
• How to resolve the sign discrepancy for the disconnected contribution to  

ETMC The sign of the contribution has been checked independently by at least two people, but of course a confirmation bias can not be excluded.  In our ongoing 
calculation of the eta/eta' TFF we are planning to revisit this issue. 

RBC/UKQCD Result checked with 4 independent codes/4 authors plus 1 automatic contractor ; Talk by Tom 
Mainz Talk by Antoine 

• What is the focus of each group for the next few years 

ETMC - continuum limit of eta/eta' TFF and corresponding pole contribution 
- dedicated calculation of the  decay width 
- continuum limit of light-quark HLbL contribution at two fixed physical volumes 

RBC/UKQCD - finer, third lattice spacing 
- control statistics, continuum limit and FV systematics < 5% 
- low-mode averaging 

BMWc - improve the continuum limit of the direct HLbL calculation, with a fourth lattice spacing for the dominant light quark contribution 

• Are the lattice artifacts in the charm-quark HLbL contributions sufficiently well under control?  See talk by Simone 

• Do we understand the mismatch between the pion-pole long-distance contribution and the data in the Mainz coordinate space method? (Some collaborations see a match, some do 
not.)  See talk by Simone 

• How is the RBC/UKQCD position-space pion pole contribution related to the dispersive approach?

π0 → γγ

π0 → γγ

Discussion points for HLbL Lattice Session
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the charged loop contribution as:

e→2mπ(4 fm)

e→mπ(4 fm)
→ 6% (48)

and the error from approximating the π0 propagation
direction to be along x − y to be:

0.5 fm

4 fm
→ 13% (49)

where we assume the typical separation for |x − x′| and
|y − y′| to be 0.5 fm and |x − y| to be 4 fm. Combin-
ing these two estimates in quadrature, we assigned 14%
total systematic uncertainty for the long distance part
(Rmax > 4 fm) contribution. Using the ratio between the
connected and disconnected contributions as described in
Eq. 28, we can also properly assign this contribution to
the connected and disconnected diagrams. The results
are shown in Tab. II with the labels “. . . Rmax > 4fm”.

D. Finite volume corrections

The long-distance part of the HLbL contribution usu-
ally suffers the most significant finite volume effects.
However, the long-distance π0 exchange contribution cal-
culated in Section IV C is performed in infinite volume
and is free of finite volume effects. Therefore, we only
need to correct for the finite volume effects for the rela-
tively short-distance region, where Rmax < 4 fm. These
finite volume effects are expected to be quite small due
to the constraint Rmax < 4 fm. The finite volume effects
can be estimated with the “π0-pole” contribution as de-
fined in Ref. [20]. Similar to Ref. [21, 66], we define the
π0 transition form factor in Euclidean space-time as:

Fµ,ν(x, p) = 〈0|T Jµ(x)Jν(0)|π0("p)〉

=

∫
d4q1

(2π)4
eiq1·x −i

4π2Fπ
εµ,ν,ρ,σq1ρq2σFπ0γγ(q2

1 , q2
2) (50)

where p = q1 + q2 and p2 = −m2
π. We can convert the

form factor into coordinate space via the following:
∫

d4u eip·uF̃µ,ν(u, x, y) = Fµ,ν(x − y, p). (51)

The solution to the above condition is not unique. Based
on the momentum space form factor Fπ0γγ(q2

1 , q2
2) in

Eq. (50), we obtain

F̃µ,ν(u, x, y) =
i

4π2Fπ
εµ,ν,ρ,σ∂

x
ρ∂

y
σ (52)

×
∫

d4q1

(2π)4
eiq1·(x→u)

∫
d4q2

(2π)4
eiq2·(y→u)Fπ0γγ(q2

1 , q2
2).

Note this definition of the position space form factor
is different from the inverse Fourier transformation of
the Euclidean space hadronic matrix element Fµ,ν(x, p),

since the on-shell condition p2 = −m2
π for the physical

π0 state cannot be satisfied always in the inverse Fourier
transformation. With the form factor defined above, we
can construct the π0-pole contribution to the hadronic
four-point function:

〈T Jµ(x)Jµ′ (x′)Jν(y)Jν′(y′)〉 (53)

→
∫

d4u

∫
d4v Dπ0(u − v)

×
(

F̃µ,µ′(u, x, x′)F̃ν,ν′(v, y, y′)

+ F̃µ,ν(u, x, y)F̃µ′,ν′(v, x′, y′)

+ F̃µ,ν′(u, x, y′)F̃µ′,ν(v, x′, y)
)

where Dπ0 (x−y) is the infinite volume free scalar propa-
gator with physical pion mass. In this calculation, we use
the Lowest Meson Dominance (LMD) model [38, 67, 68]
for the π0 transition form factors.

Fπ0γγ(q2
1 , q2

2) → F LMD
π0γγ (q2

1 , q2
2)

=F VMD
π0γγ (q2

1 , q2
2) +

8π2F 2
π

3m2
V

(54)

×
(

F TE
π0γγ(q2

1 , q2
2) − F VMD

π0γγ (q2
1 , q2

2)
)

,

where

F VMD
π0γγ (q2

1 , q2
2) =

m2
V

q2
1 + m2

V

m2
V

q2
2 + m2

V

(55)

F TE
π0γγ(q2

1 , q2
2) =

m2
V /2

q2
1 + m2

V

+
m2

V /2

q2
2 + m2

V

. (56)

The parameters used in the calculation are mπ =
134.9766 MeV, Fπ = 92 MeV, mV = 770 MeV. We
discretize the model and calculate it with lattices of dif-
ferent sizes using the same subtracted infinite volume
QED weighting as the direct calculation. The results are
given in Tab. V. Note the physical size of the “Match”
and “Coarse” lattices are the same as the 48I ensemble,
which we used to perform our main lattice QCD calcula-
tion. The spatial size is L = 5.5 fm. The “Large” lattice
has the same lattice spacing as the “Coarse” lattice but
has a much larger physical size, L = 16.4 fm. We use the
difference between the “Large” and the “Coarse” results
of aµ(Rmax < 4 fm)×1010 as the finite volume correction.
Comparing the results of “Match” and “Coarse”, we esti-
mate the uncertainty due to the non-zero lattice spacing
effects of this model lattice calculation can be about 12%.
Combined with the additional 20% uncertainty due to the
inaccuracy of the model itself (and potential finite vol-
ume corrections of other heavier intermediate states), we
obtain our final estimate of the finite volume correction:

aFV-corr
µ (Rmax < 4 fm) × 1010 = −0.47(11)syst. (57)

Similar to the long-distance π0-exchange contribution, we
use the ratio between the connected and disconnected

12

the charged loop contribution as:

e→2mπ(4 fm)

e→mπ(4 fm)
→ 6% (48)

and the error from approximating the π0 propagation
direction to be along x − y to be:

0.5 fm

4 fm
→ 13% (49)

where we assume the typical separation for |x − x′| and
|y − y′| to be 0.5 fm and |x − y| to be 4 fm. Combin-
ing these two estimates in quadrature, we assigned 14%
total systematic uncertainty for the long distance part
(Rmax > 4 fm) contribution. Using the ratio between the
connected and disconnected contributions as described in
Eq. 28, we can also properly assign this contribution to
the connected and disconnected diagrams. The results
are shown in Tab. II with the labels “. . . Rmax > 4fm”.

D. Finite volume corrections

The long-distance part of the HLbL contribution usu-
ally suffers the most significant finite volume effects.
However, the long-distance π0 exchange contribution cal-
culated in Section IV C is performed in infinite volume
and is free of finite volume effects. Therefore, we only
need to correct for the finite volume effects for the rela-
tively short-distance region, where Rmax < 4 fm. These
finite volume effects are expected to be quite small due
to the constraint Rmax < 4 fm. The finite volume effects
can be estimated with the “π0-pole” contribution as de-
fined in Ref. [20]. Similar to Ref. [21, 66], we define the
π0 transition form factor in Euclidean space-time as:

Fµ,ν(x, p) = 〈0|T Jµ(x)Jν(0)|π0("p)〉

=

∫
d4q1

(2π)4
eiq1·x −i

4π2Fπ
εµ,ν,ρ,σq1ρq2σFπ0γγ(q2

1 , q2
2) (50)

where p = q1 + q2 and p2 = −m2
π. We can convert the

form factor into coordinate space via the following:
∫

d4u eip·uF̃µ,ν(u, x, y) = Fµ,ν(x − y, p). (51)

The solution to the above condition is not unique. Based
on the momentum space form factor Fπ0γγ(q2

1 , q2
2) in

Eq. (50), we obtain

F̃µ,ν(u, x, y) =
i

4π2Fπ
εµ,ν,ρ,σ∂

x
ρ∂

y
σ (52)

×
∫

d4q1

(2π)4
eiq1·(x→u)

∫
d4q2

(2π)4
eiq2·(y→u)Fπ0γγ(q2

1 , q2
2).

Note this definition of the position space form factor
is different from the inverse Fourier transformation of
the Euclidean space hadronic matrix element Fµ,ν(x, p),

since the on-shell condition p2 = −m2
π for the physical

π0 state cannot be satisfied always in the inverse Fourier
transformation. With the form factor defined above, we
can construct the π0-pole contribution to the hadronic
four-point function:

〈T Jµ(x)Jµ′ (x′)Jν(y)Jν′(y′)〉 (53)

→
∫

d4u

∫
d4v Dπ0(u − v)

×
(

F̃µ,µ′(u, x, x′)F̃ν,ν′(v, y, y′)

+ F̃µ,ν(u, x, y)F̃µ′,ν′(v, x′, y′)

+ F̃µ,ν′(u, x, y′)F̃µ′,ν(v, x′, y)
)

where Dπ0 (x−y) is the infinite volume free scalar propa-
gator with physical pion mass. In this calculation, we use
the Lowest Meson Dominance (LMD) model [38, 67, 68]
for the π0 transition form factors.

Fπ0γγ(q2
1 , q2
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V
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V
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V

+
m2
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The parameters used in the calculation are mπ =
134.9766 MeV, Fπ = 92 MeV, mV = 770 MeV. We
discretize the model and calculate it with lattices of dif-
ferent sizes using the same subtracted infinite volume
QED weighting as the direct calculation. The results are
given in Tab. V. Note the physical size of the “Match”
and “Coarse” lattices are the same as the 48I ensemble,
which we used to perform our main lattice QCD calcula-
tion. The spatial size is L = 5.5 fm. The “Large” lattice
has the same lattice spacing as the “Coarse” lattice but
has a much larger physical size, L = 16.4 fm. We use the
difference between the “Large” and the “Coarse” results
of aµ(Rmax < 4 fm)×1010 as the finite volume correction.
Comparing the results of “Match” and “Coarse”, we esti-
mate the uncertainty due to the non-zero lattice spacing
effects of this model lattice calculation can be about 12%.
Combined with the additional 20% uncertainty due to the
inaccuracy of the model itself (and potential finite vol-
ume corrections of other heavier intermediate states), we
obtain our final estimate of the finite volume correction:

aFV-corr
µ (Rmax < 4 fm) × 1010 = −0.47(11)syst. (57)

Similar to the long-distance π0-exchange contribution, we
use the ratio between the connected and disconnected


