Lattice HVP Discussion Steven Gottlieb, Marina Marinkovic - Overview of the strategies and plans by different collaborations [10'] - RBC: LD QED effects [10'+5'] J. Parrino, C. Lehner - IB with CSS [10'+5'] D. Erb - EM corrections to HVP [15'+5'] V. Biloshytskyi - Discussion [30'] # Input from lattice HVP efforts: - specific goals for the immediate future: what sources of error are you focusing on improving? Their strategy for the long-distance contributions and QED at long distance? [Talk by C. Lehner and J. Parrino] - strategy for scale setting and scheme separation: which setup you intend to use, what is the scale setting precision you expect to achieve? - projections for reducing overall uncertainties and the precision expected over the next 2-3 years: do you have an ultimate precision goal, and, if so, what is it? # **BMW/DMZ summary** ### Scale setting and scheme - Use BMW scheme $(w_0, M_{uu}, M_{dd}, M_{ss})$ - w_0 scale set via f_{π} - lacksquare f_{π} result consistent with M_{Ω} - This was blinded #### BMWc25 (f_{π}) BMWc24 (M_{Ω}) FLAG24 ETM21 (f_{π}) ETM20 (f_{π}) BMWc20 (M_{Ω}) CalLat20 (M_{Ω}) MILC15 (f_{π}) HPQCD13 (f_{π}) 0.173 0.172 0.1740.1690.1700.171 w_0 / fm #### Long distance window - Hybrid approach - All contributions to 1.0–2.8fm window from lattice - Remainder from data-driven - $a_{\mu,10-\infty} = 410.0(3.2)$ #### ETM Collaboration plans for future on a_{μ}^{HVP} - immediate future goals - Leading isospin breaking (LIB) effects via RM123 - valence contributions in progress - electro-unquenched corrections just started - control of Finite Volume effects and long-distance contributions - ullet simulation of a new ensemble at larger linear extent $L\simeq 10.2~{ m fm}$ - measurements on all the ensembles at $L \simeq 7.6 \ \mathrm{fm}$ - taming long-distance statistical errors via deflation methods - isosymmetric QCD scale setting setup - ullet FLAG scheme \longrightarrow lattice spacing accuracy at 0.1% level - WP25 scheme → accuracy level under study (likely a bit worse) - final precision goal not set at the moment, it depends on - accuracy for LIB effects - feasibility MC simulations at very small $a~(< 0.5~{\rm fm})$ - efficiency of multi-level sampling for large t contributions # Aubin, Blum, Golterman, Jin, Moningi, Peris ## Long distance contribution - Continue calculation on MILC 2+1+1 HISQ 144³ x 288, 0.042 fm lattice using AMA, LMA strategy (HH+HL+LL decomposition of connected light quark correlation function. H=high, L=Low) - Implement HL ("rest-eigen") machine learning strategy developed with Mainz group [arXiv: 2502.10237] (possibly on other ensembles too) - Precision goal: sub-percent on connected light quark contribution ## Fermilab/HPQCD/MILC HVP Summary - Determination of HVP LO to ~1% precision (upcoming paper) - LD contributions: light, strange, charm, disc., SIB (conn. and disc.), QED (conn valence) - Focused on improving uncertainty from statistical noise in LD tail (correlator recon. with cross-checks), continuum limit (new data), and disc. and iso-breaking contributions (new precision analyses) - Lattice determination of conn valence QED effects (SD, W, and LD): chiral continuum extrapolation of light contribution from $(3/5/7)m_p$, physical-mass extrapolation of strange contribution - Scale setting and separation scheme - New determination of w_0 (fm) (4 per mil) and M_O (\leq 2 per mil with aM_O^{-1}) scales - Separation scheme from FLAG24 - \circ Analysis variations with f_{π} scale and TI scheme performed for comparison purposes - Ongoing data generation aimed at ~5 per mil precision - Large volume (L ~ 11 fm) at a ~ 0.09 fm - Light-quark conn. statistics at a ~ 0.042 fm - Disc. at a ~ 0.06 fm - Two-pion for a < 0.15 fm ¹ This precision for a~0.04 fm in progress ## MAINZ/CLS COMPUTATION OF $a_{\mu}^{ m hvp}$ - Main sources of uncertainty for a_{μ}^{hvp} : - Statistical uncertainties in the long-distance regime. - Continuum extrapolation in the long-distance regime. - Isospin breaking effects: Including the full set of diagrams. #### Scales and schemes - ightharpoonup Currently work with f_{π} and $f_K o FLAG$ scheme might be an option for isoQCD. - ▶ Derivatives with respect to f_{π} , f_{K} , m_{π} , m_{K} are published. - ► We work on computing isospin-breaking effects in the baryon octet and decuplet. - \blacktriangleright We see large cutoff effects in $(a_{\mu}^{\mathrm{hvp}})^{\mathrm{LD}}$ when using w_0 as intermediate scale. - \blacksquare Desirable to arrive at 0.5% precision in the long-term future. ## RBC/UKQCD plans - Last complete published result for HVP QCD+QED had total uncertainty of 19×10^{-10} (PRL121(2018)022003) - Target: 1.5×10^{-10} to match Fermilab E989 - Largest uncertainty was in light-quark connected long-distance contribution which we have reduced now to 5×10^{-10} in PRL134(2025)201901 - Light-quark short-distance and intermediate-distance windows in isospin symmetric limit are already at target precision (PRD108(2023)054507, PRD111(2025)114517) - Current focus reducing uncertainties to target precision of: QED/SIB corrections, I=0 contributions (see talk by Julian Parrino); goal is to finish this by early 2026 - So far, used RBC/UKQCD14 hadronic scheme (pion, kaon, Omega baryon masses) and BMW20 scheme (pion, ss*, w0); in future will include also WP25 scheme - QED corrections to Omega mass were already calculated in electroquenched approximation in PRL121(2018)022003, currently extending to all diagrams - Particular challenge for QED long-distance: employ a exclusive finite-volume state reconstruction just put out as a preprint (arXiv:2508.21685), see talk by Christoph Lehner - HVP from hadronic au decay program: method paper to appear this month, see talk by Mattia Bruno - Generate new $128^3 \times 288$ ensemble at $a^{-1} = 3.5$ GeV, $m_{\pi} = 135$ MeV, $m_{\pi} L = 4.9$ right now; will allow for reduction of long-distance light-quark connected contribution uncertainty to target uncertainty over the next years #### Discussion session: RC* Collaboration Future Plans #### 1. Immediate plans regarding HVP - extend U-spin HVP study (Altherr et al., 2506.19770) with scaling in L (and a) - "isospin-violating" correlator $a_{\mu}^{\mathrm{HVP},38}$ à la Mainz (arXiv:2505.24344) - $ightharpoonup { m cross-check}$ at $m_\pi = 400\,{ m MeV}$ with full QCD+QED - → computation of disconnected diagrams in dynamical QCD+QED - employ multigrid LMA for long-distance (R. Gruber et al., arXiv:2412.06347) #### 2. Scheme and scale setting - next-generation QCD+QED configurations $m_\pi \to 300 \, { m MeV}$ retain CLS-type scheme - new baryon spectrum computations, focus on Ω_{-} (S. Rosso et al., arXiv:2502.03961) Many theoretical developments still taking place for C^{\star} bcs and $N_{\rm f}=1+1+1+1$ in renormalization and FV effects which will have wider impact than HVP # Lattice HVP discussion - Overview of the strategies and plans by different collaborations [10'] - RBC: LD QED effects [10'+5'] J. Parrino, C. Lehner - IB with CSS [10'+5'] D. Erb - EM corrections to HVP [15'+5'] V. Biloshytskyi - Discussion [30']