

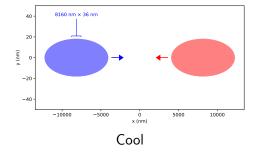
VIBRATIONS IMPACT ON FCC-EE'S LUMINOSITY

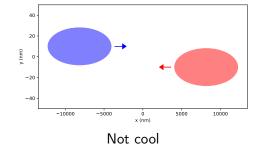
ESTIMATIONS BASED ON A SIMPLE GIRDER MOCK-UP

Maël Le Garrec, Freddy Poirier, Laurent Brunetti, Matthieu Marchand, Gael Balik

FCC Context

FCC

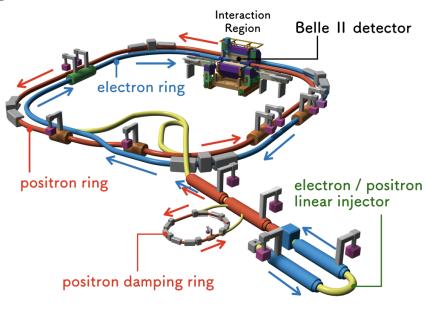



Operation Mode	Z	WW	ZH	tt	
Beam energy [GeV]	45.6	80	120	182.5	
Circumference [km]	90.66				
SR power / beam [MW]	50				
RF frequency [MHz]	400.8				
$eta_{x/y}^*$ [mm]	110 / 0.7	220 / 1	240 / 1	900 / 1.4	
Energy loss / turn [GeV]	0.0387	0.369	1.86	9.93	
Colliding bunches / beam	11200	1856	300	60	
Colliding bunch population $[10^{11}]$	1.8	1.38	1.69	1.58	
$arepsilon_x$ at collision [nm]	0.71	2.16	0.66	1.65	
$arepsilon_y$ at collision [pm]	2.1	2.0	1.0	1.32	
Luminosity / IP $[10^{34}~{\rm cm}^{-2}{\rm s}^{-1}]$	144	20	7.5	1.45	

- Same-ish lattice for all modes
- Currently two lattices under consideration: LCC and GHC
- pencil beam: nanometer level, wide and short

Introduction

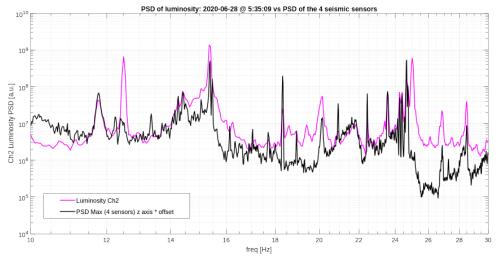
FCC



- First estimate of vibration effects on beam position and luminosity
- Check approach, trying to see if the approach makes sense
 - → Establish baseline on Z mode for more detailed studies

SuperKEKB

FCC

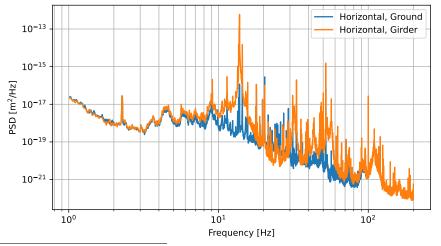


CLAPP

Luminosity and Vibrations

2025-10-10

Correlation between vibrations and luminosity shown at SuperKEKB


Background & Girder Measurements

Vibration measurements done on vertical/horizontal planes by engineering teams¹:

On the ground

FCC

• On a granite girder

¹https://edms.cern.ch/document/2919485/1

8/20

Resonant frequencies and damping:

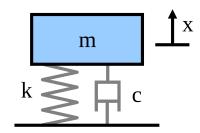
2025-10-10

• 2 main modes considered, one per plane, only translations for now²

Mode number	Mode shape	EXP frequency	SIMU frequency	Damping* found via SIMU
Mode#01	Tiltin		13.6 Hz	0.0045
Mode#04	Up at Down Tilting	+ 73.1 Hz	76.7 Hz	0.01

²Given by Audrey Piccini (EN-MME)

Ground-to-girder amplification can be modeled with transfer functions

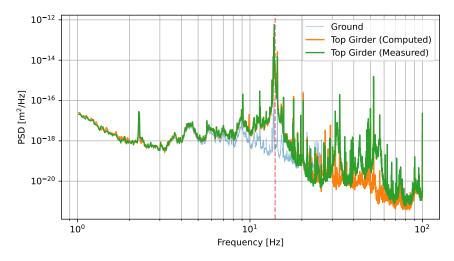

$$H(f) = \frac{1}{1 - \left(\frac{f}{f_n}\right)^2 + \left(i \cdot 2 \cdot \zeta \frac{f}{f_n}\right)}$$

Where:

FCC

- f: frequency [Hz]
- f_n : resonant frequency [Hz]
- ζ : damping ratio

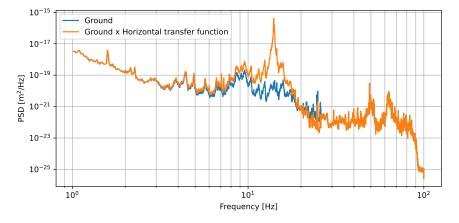
Mass-Spring-Damper model



Transfer Function Validation

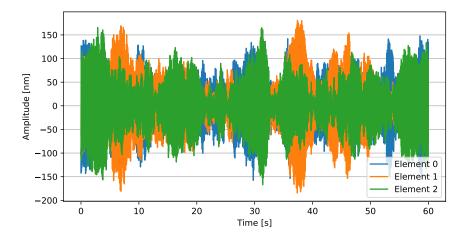
Ground + transfer function should equal the measurement on top of the girder

Horizontal PSDs (~14Hz):



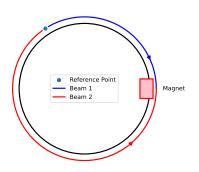
Tunnel Measurements

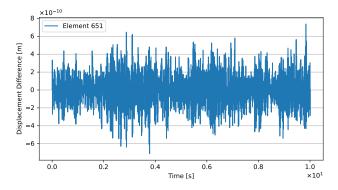
Vertical ground measurements were performed, horizontal is assumed similar


Horizontal PSD with transfer function applied:

Time Series Generation

- Random phases are assigned to frequency components
- Different seeds create uncorrelated element motions
- 1800+ individual elements simulated, to be paired with each quadrupole

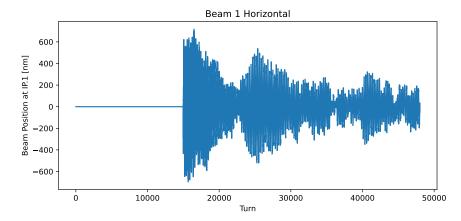




Beam-Dependent Displacements

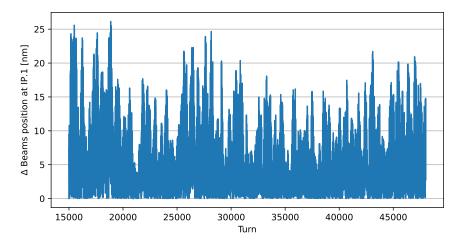
Beam 1 and Beam 2 will experience a different displacement at the same element

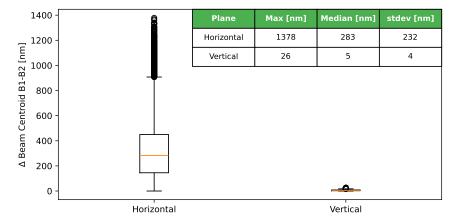
- Due to inverse direction and "slow" speed
- => Higher frequencies, despite low amplitudes, will create larger differences



Tracking Simulation

- 15,000 "empty" turns for baseline check
- ullet 33,000 turns with vibrations (10 seconds), on both planes
- ~1800 quadrupoles with independent motion

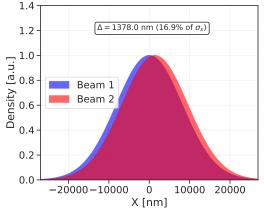

=> Record position at IP.1

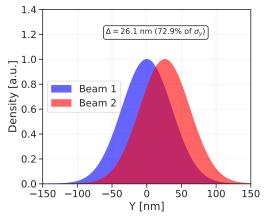


Beam Separation Results

Vertical beam separation at IP1:

- 90% percentile offsets:
 - $^{\circ}\,$ Horizontal $655\times 10^{-9}\,$ m
 - $^{\circ}$ Vertical 12×10^{-9} m

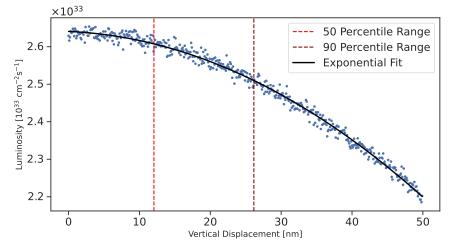

17/20


Displacement vs Beam Size

At the maximum displacements, the beam distributions would look as below

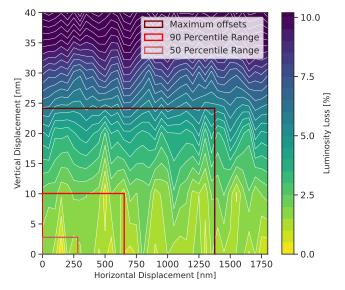
Vibrations Impact on FCC-ee's Luminosity

Horizontal displacements are small


Vertical displacements are large

CLAPP

Luminosity Impact


- Luminosity is computed via a line with one beam-beam element
- Fixed emittance
- Only variable is the offset

Simulated range shows minimal luminosity loss for these vibration levels

Luminosity Impact

Only the vertical offsets have an impact, as expected ⇒ remains small

Conclusions

Current Results:

- Calculations, simulations and methodology implemented
- Horizontal and vertical displacements on quadrupoles
- Vibrations give nanometer level beam offset at IP.1 in first estimate

Current limitations:

- Angular displacements of quadrupoles not included
 - Measurements not performed
 - No asymmetry between beams
- Vibration modes are simplified
- Emittance change not accounted for
- Crossing angles not accounted for
- No field errors or misalignments
- Beam 2 is a mirror of Beam 1