

Project Progress Review (PPR) 1-2024

WP4- Magnets and Power Supplies Présenté par: Hadil Abualrob & Luc Perrot

20 March 2025

WP4: Goals and objectives

- Design magnets that reply to the requirements of the beam dynamics
- Write specifications and technical details report
- Contact providers and/or explore other possibilities (donation)
- Magnetic measurements

installation

Which constrains should our magnets respect?

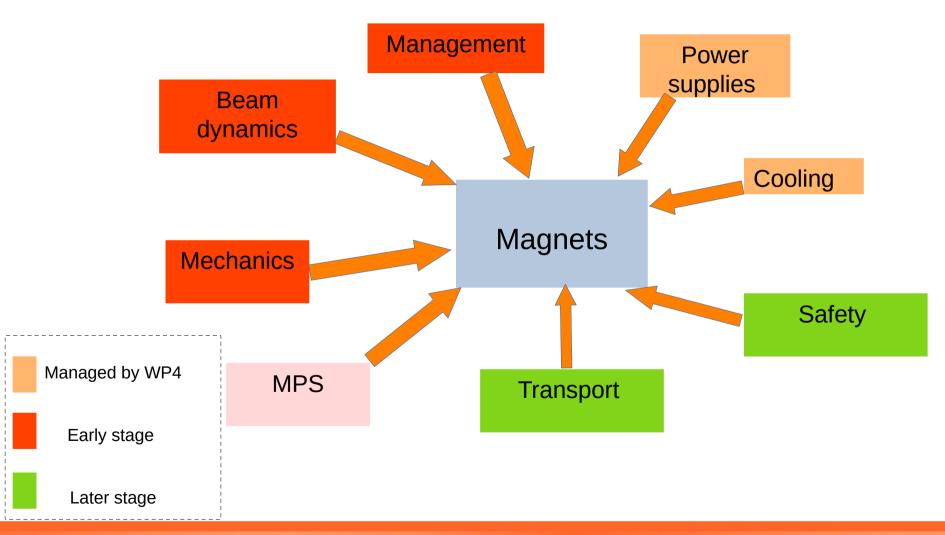
1. Imposed tolerances

- On the magnetic field, magnet aperture, geometry, etc.
- On the accepted machine performance : orbit distortion, dynamic aperture, tune value, etc.
- This requires direct coordination with beam dynamics

2. Reliability

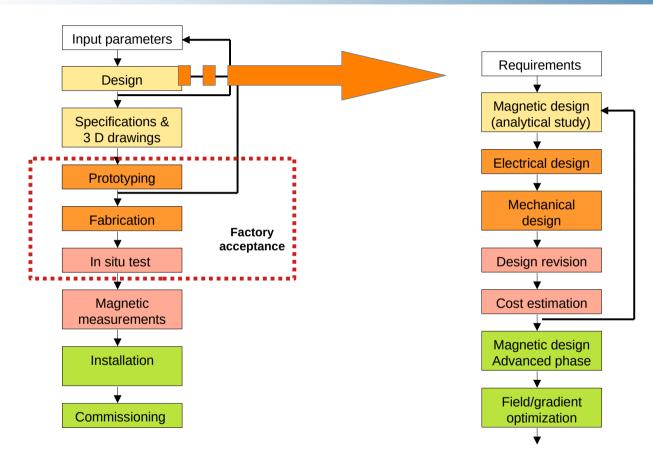
- Reduce as much as possible the failure time
- Easy access and minimal repairing time in case of failure
- Unknown for a new design!
- Requires careful design analysis and review

3. Safety conditions

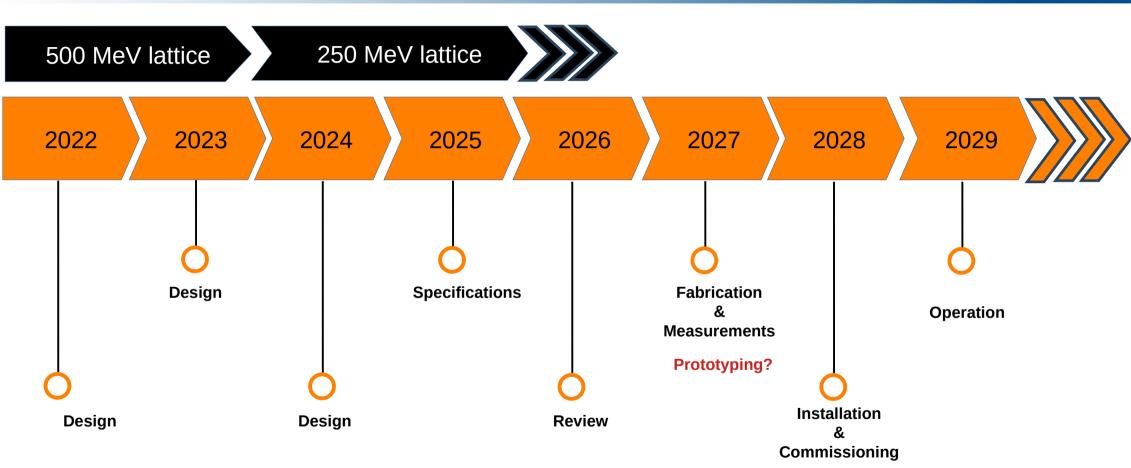

- More constrains on the design
- But nominal operation
- Direct coordination with project leader and adequate department
- 4. Financial constrains
- Short term: raw material and fabrication cost
- Long term: Power consumption and cooling cost
- Can be reduced if we get some donation
- 5. Project timeline
 - Defined in coordination with the management

6. Upgradable

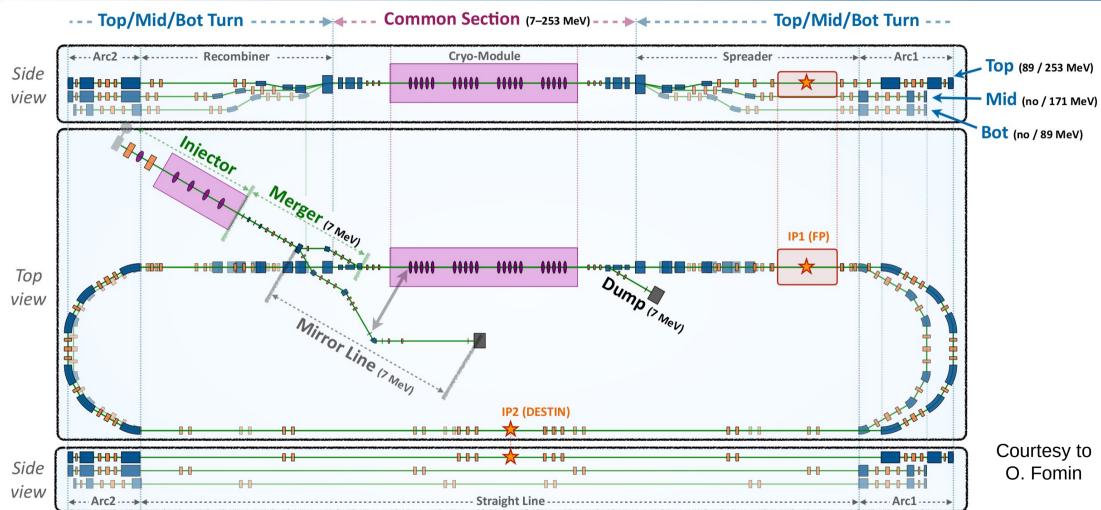
Fit for both single turn and 250 MeV machine



WP4: Interaction with other WPs

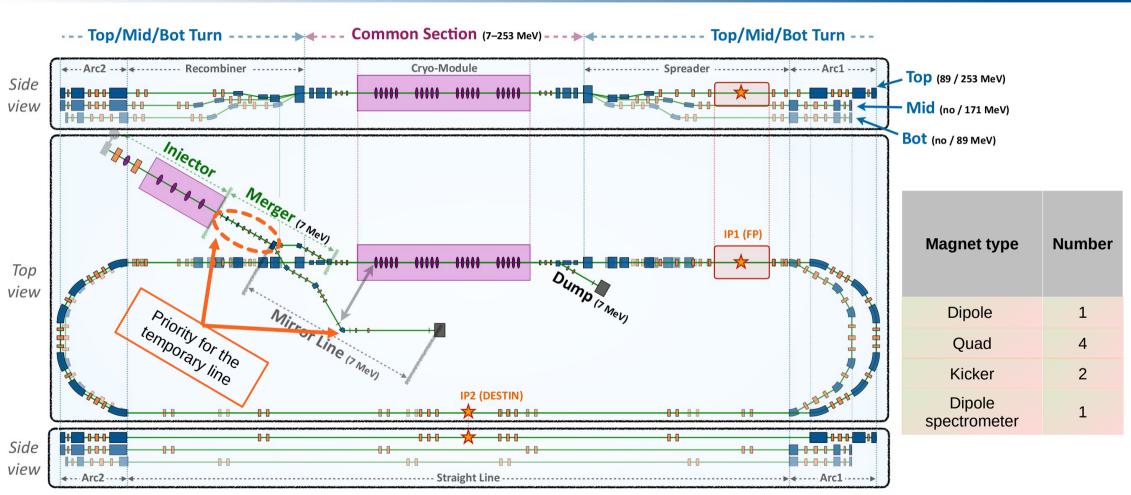


WP4: Work flow



Timeline (Macroscopic scale)

PERLE single turn


Magnets for PERLE single turn: overall view

Location/ Magnet type	B com	S Bend	R Be	end	Quad	rupoles	Chicane	Kickers	
	2 types		L= 10 cm	L=30 cm	ø 80 mm	ø 50 mm	2 types		
Merger			2		8			2	
Mirror			2		9		1		
Common					6		6		
Spreader	2			2		9		1	
Arc 1		6				11		2	
Straight line						11		2	
Arc 2		6				11		1	
Recombiner	2			2		4		1	
Dump					2				
Total	4	12	4	4	25	46	7	9	

Total of 111 magnets of all types according to the latest lattice version

Magnets needed for the temporary line

Technical specification report

Technical Specification Dipoles and Quadrupoles of PERLE

This technical specification concerns the supply of ?? dipoles and ?? quadrupole electromagnets including prototypes for PERLE. The yokes are laminated 1010 steel and the coils are water cooled, wound from hollow copper conductor, and epoxy impregnated. Delivery shall be completed within 24 months after placement of the contract.

https://www.overleaf.com/project/67c1da76258dfffbe7c23685

March 19, 2025

Contents

- 1 PERLE
- 2 PERLE magnets
- 3 PERLE quadrupole magnets
- 4 Scope of the supply
- 5 Deliverables included in the supply
- 6 Items supplied by PERLE
- 7 Technical Requirements
- 8 General description
- 9 Materials
- 10 Manufacture of the yokes
- 11 Assembly of the magnets
- 12 Inspections and tests
- 13 Samples
- 14 Handling, transport and storage
- 15 Packing and shipping
- 16 Information and documentation.
- 17 Performance of the contract
- 18 Fabrication and Delivery Schedule
- 19 Inspections at the contractor's premises
- 20 Contract follow-up and progress monitoring
- 21 Deviations
- 22 Acceptance and warranty

Potential providers

Contact established First meeting: March 21st at 11:00 AM

Other possibilities

Calle Orense 11, 2°B, 28020 Madrid, Spain Phone: +34 914 110 963 Fax: +34 914 110 964 Email: angel.garcia@elytt.com Already contacted No answer till now

Revol TT Consulting s.r.o. VAT: SK2022832185 Vlarska 28, 917 01 Trnava Slovakia

MAGNET DIVISION

Tesla Engineering Ltd

Water Lane

Storrington

West Sussex

RH20 3EA

UK

Other possible tracks

Purchasement from PSI

- A lower price than the market
- Meeting On February 10th with Kallestrup Jonas
- Internal meeting: L. Perrot, R. Abukeshek, O. Fomin, H. Abualrob:
 - We are potentially interested in 25 quadrupole for the straight section (Not urgent priority)
 - 4 can be used for the temporary line, then can be moved to the straight sections later
 - https://atrium.in2p3.fr/12a5be0c-5a75-4375a7ff-cca0e9ee5dd0

Donation from CERN

- We pay the shipment cost
- Meeting on February 4th with Jeremie Bauche
- Internal meeting: L. Perrot, R. Abukeshek, O. Fomin, H. Abualrob:
 - A short list of potentially interesting magnets is extracted out of a giant list
 - More specification about this short list is needed to confirm our need
 - Specification list will be sent to us

Available magnets at CERN

Type needed / CERN options	PERLE needs /	Spare /	Dipole Integrated Field at Peak	Quad. Gradient Integrated Field at	Total Length	Total Width	Total Height	Aperture width	Aperture height	Aperture height	Function	Cooling System	Iron Length	Weight [Kg]	Design Code
	Avaliable		Current [Tm]	Peak Current [T]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			[mm]		
7 MeV, 30 deg	8		> 0.012		M 150			> 80	>80	> 80					
Corrector magnet, H+V, type 11		3 / 19	0.018		270	257	270	153	153	153	Horizontal and Vertical	Air	229.2	64	PXMCCLAWAP
Corrector magnet, H or V, type 8af	1	8/7	0.016		385	340	310	105	120	120	Horizontal or Vertical	Air	250	74	PXMCXADWAP
Corrector magnet, H or V, type 4af		3 / 13	0.019		370	312	230	160	150	150	Horizontal or Vertical	Air	300	40	PXMCXAEWAP
Corrector magnet, H or V, type 4AD	2	2/0	0.02		362	344	190	200	145	145	Horizontal or Vertical	Air	300	60	PXMCXAFWAC
Corrector magnet, H or V, type 8a water	6	6/0	0.04		385	490	290	105	120	120	Horizontal or Vertical	Water	250	95	PXMCXAHWWP
Spr/Rec dipoles	14+4		> 0.3		M 330		?	> 50	> 50	> 50					
Arc dipoles 33	18		> 0.442		M 330		?	> 50	> 50	> 50					
Arc dipoles 66	12(?)		> 0.884		M 660		?	> 50	> 50	> 50					
Corrector magnet, H or V, type MDX		35 / 50	0.756		655	730	680	140	52	120	Horizontal or Vertical	Water	400	1100	PXMCXCAHWC
(Arc dipoles 33)	(18)		> 0.442		M 330		?	> 50	> 50	> 50					
Bending magnet, type FO56		2/2	0.6115		575	400	390	72	72	72	Horizontal	Water	450	256	PXMBHBDCWP
Q5	24			> 0.2	M 50			> 80	>80	> 80					
Quadrupole magnet, type Q#B or QL1	14	14/0		0.5582	270	274	274	58	58	58	Normal	Air	200	94	PXMQNAGNAP
Quadrupole magnet, type Q#A or QS	19	19/0		0.3134	175	274	274	58	58	58	Normal	Air	104	51	PXMQNAHNAP
Quadrupole magnet, type Q#G	1	1/0		0.2198	175	274	274	80	80	80	Normal	Air	140	49	PXMQNALNAP
Q10 (& Q15)	110 (& 18)			> 2.4	M 150		?	> 50	> 50	> 50					
Quadrupole magnet, HIE Isolde TL		2 / 28		5	339	485	535	50	50	50	Normal	Water	185	200	PXMQNLINWP
H / V correctors ERL	60		0.005		МО		?	> 80 (50)	> 80 (50)	> 80 (50)					
Corrector magnet, H+V, type 9af	1	1/0	0.00531		200	100	100	70	70	70	Horizontal and Vertical	Air	200	15	PXMCCABWAP
Corrector magnet, H+V, HIE Isolde		2 / 15	0.0091		92	469	604	92	92	92	Horizontal and Vertical	Water	34	50	PXMCCAZWWC
Multipole magnet, type 403		18 / 26	0.00833	0.013	155	276	145	156	89	89	Not applicable	Air	155	15	PXMM_AAIAP

Magnetic measurements

Received magnets (either donation or purchasemnt should be measured)

- Access and powering issues?
- Already discussed with Walid

- Work on the bench already started in 2022 in collaboration with SOLEIL
- Measurement automation is necessary at this stage

Functionality and Performance Analysis of the Stretch Wire Magnetic Measurement Bench

Authored by Saleh ABUALI

Supervised by Dr. Hadil Abualrob

AN-Najah National University Paris-Saclay University 24 December, 2022

https://atrium.in2p3.fr/554abe00-bc13-459c-a611-b41ee8460b80

Priorities and quick actions

- Design of the temporary line magnets
 - Internship of Palestinian student (Jana Souyani, L3 physics, Juin 18-August 17 2025)
- Automation of measurements of the single stretched wire bench
 - Internship of Palestinian student (Mohammedkhaled Salah, M1 Mechatronics engineering, Juin 18-August 18 2025)
- Technical specification report for all magnets and global cost estimation
- Contact providers and compare estimated cost