Lattice HVP Discussion

Steven Gottlieb, Marina Marinkovic

- Overview of the strategies and plans by different collaborations [10']
- RBC: LD QED effects [10'+5'] J. Parrino, C. Lehner
- IB with CSS [10'+5'] D. Erb
- EM corrections to HVP [15'+5'] V. Biloshytskyi
- Discussion [30']

Input from lattice HVP efforts:

- specific goals for the immediate future: what sources
 of error are you focusing on improving? Their strategy for
 the long-distance contributions and QED at long
 distance? [Talk by C. Lehner and J. Parrino]
- strategy for scale setting and scheme separation: which setup you intend to use, what is the scale setting precision you expect to achieve?
- projections for reducing overall uncertainties and the precision expected over the next 2-3 years: do you have an ultimate precision goal, and, if so, what is it?

BMW/DMZ summary

Scale setting and scheme

- Use BMW scheme $(w_0, M_{uu}, M_{dd}, M_{ss})$
- w_0 scale set via f_{π}
- lacksquare f_{π} result consistent with M_{Ω}
- This was blinded

BMWc25 (f_{π}) BMWc24 (M_{Ω}) FLAG24 ETM21 (f_{π}) ETM20 (f_{π}) BMWc20 (M_{Ω}) CalLat20 (M_{Ω}) MILC15 (f_{π}) HPQCD13 (f_{π}) 0.173 0.172 0.1740.1690.1700.171 w_0 / fm

Long distance window

- Hybrid approach
- All contributions to 1.0–2.8fm window from lattice
- Remainder from data-driven
- $a_{\mu,10-\infty} = 410.0(3.2)$

ETM Collaboration plans for future on a_{μ}^{HVP}

- immediate future goals
 - Leading isospin breaking (LIB) effects via RM123
 - valence contributions in progress

- electro-unquenched corrections just started
- control of Finite Volume effects and long-distance contributions
 - ullet simulation of a new ensemble at larger linear extent $L\simeq 10.2~{
 m fm}$
 - measurements on all the ensembles at $L \simeq 7.6 \ \mathrm{fm}$
- taming long-distance statistical errors via deflation methods
- isosymmetric QCD scale setting setup
 - ullet FLAG scheme \longrightarrow lattice spacing accuracy at 0.1% level
 - WP25 scheme → accuracy level under study (likely a bit worse)
- final precision goal not set at the moment, it depends on
 - accuracy for LIB effects
 - feasibility MC simulations at very small $a~(< 0.5~{\rm fm})$
 - efficiency of multi-level sampling for large t contributions

Aubin, Blum, Golterman, Jin, Moningi, Peris

Long distance contribution

- Continue calculation on MILC 2+1+1 HISQ 144³ x 288, 0.042 fm lattice using AMA, LMA strategy (HH+HL+LL decomposition of connected light quark correlation function. H=high, L=Low)
- Implement HL ("rest-eigen") machine learning strategy developed with Mainz group [arXiv: 2502.10237] (possibly on other ensembles too)
- Precision goal: sub-percent on connected light quark contribution

Fermilab/HPQCD/MILC HVP Summary

- Determination of HVP LO to ~1% precision (upcoming paper)
 - LD contributions: light, strange, charm, disc., SIB (conn. and disc.), QED (conn valence)
 - Focused on improving uncertainty from statistical noise in LD tail (correlator recon. with cross-checks),
 continuum limit (new data), and disc. and iso-breaking contributions (new precision analyses)
 - Lattice determination of conn valence QED effects (SD, W, and LD): chiral continuum extrapolation of light contribution from $(3/5/7)m_p$, physical-mass extrapolation of strange contribution
- Scale setting and separation scheme
 - New determination of w_0 (fm) (4 per mil) and M_O (\leq 2 per mil with aM_O^{-1}) scales
 - Separation scheme from FLAG24
 - \circ Analysis variations with f_{π} scale and TI scheme performed for comparison purposes
- Ongoing data generation aimed at ~5 per mil precision
 - Large volume (L ~ 11 fm) at a ~ 0.09 fm
 - Light-quark conn. statistics at a ~ 0.042 fm
 - Disc. at a ~ 0.06 fm
 - Two-pion for a < 0.15 fm

¹ This precision for a~0.04 fm in progress

MAINZ/CLS COMPUTATION OF $a_{\mu}^{ m hvp}$

- Main sources of uncertainty for a_{μ}^{hvp} :
 - Statistical uncertainties in the long-distance regime.
 - Continuum extrapolation in the long-distance regime.
 - Isospin breaking effects: Including the full set of diagrams.

Scales and schemes

- ightharpoonup Currently work with f_{π} and $f_K o FLAG$ scheme might be an option for isoQCD.
- ▶ Derivatives with respect to f_{π} , f_{K} , m_{π} , m_{K} are published.
- ► We work on computing isospin-breaking effects in the baryon octet and decuplet.
- \blacktriangleright We see large cutoff effects in $(a_{\mu}^{\mathrm{hvp}})^{\mathrm{LD}}$ when using w_0 as intermediate scale.
- \blacksquare Desirable to arrive at 0.5% precision in the long-term future.

RBC/UKQCD plans

- Last complete published result for HVP QCD+QED had total uncertainty of 19×10^{-10} (PRL121(2018)022003)
- Target: 1.5×10^{-10} to match Fermilab E989
- Largest uncertainty was in light-quark connected long-distance contribution which we have reduced now to 5×10^{-10} in PRL134(2025)201901
- Light-quark short-distance and intermediate-distance windows in isospin symmetric limit are already at target precision (PRD108(2023)054507, PRD111(2025)114517)
- Current focus reducing uncertainties to target precision of: QED/SIB corrections, I=0 contributions (see talk by Julian Parrino); goal is to finish this by early 2026
- So far, used RBC/UKQCD14 hadronic scheme (pion, kaon, Omega baryon masses) and BMW20 scheme (pion, ss*, w0); in future will include also WP25 scheme
- QED corrections to Omega mass were already calculated in electroquenched approximation in PRL121(2018)022003, currently extending to all diagrams
- Particular challenge for QED long-distance: employ a exclusive finite-volume state reconstruction just put out as a preprint (arXiv:2508.21685), see talk by Christoph Lehner
- HVP from hadronic au decay program: method paper to appear this month, see talk by Mattia Bruno
- Generate new $128^3 \times 288$ ensemble at $a^{-1} = 3.5$ GeV, $m_{\pi} = 135$ MeV, $m_{\pi} L = 4.9$ right now; will allow for reduction of long-distance light-quark connected contribution uncertainty to target uncertainty over the next years

Discussion session: RC* Collaboration Future Plans

1. Immediate plans regarding HVP

- extend U-spin HVP study (Altherr et al., 2506.19770) with scaling in L (and a)
- "isospin-violating" correlator $a_{\mu}^{\mathrm{HVP},38}$ à la Mainz (arXiv:2505.24344)
 - $ightharpoonup {
 m cross-check}$ at $m_\pi = 400\,{
 m MeV}$ with full QCD+QED
 - → computation of disconnected diagrams in dynamical QCD+QED
- employ multigrid LMA for long-distance (R. Gruber et al., arXiv:2412.06347)

2. Scheme and scale setting

- next-generation QCD+QED configurations $m_\pi \to 300 \, {
 m MeV}$ retain CLS-type scheme
- new baryon spectrum computations, focus on Ω_{-} (S. Rosso et al., arXiv:2502.03961)

Many theoretical developments still taking place for C^{\star} bcs and $N_{\rm f}=1+1+1+1$ in renormalization and FV effects which will have wider impact than HVP

Lattice HVP discussion

- Overview of the strategies and plans by different collaborations [10']
- RBC: LD QED effects [10'+5'] J. Parrino, C. Lehner
- IB with CSS [10'+5'] D. Erb
- EM corrections to HVP [15'+5'] V. Biloshytskyi
- Discussion [30']