# Improved $\pi^0$ , $\eta$ , $\eta'$ transition form factors in resonance chiral theory (2409.10503)







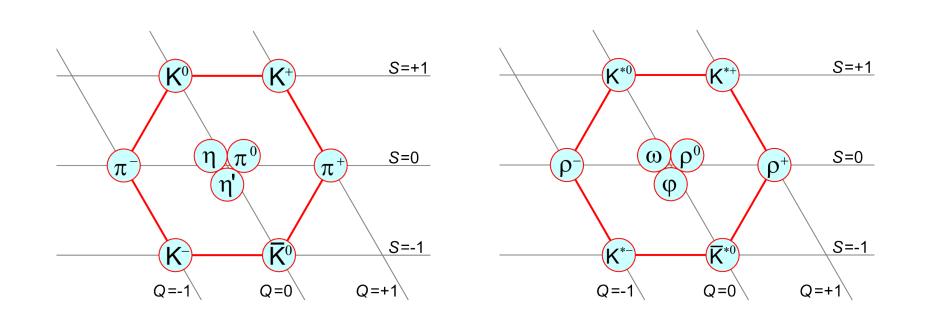
Emilio J. Estrada $^1$ , Sergi González-Solís $^2$ , Adolfo Guevara $^3$ , Pablo Roig $^1$ <sup>1</sup>Cinvestav, Mexico, <sup>2</sup>ICC Universitat de Barcelona, Spain, <sup>3</sup>UAEH, Mexico.

#### Introduction

In this work, we improve the on-shell transition form factor  $(P \to \gamma^* \gamma^*)$  within the context of Resonance Chiral Theory (R\chi T). By including a second multiplet of vector meson resonances, it is possible to fulfill all short-distance constraints (SDCs) stemming from pQCD. After imposing the high-energy behavior, the still free parameters and couplings were obtained from a global analysis of the experimental TFF data, the radiative decay widths, and LQCD calculations for the DV sector, together with stabilization points. We obtained a consistent and competitive determination for all the P-pole contributions to the HLbL piece of  $a_{\mu}$ .

## Effective Lagrangian

We used an R $\chi$ T effective Lagrangian, which extends the applicability of  $\chi PT$  to energies above 1GeV [1]. For matching the SDCs, we required P+P'+V+V'.



$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} (C_{\pi} \pi^{0} + C_{q} \eta + C'_{q} \eta') & \pi^{+} & K^{+} \\ \pi^{-} & \frac{1}{\sqrt{2}} (-C_{\pi} \pi^{0} + C_{q} \eta + C'_{q} \eta') & K^{0} \\ K^{-} & \bar{K}^{0} & -C_{s} \eta + C'_{s} \eta' \end{pmatrix},$$

$$V_{\mu\nu} = \begin{pmatrix} (\rho + \omega)/\sqrt{2} & \rho^{+} & K^{*+} \\ \rho^{-} & (-\rho + \omega)/\sqrt{2} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}.$$

## Transition Form Factor

 $\mathcal{M}_{P\gamma^*\gamma^*} = ie^2 \varepsilon^{\mu\nu\rho\sigma} q_{1\mu} q_{2\nu} \epsilon_{1\rho}^* \epsilon_{2\sigma}^* \mathcal{F}_{P\gamma^*\gamma^*} (q_1^2, q_2^2),$ 

Satisfy the SDCs:

$$\lim_{Q^2 \to \infty} Q^2 |\mathcal{F}(-Q^2, -Q^2)| = \frac{2F_{\pi}}{3},$$

$$\lim_{Q^2 \to \infty} Q^2 |\mathcal{F}(-Q^2, -Q^2)| = 2F_{\pi}$$

$$\lim_{Q^2 \to \infty} Q^2 |\mathcal{F}(-Q^2, 0)| = 2F_{\pi},$$

for the  $\eta^{(\prime)}$  there is a flavor factor of  $\frac{5C_q-\sqrt{2}C_s}{3}\left(\frac{5C_q'+\sqrt{2}C_s'}{3}\right)$ . In our model, after imposing the TFFs, 12 parameters were free: 3 mass parameters, 4 mixing parameters, and 5 couplings (2SV+3DV).

#### Global Fit to TFF data

## Available Data

•  $\Gamma(P \to \gamma \gamma)$ , related to TFFs for real photons(PDG)

$$\Gamma(P \to \gamma \gamma) = \frac{(4\pi\alpha)^2}{64\pi} m_P^3 |\mathcal{F}_{P\gamma\gamma}(0,0)|^2$$

- Single Virtual TFF data (BaBar, Belle, CLEO, LEP).
- Double Virtual TFF data for  $\eta'$  (BaBar) complemented by LQCD calculations [2] at  $Q_1^2 = Q_2^2 = 0.1, 1.0 \text{ and } 4.0 \text{ GeV}^2 \text{ for all }$ 3 mesons.
- Stabilization points for the vector meson multiplets mass parameters and the mixings.
- Sub-leading asymptotic behavior of  $\pi^0$  DV TFF given by  $\delta_{\pi}^2 = 0.20(2) \text{GeV}^2$ .

#### Cost Function

A modified  $\chi^2$  was used as a cost function (correlation between LQCD points was considered):

$$\chi_{\text{Global}}^{2} = \chi_{\text{Psv}}^{2} + \chi_{\eta_{\text{DV}}^{'\text{Exp}}}^{2} + \chi_{\text{Pbv}}^{2}$$

$$+ \sum_{\text{D}}^{\text{Extra Points}} \left( \frac{D_{\text{exp}} - D_{\text{model}}}{\Delta D_{\text{exp}}} \right)^{2}$$

# Equivalence with CAs

These results were mapped to a rational approximant:

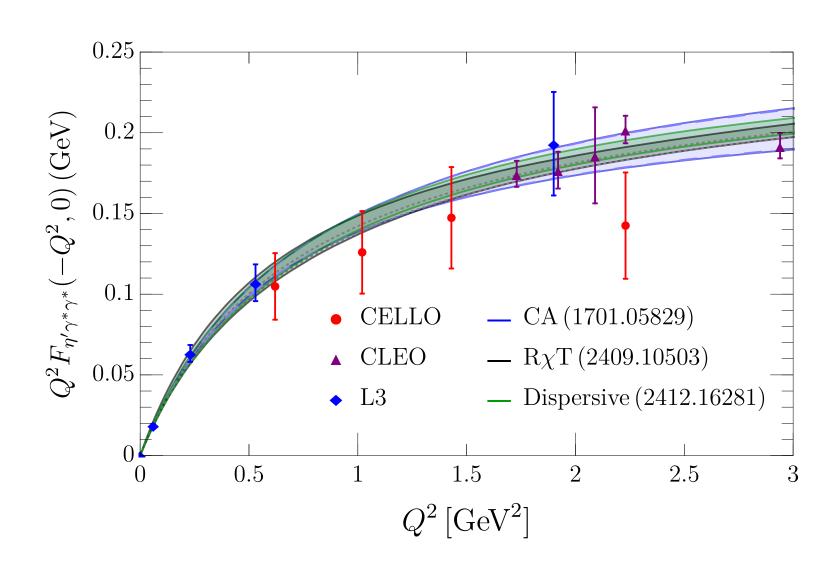
$$C_M^N(x,y) = \frac{R_N(x,y)}{Q_M(x,y)} = \frac{\sum_{i,j=0}^N a_{i,j} x^i y^j}{\sum_{i,j=0}^M b_{i,j} x^i y^j},$$

resulting in a  $C_2^2$  in the chiral limit and  $C_4^4$  for  $\eta - \eta'$ .

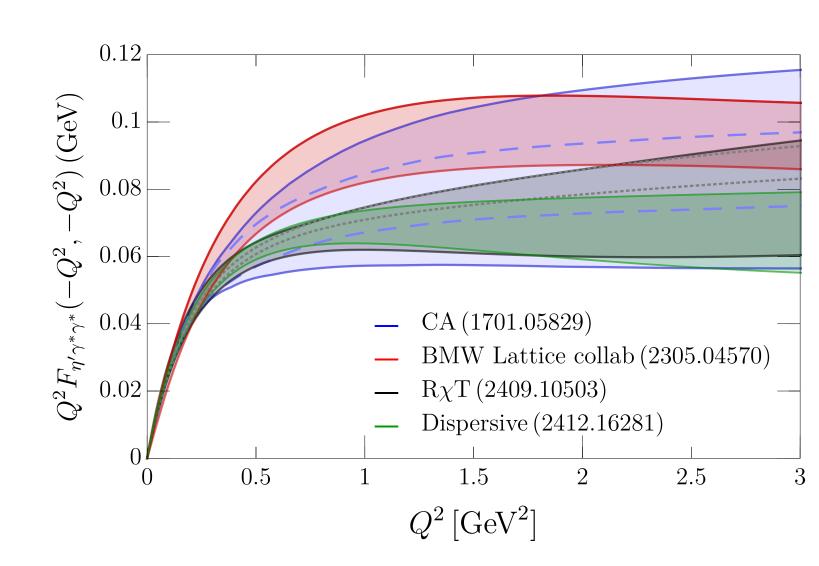
#### Global Fit Results

We obtained a good description of the SV data for all 3 P-mesons. We show the results for  $\eta'$ . The results for the other two vector mesons show similar results and agreement with other approaches. The bands represent the  $1\sigma$  error bands. In our case, including systematic and statistical errors.

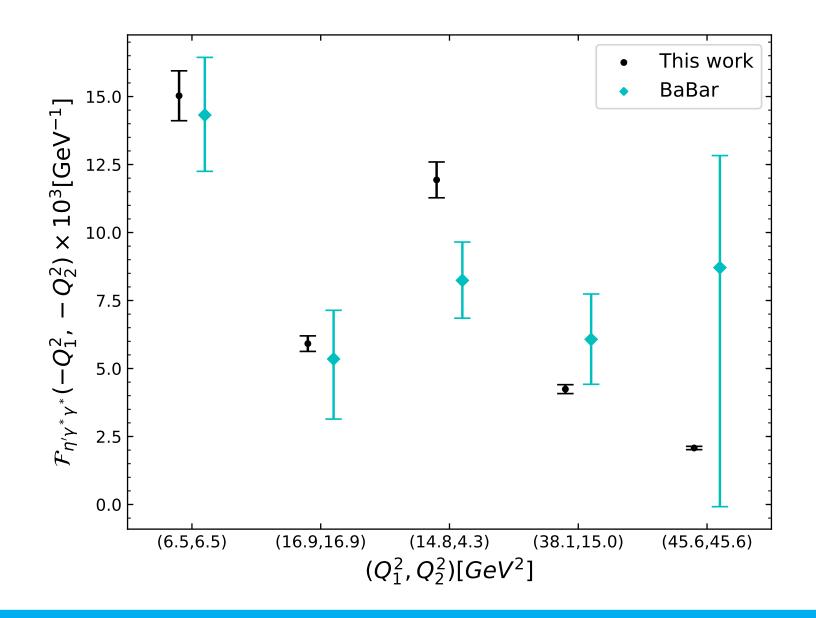
Single virtual  $\eta'$  TFF:



Double virtual  $\eta'$  TFF:



Double Virtual  $\eta'$  TFF compared with measurements from BaBar:



# Systematic Error Analysis

For the systematic errors we considered:

- Use of all available experimental data.  $(\sim 0.3\%)$
- Truncation of the infinite tower of resonances.  $(\sim 3\%)$
- Sub-leading corrections in  $1/N_C$ . ( $\sim 2\%$ )
- Possible bias by Hybrid Analysis.  $(\sim 0.6\%)$
- Asymptotic behavior for asymmetric double virtualities. ( $\sim 0.01\%$ )

# g-2 contribution

Given the global analysis for the TFFs, we found the results (in units of  $10^{-11}$ ):

$$a_{\mu}^{\pi^{0}\text{-pole}} = (61.9 \pm 0.6^{+2.4}_{-1.5}) = (61.9^{+2.5}_{-1.6}),$$

$$a_{\mu}^{\eta\text{-pole}} = (15.2 \pm 0.5^{+1.1}_{-0.8}) = (15.2^{+1.2}_{-0.9}),$$

$$a_{\mu}^{\eta'\text{-pole}} = (14.2 \pm 0.7^{+1.4}_{-0.9}) = (14.2^{+1.6}_{-1.1}),$$

adding up to

$$a_{\mu}^{\pi^{0}+\eta+\eta'\text{-pole}} = (91.3 \pm 1.0^{+3.0}_{-1.9}) = (91.3^{+3.2}_{-2.1}),$$

which is in agreement with other approaches [3–

### References

[1]G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael Phys. Lett. B **223** (1989) 425.

[2] A. Gérardin, W.E.A. Verplanke, G. Wang, Z. Fodor, J.N. Guenther, L. Lellouch et al. Phys. Rev. D 111 (2025) 054511 [2305.04570].

[3] P. Masjuan and P. Sánchez-Puertas Phys. Rev. D 95 (2017) 054026 [1701.05829].

[4] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S.P. Schneider JHEP 10 (2018) 141 [1808.04823].

[5]G. Eichmann, C.S. Fischer, E. Weil and R. Williams Phys. Lett. B **797** (2019) 134855 [1903.10844].

[6] K. Raya, A. Bashir, A.S. Miramontes and P. Roig Garces Rev. Mex. Fis. Suppl. **3** (2022) 020709 [2204.01652].

[7] J. Leutgeb, J. Mager and A. Rebhan Phys. Rev. D 107 (2023) 054021 [2211.16562].