator is dominated by two states n = ε and
n = ϑϖ, such that the correlation matrix becomes

C(t) =

(
V1,ϑ V1,ωε

V2,ϑ V2,ωε

)(
e→Eωt 0
0 e→Eεϑt

)(
V ↑
1,ϑ V ↑

2,ϑ

V ↑
1,ωε V ↑

2,ωε

)
(11)

=

(
|V1,ϑ|2e→Eωt + |V1,ωε |2e→Eεϑt V1,ϑV ↑

2,ϑe
→Eωt + V1,ωεV ↑

2,ωεe
→Eεϑt

V2,ϑV ↑
1,ϑe

→Eωt + V2,ωεV ↑
1,ωεe

→Eεϑt |V2,ϑ|2e→Eωt + |V2,ωε |2e→Eεϑt

)
. (12)

For physical pion mass, two-pion operators and corresponding states need to be added to complete the low-lying
spectrum which dominates the long-distance part of C. For the numerical demonstration provided in Sec. III, the
lowest two states are the ε and the ϑϖ state with smallest relative momentum allowed by the finite volume.

It is convenient to adopt a power-counting in which Oωε is counted as order e, e.g., by multiplying the photon
operator with an explicit power of e. We then find

V =

(
V (0)
1,ϑ + e2V (2)

1,ϑ eV (1)
1,ωε

e2V (2)
2,ϑ eV (1)
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FIG. 2: Analysis of diagram (LR). The left plot shows the e!ective masses separately obtained for the photon and
pion factors of the diagram. The right plot shows the fitted normalization of the pion-photon state with fit range

[t,24].
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FIG. 3: Analysis of diagrams (L) and (LT). The diagram (LT) is numerically negligible compared to (L) as shown in
the left plot. On the right side, we show the fitted overlap factors to the ω and εϑ states with fit range [t,24].

III. RESULTS

In this section, we provide a numerical demonstration of our approach. We use data at a single lattice spacing of
a→1 = 1.7312(28) GeV, mω = 274.8(2.5) MeV, mK = 530.1(3.1) MeV with mωL = 3.8 on a 243 → 48 → 24 Mobius
Domain Wall ensemble with Iwasaki gauge action. This corresponds to “ensemble 4” of Refs. [8, 10]. For this pion
mass, the lowest two states are the ω and the εϑ state with lowest relative momentum. We proceed as outlined in
Sec. II.

In Fig. 2, we show results for E(0)
ωε = Eω +Eε and |V (1)

2,ωε | from a fit to C22. With these values fixed, we determine

|V (1)
1,ωε | from a fit to C21 as shown in the right panel of Fig. 3. The left panel of this figure shows the contribution of

the individual diagrams to C21 we note that diagram (LT) is numerically negligible compared to (L).
Using the relations of Eq. 40, we reconstruct the pion-gamma contribution to individual diagrams (V), (S), and (F)

assuming dominance over diagram (D1) for now. In Fig. 4, we compare this reconstruction to the individual diagrams
for a t4 integrand which behaves similarly as the time-momentum representation kernel [14] for the muon g-2. We note
that the combination (V )+2(S), which also appears for the hadronic vacuum polarization 3, is well approximated by

2

(c) (V) (S) (T) (D1) (D2)

(d) (F) (Td) (D1d) (D2d) (D3)

(L) (LT) (LR) (Ld) (LTd)

FIG. 1: QCD + QED diagrams considered in this work. Diagrams related by symmetry are identified by their
common topology. The black dots represent the insertion of an external operator.

with diagrams defined in Fig. 1. Symmetry factors, signs related to fermion loops, and the →ie charge factors are
kept explicit throughout this paper. Suppressing the coordinates, diagram (c) therefore stands for Tr[D→1ωiD→1ωi]
for a fixed value of spatial i. Since the vector currents transform in the three-dimensional Tu

1 representation of the
octahedral symmetry group, each fixed value of spatial i gives the same result. We can therefore equivalently consider
the diagrams to represent the average over the spatial i.

For su!ciently long temporal extents, the correlators can be written in terms of sums over all eigenstates n of the
finite-volume Hamiltonian

G(t) =
∑

n

cne
→Ent =

∑

n

c(0)
n

e→E
(0)
n t + e2

∑

n

(c(2)
n

→ tE(2)
n

c(0)
n

)e→E
(0)
n t (4)

with cn = c(0)n +e2c(2)n = |↑0|Vi|n↓|2 and En = E(0)
n +e2E(2)

n . Linear terms in e are absent due to the charge-conjugation
symmetry of the theory. The sum over n is over all states of the QCD+QED system, i.e., it includes ε+ε→ states,
a ϑ state, as well as states with a photon such as ε0ω. States including a photon do not contribute in leading order

and, therefore, must have c(0)n = 0 in this expression. The contribution of the ε0ω state in the second-order diagrams

in e therefore can be written simply as e2c(2)ωε e→E
(0)
ωε t. States that are already present in pure QCD such as the ϑ or

εε states receive a correction to both their amplitude and their energy.
The external vector currents need to be renormalized by multiplying appropriate factors of the vector current

renormalization factor ZV = ZQCD
V

ZQED
V

. If conserved vector currents are used in the lattice calculation, we have

ZQCD
V

= 1. It is useful to write ZQED
V

= 1 + e2ZQED,(2)
V

such that at second order in e the renormalized correlator is

Gren(t) = Z2
V
G(t) = (ZQCD

V
)2

∑

n

c(0)
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n t + e2(ZQCD

V
)2

∑
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((c(2)
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+ 2ZQED,(2)
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)→ tE(2)
n

c(0)
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)e→E
(0)
n t . (5)

Two additional powers of ZQCD
V

for the e2 term need to be included if local currents are used to couple to the photons
in the action. We adopt this choice in this work and therefore additional photon tadpole diagrams are absent in Fig. 1.

The amplitudes c(2)n for states that are already present in pure QCD are therefore modified by this renormalization

procedure, however, the energy corrections E(2)
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In the present work, we first determine E(0)
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2,ωε | from a fit to C22 before determining |V (1)
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to C21. With this knowledge, we subtract the ϑϖ contribution from C11 and fit the subtracted correlator to obtain
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ϑ . Combined with V (0)
1,ϑ and E(0)

ϑ , which can be obtained from a leading-order GEVP study [8],
we can then reconstruct both the new ϑϖ state contribution as well as the QED corrections to the ε state.

Our method also allows for a separation of the pion-gamma contribution or more general of the new states including
a photon such that they can be computed independently from the remainder of the inclusive QED corrections. This
also makes it possible to subtract the QEDL pion-photon contribution and to add it back from an infinite-volume
QED calculation.
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FIG. 4: Study of t4 integrand and the ωε reconstruction for diagrams (V), (S), and (F).

the pion-photon state. We note, however, that without performing the vector current renormalization as described in
Sec. II, this comparison is incomplete.
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for the e2 term need to be included if local currents are used to couple to the photons
in the action. We adopt this choice in this work and therefore additional photon tadpole diagrams are absent in Fig. 1.

The amplitudes c(2)n for states that are already present in pure QCD are therefore modified by this renormalization

procedure, however, the energy corrections E(2)
n and the new state amplitudes such as c(2)ωε are well-defined even without
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V

. Note that additional diagrams to account for shifts of the quark masses need to be included
as well to complete the renormalization of the theory but this is not needed for the long-distance reconstruction
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n for the new states
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n for the states already present in pure QCD. This can be achieved
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Next: subtract reconstructed pion-photon contribution 
from G(t) and determine QED corrections to ρ
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where one of the operators needs to be Vi and the other operators serve the purpose to project to the states n. In the
pure QCD case such a correlation matrix is then used to solve a generalized eigenvalue problem (GEVP)

C(t) = V Diag(e→E1t, . . . , e→Ent)V † , (7)

C(t)ωvn = e→En(t→t0)C(t0)ωvn (8)

with Vin = →0|Oi|n↑. This is usually studied by considering

C(t)C(t0)
→1 = V Diag(e→E1(t→t0), . . . , e→En(t→t0))V →1 (9)

and solving for the eigenvalues and eigenvectors of this matrix for su!ciently large t and t0.
In the case of QCD+QED calculations, however,

V = V (0) + eV (1) + e2V (2) , (10)

and a perturbative expansion in e using a wise power-counting scheme for the operators Oi may be more e!cient. To
simplify the discussion, we consider only a two-operator system, where the first operator O1 = Vi which serves the
purpose to illustrate the pure QCD sector and O2 = Oωε which should create the lowest-lying pion-gamma state. Our
method extends without loss of generality to the general case with additional multi-pion and pion-photon operators.
In practice, our choice of heavier pion mass for the numerical demonstration in Sec. III makes this two-operator setup
already very e!cient for the long-distance reconstruction of G(2). We discuss the construction of the pion-photon
operators in Sec. II B.

For su!ciently heavy pion mass the long-distance part of the correlator is dominated by two states n = ε and
n = ϑϖ, such that the correlation matrix becomes
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)
. (12)

For physical pion mass, two-pion operators and corresponding states need to be added to complete the low-lying
spectrum which dominates the long-distance part of C. For the numerical demonstration provided in Sec. III, the
lowest two states are the ε and the ϑϖ state with smallest relative momentum allowed by the finite volume.

It is convenient to adopt a power-counting in which Oωε is counted as order e, e.g., by multiplying the photon
operator with an explicit power of e. We then find
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In the present work, we first determine E(0)
ωε and |V (1)

2,ωε | from a fit to C22 before determining |V (1)
1,ωε | from a fit

to C21. With this knowledge, we subtract the ϑϖ contribution from C11 and fit the subtracted correlator to obtain

Re(V (0)
1,ϑ V

2,↑
1,ϑ ) and E(2)

ϑ . Combined with V (0)
1,ϑ and E(0)

ϑ , which can be obtained from a leading-order GEVP study [8],
we can then reconstruct both the new ϑϖ state contribution as well as the QED corrections to the ε state.

Our method also allows for a separation of the pion-gamma contribution or more general of the new states including
a photon such that they can be computed independently from the remainder of the inclusive QED corrections. This
also makes it possible to subtract the QEDL pion-photon contribution and to add it back from an infinite-volume
QED calculation.
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operators in Sec. II B.

For su!ciently heavy pion mass the long-distance part of the correlator is dominated by two states n = ε and
n = ϑϖ, such that the correlation matrix becomes

C(t) =

(
V1,ϑ V1,ωε

V2,ϑ V2,ωε

)(
e→Eωt 0
0 e→Eεϑt

)(
V ↑
1,ϑ V ↑

2,ϑ

V ↑
1,ωε V ↑

2,ωε

)
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=
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)
. (12)

For physical pion mass, two-pion operators and corresponding states need to be added to complete the low-lying
spectrum which dominates the long-distance part of C. For the numerical demonstration provided in Sec. III, the
lowest two states are the ε and the ϑϖ state with smallest relative momentum allowed by the finite volume.

It is convenient to adopt a power-counting in which Oωε is counted as order e, e.g., by multiplying the photon
operator with an explicit power of e. We then find

V =

(
V (0)
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1,ϑ eV (1)
1,ωε

e2V (2)
2,ϑ eV (1)

2,ωε

)
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and therefore

C(t) =
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0 0
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In the present work, we first determine E(0)
ωε and |V (1)

2,ωε | from a fit to C22 before determining |V (1)
1,ωε | from a fit

to C21. With this knowledge, we subtract the ϑϖ contribution from C11 and fit the subtracted correlator to obtain

Re(V (0)
1,ϑ V

2,↑
1,ϑ ) and E(2)

ϑ . Combined with V (0)
1,ϑ and E(0)

ϑ , which can be obtained from a leading-order GEVP study [8],
we can then reconstruct both the new ϑϖ state contribution as well as the QED corrections to the ε state.

Our method also allows for a separation of the pion-gamma contribution or more general of the new states including
a photon such that they can be computed independently from the remainder of the inclusive QED corrections. This
also makes it possible to subtract the QEDL pion-photon contribution and to add it back from an infinite-volume
QED calculation.
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where one of the operators needs to be Vi and the other operators serve the purpose to project to the states n. In the
pure QCD case such a correlation matrix is then used to solve a generalized eigenvalue problem (GEVP)

C(t) = V Diag(e→E1t, . . . , e→Ent)V † , (7)

C(t)ωvn = e→En(t→t0)C(t0)ωvn (8)

with Vin = →0|Oi|n↑. This is usually studied by considering

C(t)C(t0)
→1 = V Diag(e→E1(t→t0), . . . , e→En(t→t0))V →1 (9)

and solving for the eigenvalues and eigenvectors of this matrix for su!ciently large t and t0.
In the case of QCD+QED calculations, however,

V = V (0) + eV (1) + e2V (2) , (10)

and a perturbative expansion in e using a wise power-counting scheme for the operators Oi may be more e!cient. To
simplify the discussion, we consider only a two-operator system, where the first operator O1 = Vi which serves the
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For physical pion mass, two-pion operators and corresponding states need to be added to complete the low-lying
spectrum which dominates the long-distance part of C. For the numerical demonstration provided in Sec. III, the
lowest two states are the ε and the ϑϖ state with smallest relative momentum allowed by the finite volume.

It is convenient to adopt a power-counting in which Oωε is counted as order e, e.g., by multiplying the photon
operator with an explicit power of e. We then find

V =

(
V (0)
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In the present work, we first determine E(0)
ωε and |V (1)

2,ωε | from a fit to C22 before determining |V (1)
1,ωε | from a fit

to C21. With this knowledge, we subtract the ϑϖ contribution from C11 and fit the subtracted correlator to obtain

Re(V (0)
1,ϑ V

2,↑
1,ϑ ) and E(2)

ϑ . Combined with V (0)
1,ϑ and E(0)

ϑ , which can be obtained from a leading-order GEVP study [8],
we can then reconstruct both the new ϑϖ state contribution as well as the QED corrections to the ε state.

Our method also allows for a separation of the pion-gamma contribution or more general of the new states including
a photon such that they can be computed independently from the remainder of the inclusive QED corrections. This
also makes it possible to subtract the QEDL pion-photon contribution and to add it back from an infinite-volume
QED calculation.

Fits are stable over fit ranges [t/a,24]
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FIG. 6: Full reconstruction for diagrams (V), (S), and (F).

contributions. Our numerical results at approximately twice the physical pion mass demonstrate the potential for
noise reduction of our approach. For the noisy diagram (S), the reduction of uncertainty was observed to be greater
than a factor of five. In future work, we will extend our studies to di!erent photon regulators including a photon in
infinite volume. We will also include our existing data set of multi-pion operators and physical pion mass ensembles.
Finally, we will include the sub-leading diagrams that we have neglected so far.
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FIG. 1: QCD + QED diagrams considered in this work. Diagrams related by symmetry are identified by their
common topology. The black dots represent the insertion of an external operator.

with diagrams defined in Fig. 1. Symmetry factors, signs related to fermion loops, and the →ie charge factors are
kept explicit throughout this paper. Suppressing the coordinates, diagram (c) therefore stands for Tr[D→1ωiD→1ωi]
for a fixed value of spatial i. Since the vector currents transform in the three-dimensional Tu

1 representation of the
octahedral symmetry group, each fixed value of spatial i gives the same result. We can therefore equivalently consider
the diagrams to represent the average over the spatial i.

For su!ciently long temporal extents, the correlators can be written in terms of sums over all eigenstates n of the
finite-volume Hamiltonian

G(t) =
∑

n

cne
→Ent =

∑

n

c(0)
n

e→E
(0)
n t + e2

∑

n

(c(2)
n

→ tE(2)
n

c(0)
n

)e→E
(0)
n t (4)

with cn = c(0)n +e2c(2)n = |↑0|Vi|n↓|2 and En = E(0)
n +e2E(2)

n . Linear terms in e are absent due to the charge-conjugation
symmetry of the theory. The sum over n is over all states of the QCD+QED system, i.e., it includes ε+ε→ states,
a ϑ state, as well as states with a photon such as ε0ω. States including a photon do not contribute in leading order

and, therefore, must have c(0)n = 0 in this expression. The contribution of the ε0ω state in the second-order diagrams

in e therefore can be written simply as e2c(2)ωε e→E
(0)
ωε t. States that are already present in pure QCD such as the ϑ or

εε states receive a correction to both their amplitude and their energy.
The external vector currents need to be renormalized by multiplying appropriate factors of the vector current

renormalization factor ZV = ZQCD
V

ZQED
V

. If conserved vector currents are used in the lattice calculation, we have

ZQCD
V

= 1. It is useful to write ZQED
V

= 1 + e2ZQED,(2)
V

such that at second order in e the renormalized correlator is

Gren(t) = Z2
V
G(t) = (ZQCD

V
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(0)
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((c(2)
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+ 2ZQED,(2)
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c(0)
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)→ tE(2)
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c(0)
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)e→E
(0)
n t . (5)

Two additional powers of ZQCD
V

for the e2 term need to be included if local currents are used to couple to the photons
in the action. We adopt this choice in this work and therefore additional photon tadpole diagrams are absent in Fig. 1.

The amplitudes c(2)n for states that are already present in pure QCD are therefore modified by this renormalization

procedure, however, the energy corrections E(2)
n and the new state amplitudes such as c(2)ωε are well-defined even without

the inclusion of ZQED
V

. Note that additional diagrams to account for shifts of the quark masses need to be included
as well to complete the renormalization of the theory but this is not needed for the long-distance reconstruction
considered in this work.

In order to reconstruct the long-distance behavior of G(2), we need to determine c(2)n and E(0)
n for the new states

including a photon as well as c(0)n , c(2)n , E(0)
n , and E(2)

n for the states already present in pure QCD. This can be achieved
by studying a correlation matrix

Cij = ↑OiO
†
j
↓ , (6)
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FIG. 7: Partial sum of the G(2)(t)t4 integrand that closely resembles the time-momentum kernel for the hadronic
vacuum polarization contribution to the muon g-2.
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Compare noise of long-distance tail with reconstruction to original:

Noise reduction by factor > 5 for noisy (S) diagram! 

Next:  
• extend this analysis to full list of ensembles, all diagrams, blinded analysis with multiple analysis 

groups  
• combination of finite-volume QED with infinite-volume QED result for pion-photon contribution
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