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Motivation

One way of computing the leading order hadronic vacuum polarization (HVP) contribution
to (g − 2)µ is by its Mellin-Barnes representation [1]:
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Figure 1: Poles of the integrand of (1)
in the complex plane and the two con-
tours to evaluate it by Cauchy’s residue
theorem: The purple (green) contour is
used for small (large) mµ.
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The poles of the integrand in (1) stem from both F(s) and
MHVP(s) and lie on the real axis of the complex s-plane (see
fig. 1). Closing the contour at infinity to the right or left and
using Cauchy’s residue theorem allows for the derivation
of asymptotic expansions of aHVP

µ (mµ) in the limits mµ → 0
and mµ → ∞.

In their recent work [2], D. Greynat and E. de Rafael show
that aHVP

µ (mµ) can be reconstructed on its entire domain based on its behavior in a limited
range of mµ. To achieve this, they apply the FO-transfer-theorem1 by P. Flajolet and A.
Odlyzko [3,4] to these asymptotic expansions of aHVP

µ (mµ).

To adapt to the notation in [2], we define

α2

π2A(ω) = aHVP
µ (mµ) and ω =

√
z − 1√
z + 1

, z =
m2

µ

m2
π

. (4)

The authors suggest the following [2]: A(ω) can be computed in an optimal ω-region for
lattice QCD and then reconstructed at ω(mphys

µ ) = −0.12184(1) [5] via the approximants:

AJK (ω) =
∑J

n=0 pn(1 + ω)n

1 +
∑K

n=1 qn(1 + ω)n
+ Asing(ω) (5)

where Asing(ω) is given by the FO-transfer-theorem1, and the paramters p0,...,J and
q1,...,K are to be fixed by a curve fit.

The goal of our work is to investigate the feasibility of this suggestion.

1 A(ω) admits a Taylor expansion
∑

n gnω
n for ω ∈ (−1, 1). The FO-transfer-theorem tells us that the behavior of A(ω) near its dominant singularities at the boundary of the

convergence disk (ω = ±1) governs the asymptotic growth of the coefficients gn as n → ∞. By subtracting from A(ω) a series
∑

n gAS
n ωn = Asing(ω) with matching large-n behavior,

the remainder has rapidly decaying coefficients and can be effectively approximated by a rational function. Note: the coefficients gAS
n also depend on the HVP moments MHVP(−n).

Phenomenological model

We model ℑΠ(t) by a single Breit-Wigner peak (upper left of fig. 2) meant to mimic the
I = 1 channel of σ(e+e− → hadrons) and transform it to a model of the electromagnetic
correlator in Euclidean time by the Laplace transform [6]:

Gρρ(x0) =
1
2

∫ ∞

0
ds

√
s
ℑΠ(s)
4π2α

e−
√

s|x0| . (6)

We generate mock lattice data for Gρρ(x0) by assuming var (Gρρ(x0)) ∝ e−2mπ x0 and
cov (Gρρ(x0), Gρρ(x ′

0)) ∝ e−mρ |x ′
0−x0| (upper right of fig. 2).

Noise from the long-distance tail dominates the uncertainty of aHVP, I=1
µ (mµ); increasing mµ

reduces sensitivity to this noise, making large mµ preferable for lattice calculations.
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Figure 2: Upper left: The model of the HVP function2 from [2]. Upper Right: Integrand of aHVP, I=1
µ (mµ) (↔ fig. 3, right panel). Lower

left: Fit3 of AJ=3,K =4,M=3,L=1(ω) with input data at unphysically large mµ. Lower right: Relative uncertainty of aHVP, I=1
µ (mµ) for direct

evaluation (gray) vs the described reconstruction from input data (orange).

We compute A(ω) from the mock data for eight values of mµ ∈ [0.36, 4.8] GeV and use
this input to reconstruct A(ω) in the region −1 < ω < 1 using functions (5). One resulting
function3 and its uncertainty are displayed in fig. 2.

2To maximize the analogy with the next section, we remove the kaon contribution from ℑΠ(s) since G8 has Nf = 2. This requires a negligible modification to the model in [2].
3We fit the input data to a variety of models AJKML(ω) where labels J and K refers to the number of parameters in (5). In addition, we also test different, asymptotically equivalent

singular functions Asing(ω), which we label by M and L.

Application to ensemble w/ O(a)-improved Wilson action

Next, we apply the method for the same eight values of mµ ∈ [0.36, 4.8] GeV as before
on measurements of Gρρ(x0) = −1

3

∑
k

∫
d3x ⟨Jρ

k(x)Jρ
k(0)⟩ with (unimproved) I = 1 current

Jρ
k(x) = 1

2

(
ūγµu − d̄γµd

)
performed on the ensemble G8 by CLS [7]:

Nf V β a [fm] mπ [MeV] mπ · L Ncnfg Nsrc/Ncnfg BC
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0 1 2 3 4
Euclidean time x0 [fm]

10−10

10−8

10−6

10−4

10−2

|G
ρ
ρ
(x

0
)|

Electromagnetic correlator of G8

Gρρ(x0 ≥ xc) = C · e−m∗x0

Gρρ
G8(x0)

0 1 2 3 4
Euclidean time x0 [fm]

0

2

4

6

|G
ρ
ρ

(x
0
)|·

K̃
(x

0
,m
µ

)d
x 0

∫
G
ρ
ρ

(x
0
)·K̃

(x
0
,m
µ

)d
x 0

[%
]

Integrand for aHVP, I=1
µ of G8 for two values of mµ

Gρρ(x0 ≥ xc) = C · e−m∗x0 , mµ = mphys
µ

Gρρ(x0) = Gρρ
G8(x0) , mµ = mphys

µ

Gρρ(x0) = Gρρ
G8(x0) , mµ = 20 ·mphys

µ

Figure 3: Left: The electromagnetic correlator of the ensemble G8 by CLS. In the long distance region, the noisy raw correlator can be
replaced by a single exponential Gρρ(x0 > 1.6 fm) ∝ e−m∗x0. Right: The integrand of aHVP, I=1

µ (mµ) for G8 at physical and unphysical mµ.

To combine the many possible fit functions3, we apply the Akaike Information Criterion
(AIC) and weight the results by w = e−1

2AIC. To propagate statistical uncertainties, we use
the python library pyerrors [8]. Results at mphys

µ are displayed in fig. 4.
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Figure 4: A number of functions AJKML(ω) to reconstruct aHVP, I=1
µ (mµ) (top) and their result at mphys

µ (bottom). On the right their
weighted mean is compared to integrating over the blue or brown data in fig. 3. For the orange value (C) only functions with a relative
uncertainty below 8% were considered. For the turquoise result (D) functions with a relative uncertainty up to 10% were included.

Table 1: Comparison of different calculations of aHVP, I=1
µ (mµ)

A direct evaluation at mphys
µ - raw correlator (359 ± 34stat) · 10−10

B direct evaluation at mphys
µ - single exponential tail (411 ± 11stat) · 10−10

C reconstruction - weighted mean of (404 ± 13stat ± 2sys [14tot]) · 10−10

D reconstruction - weighted mean of and (397 ± 31stat ± 17sys [35tot]) · 10−10

Remarks:
• Asing(ω) depends on time moments G2j =

∫
dx0x2j

0 G(x0) for each 1 < j ≤ L + 1. These
are long distance observables, regardless on mµ. However, their precise determination
does not seem to affect the picture in fig. 4 significantly. The above results are obtained
using G2j from Gρρ

G8(x0) with single exponential tail (– – in fig. 3).
• A full analysis of other sources of systematics (mainly the number and position of input
points, the starting fit parameters and the minimization method) is still ongoing.

Conclusions and Outlook

• For the relatively low pion mass of 185 MeV, the dependency of aHVP, I=1
µ on mµ can be

reconstructed with analytical functions without significantly increasing the uncertainty
at the physical muon mass.

• The method can in principle be combined with other noise reduction techniques.
• Since Asing depends linearly on the correlator, the proposed method can be used for
window contributions to aHVP

µ .
• Instead of at finite lattice spacing a, the method can be applied in the continuum to
data of aHVP

µ (a = 0, mµ ≫ mphys
µ ). This may be advantageous for computations with

staggered fermions, for which discretization effects come from long distance and are
thus suppressed at mµ ≫ mphys

µ .
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