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Introduction
In this work, we improve the on-shell transition form factor (P → γ∗γ∗) within the context of Resonance Chiral Theory (RχT). By including a second
multiplet of vector meson resonances, it is possible to fulfill all short-distance constraints(SDCs) stemming from pQCD. After imposing the high-energy
behavior, the still free parameters and couplings were obtained from a global analysis of the experimental TFF data, the radiative decay widths, and
LQCD calculations for the DV sector, together with stabilization points. We obtained a consistent and competitive determination for all the P-pole
contributions to the HLbL piece of aµ.

Effective Lagrangian
We used an RχT effective Lagrangian, which ex-
tends the applicability of χPT to energies above
1GeV [1]. For matching the SDCs, we required
P+P’+V+V’.

Φ =


1√
2 (Cππ0 + Cqη + C ′

qη′) π+ K+

π− 1√
2 (−Cππ0 + Cqη + C ′

qη′) K0

K− K̄0 −Csη + C ′
sη′

 ,

Vµν =
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√
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
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Transition Form Factor
MP γ∗γ∗ = ie2εµνρσq1µq2νϵ∗

1ρϵ∗
2σFP γ∗γ∗(q2

1 , q2
2) ,

We will briefly comment next on the flavor breaking induced by our LR‰T , eq. (1), in the reso-
nance sector 9, where we account for O(m2

P ) corrections in interactions vertices, resonance masses
and field renormalizations [116].

The eVm contribution, cf. eq. (10), yields the following pattern of masses for the lightest non-
strange neutral vector mesons

M2
fl = M2

Ê = M2
V ≠ 4eVmm2

fi , M2
„ = M2

V ≠ 4eVm�2
2Kfi , (18)

with �2Kfi = 2m2
K ≠ m2

fi. Analogous relations are obtained for the V Õ multiplet. We will work
under the simplifying assumption that their flavor structure is analogous, so that eV Õ

m = eVm
M2
V Õ

M2
V

.
The similar shifts for the P Õ mesons will not be needed, as the induced corrections are subleading.
Our cutting of the infinite tower of resonances per set of quantum numbers that are predicted
in the large-NC limit to a few of them implies that the NC æ Œ masses get shifted as a result.
Consequently, they will be allowed to vary in the fits to data.

The V 0 ≠ “ transitions will be shifted due to the ⁄V term in eq. (11). This will imply the
following changes

(fl0/Ê) ≠ “ : FV æ FV + 8m2
fi⁄V , „ ≠ “ : FV æ FV + 8�2

2Kfi⁄V , (19)

with an analogous primed version for the V Õ0 ≠ “ vertices.

3 Transition form factors in R‰T

The most general transition amplitude between an on-shell P = fi0/÷/÷Õ meson and two generally
o�-shell photons with virtualities (polarizations) q2

1(‘ú
1) and q2

2(‘ú
2) is

MP“ú“ú = ie2Áµ‹fl‡q1µq2‹‘ú
1fl‘ú

2‡FP“ú“ú(q2
1, q

2
2), (20)

which is given in terms of the P transition form factor FP“ú“ú(q2
1, q

2
2), fulfilling FP“ú“ú(q2

1, q
2
2) =

FP“ú“ú(q2
2, q

2
1), due to Bose symmetry under the exchange of the identical photons. This form

factor is illustrated in fig. 1. There are three types of contributions to FP“ú“ú(q2
1, q

2
2): local terms,

P

“ú

“ú

Figure 1: Pseudoscalar Transition Form Factor.

and one- and two-resonance exchange diagrams, as shown in fig. 2.
The di�erent contributions to FP“ú“ú(q2

1, q
2
2) considering only one vector resonance multiplet are

described minutely in ref. [116], so we will not detail them here. The contributions from the second
vector multiplet can be obtained by simply adding the same terms with primed couplings. We will
concentrate here on the new terms that come from the V V ÕP contributions to the two-resonances
exchange diagrams, like in fig. 2(c). After that, we will quote the expressions of the P form factors

9Chiral symmetry breaking in Lno R happens as in ‰PT .
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Satisfy the SDCs:

lim
Q2→∞

Q2|F(−Q2, −Q2)| = 2Fπ

3 ,

lim
Q2→∞

Q2|F(−Q2, 0)| = 2Fπ,

for the η(′) there is a flavor factor of
5Cq−

√
2Cs

3

(
5C′

q+
√

2C′
s

3

)
. In our model, after im-

posing the TFFs, 12 parameters were free: 3
mass parameters, 4 mixing parameters, and 5
couplings (2SV+3DV).

Global Fit to TFF data
Available Data

• Γ(P → γγ), related to TFFs for real pho-
tons(PDG)

Γ(P → γγ) = (4πα)2

64π
m3

P |FP γγ(0, 0)|2

• Single Virtual TFF data (BaBar, Belle,
CLEO, LEP).

• Double Virtual TFF data for η′ (BaBar)
complemented by LQCD calculations [2]
at Q2

1 = Q2
2 = 0.1, 1.0 and 4.0 GeV2 for all

3 mesons.

• Stabilization points for the vector meson
multiplets mass parameters and the mix-
ings.

• Sub-leading asymptotic behavior of π0 DV
TFF given by δ2

π = 0.20(2)GeV2.

Cost Function
A modified χ2 was used as a cost function (cor-
relation between LQCD points was considered):

χ2
Global =χ2

PSV
+ χ2

η′ Exp
DV

+ χ2
PLQCD

DV

+
Extra Points∑

D

(
Dexp − Dmodel

∆Dexp

)2

Equivalence with CAs
These results were mapped to a rational approx-
imant:

CN
M (x, y) = RN (x, y)

QM (x, y) =
∑N

i,j=0 ai,jxiyj∑M
i,j=0 bi,jxiyj

,

resulting in a C2
2 in the chiral limit and C4

4 for
η − η′.

Global Fit Results
We obtained a good description of the SV data
for all 3 P-mesons. We show the results for
η′. The results for the other two vector mesons
show similar results and agreement with other
approaches. The bands represent the 1σ error
bands. In our case, including systematic and
statistical errors.
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Systematic Error Analysis
For the systematic errors we considered:

• Use of all available experimental data.
(∼ 0.3%)

• Truncation of the infinite tower of reso-
nances. (∼ 3%)

• Sub-leading corrections in 1/NC . (∼ 2%)

• Possible bias by Hybrid Analysis.
(∼ 0.6%)

• Asymptotic behavior for asymmetric dou-
ble virtualities. (∼ 0.01%)

g − 2 contribution
Given the global analysis for the TFFs, we found
the results (in units of 10−11):

aπ0-pole
µ =

(
61.9 ± 0.6+2.4

−1.5
)

=
(
61.9+2.5

−1.6
)

,

aη-pole
µ =

(
15.2 ± 0.5+1.1

−0.8
)

=
(
15.2+1.2

−0.9
)

,

aη′-pole
µ =

(
14.2 ± 0.7+1.4

−0.9
)

=
(
14.2+1.6

−1.1
)

,

adding up to

aπ0+η+η′-pole
µ =

(
91.3 ± 1.0+3.0

−1.9
)

=
(
91.3+3.2

−2.1
)

,

which is in agreement with other approaches [3–
7].
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