HVP Discussion

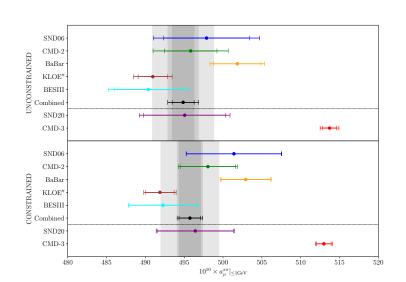
Gilberto Colangelo

8th $(g-2)_{\mu}$ TI Plenary Meeting 2025 – Orsay, Sep. 9 2025

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(3.38)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(1.45)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.30)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.55)	18.15(74)	-0.12
$\mathcal{K}^+\mathcal{K}^-$	23.08(0.44)	23.00(22)	0.08
K_SK_L	12.82(0.24)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.10)	4.58(10)	-0.17
Sum of the above	626.08(3.90)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without <i>cc</i>)	33.45(71)	34.45(56)	-1.00
$J/\psi,\psi$ (2S)	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(̀31)́	16.95(19)	0.20
Total $a_{\mu}^{HVP, LO}$	694.0(4.0)	692.8(2.4)	1.2

2π : comparison with the dispersive approach


 2π channel described dispersively \Rightarrow more theory constraints

Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18) WP(20)

Energy range	CHS18	DHMZ19	KNT19
≤ 0.6 GeV	110.1(9)	110.4(4)(5)	108.7(9)
$\leq 0.7\mathrm{GeV}$	214.8(1.7)	214.7(0.8)(1.1)	213.1(1.2)
$\leq 0.8\mathrm{GeV}$	413.2(2.3)	414.4(1.5)(2.3)	412.0(1.7)
$\leq 0.9\mathrm{GeV}$	479.8(2.6)	481.9(1.8)(2.9)	478.5(1.8)
$\leq 1.0\text{GeV}$	495.0(2.6)	497.4(1.8)(3.1)	493.8(1.9)
[0.6, 0.7] GeV	104.7(7)	104.2(5)(5)	104.4(5)
[0.7, 0.8] GeV	198.3(9)	199.8(0.9)(1.2)	198.9(7)
$[0.8, 0.9] \mathrm{GeV}$	66.6(4)	67.5(4)(6)	66.6(3)
[0.9, 1.0] GeV	15.3(1)	15.5(1)(2)	15.3(1)
\leq 0.63 GeV	132.8(1.1)	132.9(5)(6)	131.2(1.0)
$[0.6, 0.9]\mathrm{GeV}$	369.6(1.7)	371.5(1.5)(2.3)	369.8(1.3)
$\left[\sqrt{0.1},\sqrt{0.95}\right] \text{GeV}$	490.7(2.6)	493.1(1.8)(3.1)	489.5(1.9)

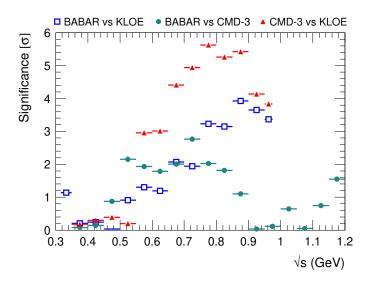
Comparison between CMD-3 and other experiments

Leplumey and Stoffer, arXiv:2501.09643

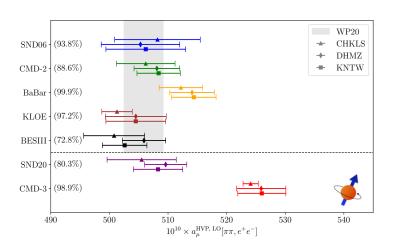
Comparison between CMD-3 and other experiments

Leplumey and Stoffer, arXiv: 2501.09643

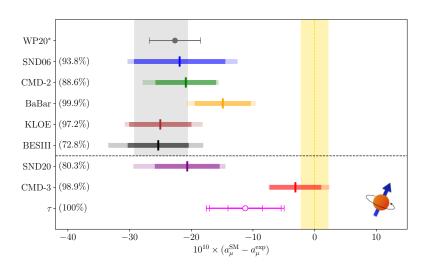
Discrepancy w/ CMD-3	$\left.a_{\mu}^{\pi\pi} ight _{\leq 1~{ m GeV}}$		
	unconstrained	constrained	
SND06	2.0σ	1.8σ	
CMD-2	3.3σ	3.7σ	
BaBar	2.9σ	2.8σ	
KLOE"	7.4σ	8.9σ	
BESIII	4.2σ	4.5σ	
SND20	3.0σ	3.2σ	
Combination	4.4 σ [7.3 σ]	4.4 σ [8.1 σ]	


Uncertainties in brackets exclude KLOE-BaBar systematic eff.

Combination: NA7 + all data sets other than SND20 and CMD-3

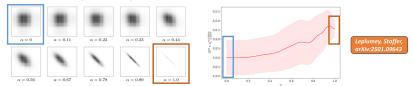

Comparison between CMD-3 and other experiments

Comparison according to DHLMZ


Davier, Hoecker, Lutz, Malaescu, Zhang (23)

Comparison between different e^+e^- experiments

Comparison between e^+e^- and τ -based HVP


My (incomplete) list of discussion points

- 1. How to improve on systematic covariance matrices?
- 2. Are there particular aspects of the integration method, be it for a particular channel or region, where one way of doing it has clearly shown to be better than other and should be adopted by all groups?
- 3. Or viceversa things that should be avoided?
- 4. What channels need a dedicated discussion beyond the 2π channel? The 3π channel, for example?
- Any need to update, revisit the high-energy part?
 (→ Diogo's talk)
- 6. New insights for what concerns the treatment of radiative channels/corrections?

Thomas' slides on exp. covariance matrices

COMMENT ABOUT THE DATA CORRELATIONS OF CMD-3

- Some concerns have been raised about the impact of correlations in CMD-3 data
 - For direct integration, fully correlated covariance is clearly the most conservative
 - However, it is less clear a priori whether this choice is conservative or not in our framework
- In our last analysis, we implemented a "decorrelation scheme" to evaluate this:

- Smaller correlations lead to higher value of $a_{\mu}^{\pi\pi}$ and smaller uncertainty!
 - Full correlations allow global scale effects → analyticity constraints seem to pull the VFF down
 - Zero/negative correlations constrain the fit to be closer to the central values of the data points

Thomas' slides on exp. covariance matrices

COMMENT ABOUT THE DATA CORRELATIONS OF CMD-3

• To assess this issue, we tried tuning the covariance a posterior to get the largest posterior uncertainty in $a_{\mu}^{\pi\pi}$ (\rightarrow expected to be the most conservative choice)

$$Corr(\sigma_i, \sigma_j) = sign\left(\frac{\partial a_{\mu}^{\pi\pi}}{\partial \sigma_i} \times \frac{\partial a_{\mu}^{\pi\pi}}{\partial \sigma_j}\right)$$

- However, the a posteriori conservative covariance depends on the starting point
 - Starting from the fully correlated best-fit point, the conservative option is consistently the fully correlated covariance matrix
 - Starting from the uncorrelated best-fit point, the conservative option contains anticorrelations between different energy regions, but the overall uncertainty remains smaller
- Without a clear prescription yet, we decided to stick to the full corr. prescription
 - This makes the interpretation and comparison with other results easier
 - This choice does not overestimate the discrepancy with other experiments