Measurement of the Singly Virtual Transition Form Factor of the $f_1(1285)$ in a Partial Wave Analysis at BESIII

Jan Muskalla*, Christoph F. Redmer & Achim Denig on behalf of the BESIII collaboration Johannes Gutenberg-University Mainz, *jan.muskalla@uni-mainz.de Eighth Plenary Workshop of the Muon g-2 Theory Initiative, Orsay 2025

Hadronic Light-by-Light Scattering (HLbL)

- Large relative uncertainty for data-driven HLbL contribution to a_{μ}^{SM}
- Axial-vector mesons contribute to a large part to the uncertainty [2]
- Transition form factor (TFF)
 measurements of two-photon coupling
 to axial-vectors needed [1]
- TFFs depend on momentum transfer Q^2
- BESIII is perfectly suited for singly virtual TFF measurements in the low Q^2 range

Contribution to a_{μ}^{HLbL} [2] [10 ⁻¹¹]	
PS-poles	$91.2^{+2.9}_{-2.4}$
π , K -box	-16.4 ± 0.2
S-waves	-9.1 ± 1.0
Short-distance	$6.2^{+0.2}_{-0.3}$
Mixed regime	15.9 ± 1.7
Long-distance	12.5 ± 5.9
NLO charm	3 ± 1
Total HLbL	103.3 ± 8.8

The Axial-Vector Meson $f_1(1285)$

Two-photon production cross section measured in:

$$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma^{*}\gamma$$
, $\gamma^{*}\gamma \rightarrow f_{1}(1285) \rightarrow \eta\pi^{+}\pi^{-}$

- Two-photon production of $J^{PC} = 1^{++}$ state
- → At least one virtual photon needed (Landau–Yang theorem) [5]
- Different helicity configurations due to polarization of the photons: Longitudinal (L) or Transversal (T)
- In the single virtual case, the $\gamma^* \gamma \to \eta \pi^+ \pi^-$ amplitude only contains the independent LT and TT TFFs [8]

The BESIII Experiment

- Located at the Beijing Electron Positron Collider II (BEPCII)
- Energies between 2.0 GeV $<\sqrt{s}$ < 5.0 GeV
- Covers 93 % of the full solid angle
- Data set: 20.2 fb⁻¹ at $\sqrt{s} = 3.773$ GeV [3]

Muon Chambers

Superconducting Magnet

Electromagnetic Calorimeter

Time of Flight System

Multilayer Drift Chamber

Analysis Strategy

Single-Tag technique:

One detected e^{\pm}

 \rightarrow virtual photon with high Q_{tag}^2

One missing e^{\mp}

 \rightarrow quasi real photon with low Q_{miss}^2

Event selection:

- PID for π^+ , π^- , e_{tag}^\pm and require ≥ 2 photons for η
- 2C kinematic fit with all $\gamma\gamma$ -combinations and missing e^\pm
- Conditions for $\chi^2_{2C} < 50$ and $Q^2_{\rm miss} < 0.04~{\rm GeV}^2$

Detector

Partial Wave Analysis of $\gamma^* \gamma \rightarrow \eta \pi^+ \pi^-$

Two intermediate states in decay to $\pi^+\pi^-\eta$:

- $f_1(1285) \to a_0^{\pm}(980)\pi^{\mp} \to \eta\pi^{+}\pi^{-}(38 \pm 4 \%)$ [6]
- $f_1(1285) \to \eta f_0(500) \to \eta \pi^+ \pi^- (14 \pm 4\%)$ [6]
- Each channel has LT and TT contributions

Interferences between $a_0^+\pi^-$ and $a_0^-\pi^+$ and between $a_0^\pm(980)\pi^\mp$ and $\eta f_0(500)$ intermediate states:

- Dedicated $\gamma^* \gamma \to \eta \pi^+ \pi^-$ amplitude [8] in new HadroTOPS generator and partial wave analysis framework AmpTools
- → Simulation and fit of interferences (in LT and TT) possible

Parametrization:

- $f_1(1285)$ and $a_0(980)$ parametrized as Breit-Wigner with energy-dependent width, considering all branching ratios
- $f_0(500)$ parametrized as s-wave isospin I=0 Omnes function
- \rightarrow Mass and width measurements of $f_1(1285)$ and $a_0(980)$ possible

Form Factor Measurement

- Form factor measurement in range $0.1 \text{ GeV}^2 < Q_{\text{tag}}^2 < 5.0 \text{ GeV}^2$
- Singly virtual LT and TT transition form factors ($Q_{\rm miss}^2 \approx 0$)
- Fit with quark model TFF to compare to previous measurements
- Direct fit in Q_{tag}^2 bins in PWA

Goal: Direct measurement of $F^{LT}_{f_1\gamma^*\gamma}(Q^2_{\mathrm{tag}},Q^2_{\mathrm{miss}})$ and $F^{TT}_{f_1\gamma^*\gamma}(Q^2_{\mathrm{tag}},Q^2_{\mathrm{miss}})$ distribution with PWA

References:

[1] JHEP 07 (2021) 106

[3] arXiv:2406.05827

[1] JHEP 07 (2021) 106 [2] arXiv:2505.21476 [hep-ph] (WP25)

[4] Nucl.Instrum.Meth.A 614 (2010) 345-399

- [5] Phys. Rev. 77, 242
- [6] Phys. Rev. D 110, 030001 (Particle Data Group 2024)
- [7] Comput.Phys.Commun. 185 (2014) 236-243
- [8] *Phys.Rev.D* 110 (2024) 9, 094043