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Motivation

One way of computing the leading order hadronic vacuum polarization (HVP) contribution
to (g — 2), is by its Mellin-Barnes representation [1]:
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The poles of the integrand in (1) stem from both F(s) and
MHVP(s) and lie on the real axis of the complex s-plane (see
fig. 1). Closing the contour at infinity to the right or left and Figure 1: Poles of the integrand of (1)
using Cauchy’s residue theorem allows for the derivation N the complex plane and the two con-
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and m, — oo. used for small (large) m,.

In their recent work [2], D. Greynat and E. de Rafael show
that &7'¥F(m,) can be reconstructed on its entire domain based on its behavior in a limited

range of m,. To achieve this, they apply the FO-transfer-theorem' by P. Flajolet and A.

Odlyzko [3,4] to these asymptotic expansions of a7VF(m,).

To adapt to the notation in [2], we define
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The authors suggest the following [2]: A(w) can be computed in an optimal w-region for
lattice QCD and then reconstructed at w(m2™®) = —0.12184(1) [5] via the approximants:
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g1... k are to be fixed by a curve fit.

The goal of our work is to investigate the feasibility of this suggestion.

! A(w) admits a Taylor expansion > ngnw" for w € (—1,1). The FO-transfer-theorem tells us that the behavior of A(w) near its dominant singularities at the boundary of the
convergence disk (w = 4-1) governs the asymptotic growth of the coefficients g, as n — oo. By subtracting from A(w) a series >, g,f‘sw” = A%9(w) with matching large-n behavior,
the remainder has rapidly decaying coefficients and can be effectively approximated by a rational function. Note: the coefficients g,‘,‘s also depend on the HVP moments MHVP(—n).

Phenomenological model

We model ST1(t) by a single Breit-Wigner peak (upper left of fig. 2) meant to mimic the
| = 1 channel of o(e*te~ — hadrons) and transform it to a model of the electromagnetic
correlator in Euclidean time by the Laplace transform [6]:

G’ (xp) = % / ds /s ﬂéz) g Vshal, (6)
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We generate mock lattice data for G*?(xy) by assuming var(Gr’(xy)) < e 2™ * and
cov(G**(xo), G’ (x})) oc @M X=Xl (upper right of fig. 2).

Noise from the long-distance tail dominates the uncertainty of .V /='(m,); increasing m,
reduces sensitivity to this noise, making large m,, preferable for lattice calculations.
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Figure 2: Upper left: The model of the HVP function? from [2]. Upper Right: Integrand of &//V"-"="(m,) (+ fig. 3, right panel). Lower
left: Fit® of A/=3.K=4M=3.L=1(,) with input data at unphysically large m,. Lower right: Relative uncertainty of a7V"'<'(m,) for direct

evaluation (gray) vs the described reconstruction from input data (orange).

We compute A(w) from the mock data for eight values of m, € [0.36,4.8] GeV and use
this input to reconstruct A(w) in the region —1 < w < 1 using functions (5). One resulting
function® and its uncertainty are displayed in fig. 2.

2To maximize the analogy with the next section, we remove the kaon contribution from 3T1(s) since G8 has N; = 2. This requires a negligible modification to the model in [2].

3We fit the input data to a variety of models A’M-(w)) where labels J and K refers to the number of parameters in (5). In addition, we also test different, asymptotically equivalent

singular functions A$™(w), which we label by M and L.

Application to ensemble w/ O(a)-improved Wilson action

Next, we apply the method for the same eight values of m, € [0.36, 4.8] GeV as before
on measurements of G"(xo) = —% i | dPx (J(x)JL(0)) with (unimproved) / = 1 current
Ji(X) = % (Oy,u — dv,d) performed on the ensemble G8 by CLS [7]:

Nf V b a[fm] my [MeV] m, - L Ncnfg Nsrc/Ncnfg BC
2 128 x 643 | 5.3 0.068 185 42 | 173 256 periodic
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Figure 3: Left: The electromagnetic correlator of the ensemble G8 by CLS. In the long distance region, the noisy raw correlator can be
replaced by a single exponential G”(xy > 1.6 fm) oc €™ *. Right: The integrand of aV"-'="(m,) for G8 at physical and unphysical m,,.

To combine the many possible fit functions?, we apply the Akaike Information Criterion
(AIC) and weight the results by w = e2AIC. To propagate statistical uncertainties, we use
the python library pyerrors [8]. Results at mb™® are displayed in fig. 4.
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Figure 4: A number of functions A™-(w) to reconstruct a¥"'="(m,) (top) and their result at mi™® (bottom). On the right their
weighted mean is compared to integrating over the blue or brown data in fig. 3. For the orange value (C) only functions with a relative
uncertainty below 8% were considered. For the turquoise result (D) functions with a relative uncertainty up to 10% were included.

Table 1: Comparison of different calculations of a7V '='(m,)

(359 + 34y - 1010

direct evaluation at mb™* - single exponential tail | (411 + 11g) - 1071°

reconstruction - weighted mean of ) (404 = 13411 & 25y5 [1410t]) - 10710
(397 = 310t = 17575 [35101]) - 10~1°

direct evaluation at mb™® - raw correlator

reconstruction - weighted mean of () and ::

Remarks:

» ASM9(w) depends on time moments Go; = [ dxoxZ G(xo) for each 1 < j < L+ 1. These
are long distance observables, regardless on m,. However, their precise determination
does not seem to affect the picture in fig. 4 significantly. The above results are obtained
using Gy, from GZ;(xo) with single exponential tail (—— in fig. 3).

* A full analysis of other sources of systematics (mainly the number and position of input
points, the starting fit parameters and the minimization method) is still ongoing.

Conclusions and Outlook

» For the relatively low pion mass of 185 MeV, the dependency of a7V"-=' on m, can be
reconstructed with analytical functions without significantly increasing the uncertainty
at the physical muon mass.

* The method can in principle be combined with other noise reduction techniques.

» Since A%™ depends linearly on the correlator, the proposed method can be used for
window contributions to aV".

* Instead of at finite lattice spacing a, the method can be applied in the continuum to
data of &/VF(a=0,m, > mi™®). This may be advantageous for computations with
staggered fermions, for which discretization effects come from long distance and are
thus suppressed at m, > m-™®.
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