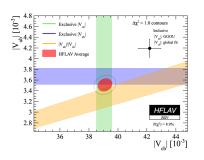
Hadronic uncertainties in $b \rightarrow c$ **transitions**

Marzia Bordone

Taming Hadronic Uncertainties in and Beyond the Standard Model IJCLab 22.10.2025

Long-standing puzzles in semileptonic decays

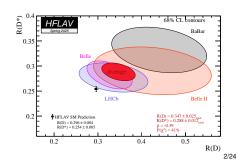


- Inclusive determination: $B \to X_c \ell \bar{\nu}$
 - ⇒ Stable against various datasets
- Exclusive decays: $B \to D^{(*)} \ell \bar{\nu}$, $\Lambda_b \to \Lambda_c \ell \bar{\nu}$
 - ⇒ Lattice QCD results are in tension
 - ⇒ Experimental measurement show various disagreements

Lepton flavour universality

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \rightarrow D^{(*)} \ell \bar{\nu})}$$

- Current discrepancy at the order of 3.3σ
- HFLAV theory prediction has arithmetic average of various determinations



Inclusive decays

Theory framework for $B \to X_c \ell \bar{\nu}$

Double expansion in 1/m and α_s

$$\Gamma_{sl} = \Gamma_0 f(\rho) \left[1 + a_1 \left(\frac{\alpha_s}{\pi} \right) + a_2 \left(\frac{\alpha_s}{\pi} \right)^2 + a_3 \left(\frac{\alpha_s}{\pi} \right)^3 - \left(\frac{1}{2} - p_1 \left(\frac{\alpha_s}{\pi} \right) \right) \frac{\mu_a^2}{m_b^2} + \left(g_0 + g_1 \left(\frac{\alpha_s}{\pi} \right) \right) \frac{\mu_G^2(m_b)}{m_b^2} + d_0 \frac{\rho_D^3}{m_b^3} - g_0 \frac{\rho_{LS}^3}{m_b^3} + \dots \right]$$

- The coefficients a_i, p_i, g_i, d_i are known
- $\mu_{\pi}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}(i\vec{D})^{2}b_{v}|B\rangle_{\mu}$ $\mu_{G}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}b_{v}|B\rangle_{\mu}$
- Efforts ongoing to extract information from Lattice QCD
- [P. Gambino, S. Hashimoto, '20]

 \Rightarrow Physical results for $D_s \to X \ell \bar{\nu}$

[ETMC, '25]

 \Rightarrow Ongoing efforts for $B_{(s)} \to X_c \ell \bar{\nu}$

[Barone et al., '23]

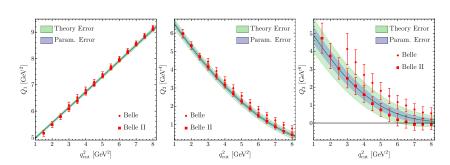
• α_s^3 corrections are known

[Fael, Schönwald, Steinhauser, '20]

- Two ways:
 - Hadronic and lepton mass moments
 - q^2 moments

Global fit

	$m_b^{ m kin}$	\overline{m}_c	μ_{π}^2	μ_G^2	ρ_D^3	ρ_{LS}^3	$10^2 {\rm BR}_{c\ell\nu}$	$10^3 V_{cb} $	$\chi^2_{\rm min}(/{\rm dof})$
without	4.573	1.092	0.477	0.306	0.185	-0.130	10.66	42.16	22.3
q ² -moments	0.012	0.008	0.056	0.050	0.031	0.092	0.15	0.51	0.474
Belle II	4.573	1.092	0.460	0.303	0.175	-0.118	10.65	42.08	42.08 26.4
Belle II	0.012	0.008	0.044	0.049	0.020	0.090	0.15	0.48	0.425
Belle	4.572	1.092	0.434	0.302	0.157	-0.100	10.64	41.96	28.1
Belle	0.012	0.008	0.043	0.048	0.020	20 0.089 0.15 0.48 0.476	0.476		
Belle &	4.572	1.092	0.449	0.301	0.167	-0.109	10.65	42.02	41.3
Belle II	0.012	0.008	0.042	0.048	0.018	0.089	0.15	0.48	0.559



About QED effects in inclusive decays

Why do we care about QED Effects?

- We want to match the theory description with the experimental measurements that are always affected by photon emissions
- The MC PHOTOS accounts for QED effects, reporting results which can be compared with the non-radiative theory predictions
- PHOTOS knows only about real emission and obtains the virtual part by normalisation

$$\frac{d\Gamma}{dzdx} = \mathcal{F}^{(0)}(\omega_{\rm virtual} + \omega_{\rm real}) \Rightarrow \int dx(\omega_{\rm virtual} + \omega_{\rm real}) = 1$$

Are virtual corrections under control?

QED effects for inclusive V_{cb}

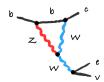
1. Collinear logs: captured by splitting functions

$$\sim \frac{\alpha_e}{\pi} \log^2 \left(\frac{m_b^2}{m_e^2} \right)$$

2. Threshold effects or Coulomb terms

$$\sim \frac{2\pi\alpha_e}{3}$$

3. Wilson Coefficient



$$\sim \frac{\alpha_e}{\pi} \left[\log \left(\frac{M_Z^2}{\mu^2} \right) - \frac{11}{6} \right]$$

- The total branching ratio is not affected by large logs due to KLN theorem
- The large corrections are from the Wilson Coefficient and the threshold effects

- Large shift of the branching ratio of the same order of the current error on V_{cb}
- How do we incorporate in the current datasets?
 - → At the moment possible only for BaBar data
 - ⇒ The global fit changes minimally

Finauri, Gambino, '23 Carvunis, Finauri, Gambino, Jung, Mächler

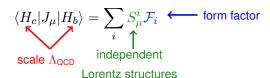
Moments are less sensitive because they are normalised

Exclusive decays

Exclusive $b \rightarrow c$ matrix elements

$$\langle H_c | J_\mu | H_b \rangle = \sum_i S^i_\mu \mathcal{F}_i$$

Exclusive $b \rightarrow c$ matrix elements



Exclusive $b \rightarrow c$ matrix elements

$$\langle H_c|J_{\mu}|H_b\rangle = \sum_i S_{\mu}^i \mathcal{F}_i \qquad \text{form factor}$$

$$\text{scale } \Lambda_{\text{QCD}} \qquad \text{independent}$$

$$\text{Lorentz structures}$$

Form factors determinations

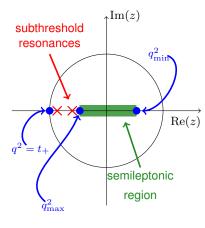
- Lattice QCD
- QCD SR, LCSR

only points at specific kinematic points

Form factors parametrisations

- HQET (CLN + improvements) ⇒ reduce independent degrees of freedom
- Analytic properties → BGL

data points needed to fix the coefficients of the expansion



- in the complex plane form factors are real analytic functions
- q^2 is mapped onto the conformal complex variable z

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

• q^2 is mapped onto a disk in the complex z plane, where $|z(q^2, t_0)| < 1$

$$F_{i} = \frac{1}{P_{i}(z)\phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}$$
$$\sum_{k=0}^{n_{i}} |a_{k}^{i}|^{2} < 1$$

How to apply unitarity

• Penalty function in the χ^2 or likelihood

[P. Gambino, M. Jung, S. Schacht, '19]

$$\chi^2 \to \chi^2(a_k^i, a_k^i|_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)$$

How to apply unitarity

• Penalty function in the χ^2 or likelihood

[P. Gambino, M. Jung, S. Schacht, '19]

$$\chi^2 \to \chi^2(a_k^i, a_k^i|_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)$$

Dispersive Matrix Method

[M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, '21]
[G. Martinelli, S. Simula, L. Vittorio, '21,'23]

$$\mathbf{M} = \begin{pmatrix} \chi & \phi f & \phi_1 f_1 & \phi_2 f_2 & \dots & \phi_N f_N \\ \phi f & \frac{1}{1-z^2} & \frac{1}{1-zz_1} & \frac{1}{1-zz_2} & \dots & \frac{1}{1-zz_N} \\ \phi_1 f_1 & \frac{1}{1-z_{12}} & \frac{1}{1-z_1} & \frac{1}{1-z_{12}z} & \dots & \frac{1}{1-z_{12}z_N} \\ \phi_2 f_2 & \frac{1}{1-z_{22}} & \frac{1}{1-z_{22}} & \frac{1}{1-z_2^2} & \dots & \frac{1}{1-z_{22}z_N} \\ \dots & \dots & \dots & \dots & \dots \\ \phi_N f_N & \frac{1}{1-z_N z_1} & \frac{1}{1-z_N z_1} & \frac{1}{1-z_N z_2} & \dots & \frac{1}{1-z_N^2} \end{pmatrix}$$

$$\det \mathbf{M} > 0 \Rightarrow \beta - \sqrt{\gamma} \le f_0 \le \beta + \sqrt{\gamma}$$

How to apply unitarity

• Penalty function in the χ^2 or likelihood

[P. Gambino, M. Jung, S. Schacht, '19]

$$\chi^2 \to \chi^2(a_k^i, a_k^i|_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)$$

Dispersive Matrix Method

[M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, '21]
[G. Martinelli, S. Simula, L. Vittorio, '21,'23]

$$\mathbf{M} = \begin{pmatrix} \chi & \phi f & \phi_1 f_1 & \phi_2 f_2 & \dots & \phi_N f_N \\ \phi f & \frac{1}{1-z^2} & \frac{1}{1-z_1} & \frac{1}{1-z_2} & \dots & \frac{1}{1-zz_N} \\ \phi_1 f_1 & \frac{1}{1-z_{12}} & \frac{1}{1-z_1^2} & \frac{1}{1-z_{12}} & \dots & \frac{1}{1-z_{2N}} \\ \phi_2 f_2 & \frac{1}{1-z_2z} & \frac{1}{1-z_2z_1} & \frac{1}{1-z_2^2} & \dots & \frac{1}{1-z_2z_N} \\ \dots & \dots & \dots & \dots & \dots \\ \phi_N f_N & \frac{1}{1-z_Nz_1} & \frac{1}{1-z_Nz_1} & \frac{1}{1-z_Nz_2} & \dots & \frac{1}{1-z_N^2} \end{pmatrix}$$

$$\det \mathbf{M} > 0 \Rightarrow \beta - \sqrt{\gamma} \le f_0 \le \beta + \sqrt{\gamma}$$

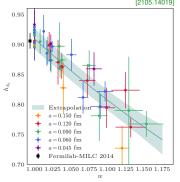
Bayesian inference

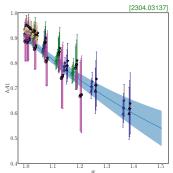
[J. Flynn, A. Jüttner, T. Tsang, '23] $heta(1-|\mathbf{a}|^2)$

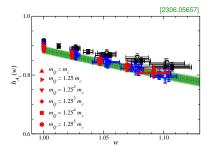
$$\langle g(\mathbf{a}) \rangle = \mathcal{N} \int d\mathbf{a} \, g(\mathbf{a}) \, \pi(\mathbf{a}|\mathbf{f}, C_{\mathbf{f}}) \pi_{\mathbf{a}}$$

contains the lattice χ^2

$B \to D^*$ from lattice away from zero recoil

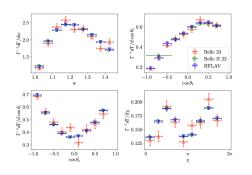


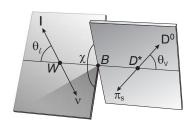




- Are these results compatible with each other?
- Are they compatible with experimental data?

New $B \to D^* \ell \bar{\nu}$ Belle and Belle II data



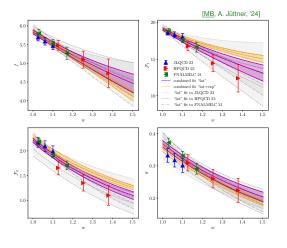


- $$\begin{split} \frac{d\Gamma}{dw d\cos(\theta_{\ell}) d\cos(\theta_{v}) d\chi} &= \frac{3G_{F}^{2}}{1024\pi^{4}} |V_{cb}|^{2} \eta_{EW}^{2} M_{B} r^{2} \sqrt{w^{2} 1} q^{2} \\ &\times \left\{ (1 \cos(\theta_{\ell}))^{2} \sin^{2}(\theta_{v}) H_{+}^{2}(w) + (1 + \cos(\theta_{\ell}))^{2} \sin^{2}(\theta_{v}) H_{-}^{2}(w) \right. \\ &+ 4 \sin^{2}(\theta_{\ell}) \cos^{2}(\theta_{v}) H_{0}^{2}(w) 2 \sin^{2}(\theta_{\ell}) \sin^{2}(\theta_{v}) \cos(2\chi) H_{+}(w) H_{-}(w) \\ &- 4 \sin(\theta_{\ell}) (1 \cos(\theta_{\ell})) \sin(\theta_{v}) \cos(\theta_{v}) \cos(\chi) H_{+}(w) H_{0}(w) \\ &+ 4 \sin(\theta_{\ell}) (1 + \cos(\theta_{\ell})) \sin(\theta_{v}) \cos(\theta_{v}) \cos(\chi) H_{-}(w) H_{0}(w) \right\} \end{split}$$
- kinematic variableAvailable on HEPData with

Between 7 to 10 bins per

- Available on HEPData with correlations
- Angular observables analysis are available, data just newly released

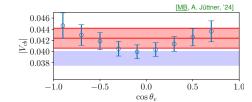
Fits to Lattice and Experimental data



- Good fit quality for fits to LQCD data or LQCD + experimental data
- Adding experimental data reduces the uncertainties, especially at large w
- Especially for F₁ and F₂, the shape changes between two datasets

$|V_{cb}|$ extraction

$$|V_{cb}|_{\alpha,i} = \left(\Gamma_{\rm exp} \left[\frac{1}{\Gamma} \frac{d\Gamma}{d\alpha}\right]_{\rm exp}^{(i)} / \left[\frac{d\Gamma_0}{d\alpha}(\mathbf{a})\right]_{\rm lat}^{(i)}\right)^{1/2}$$



Blue band

- Frequentist fit p-value $\sim 0\%$
- · Affected by d'Agostini Bias
 - ⇒ Severe especially for FNAL/MILC and HPQCD data

Red band

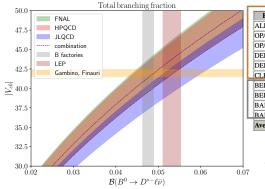
- Frequentist fit p-value $\sim 0\%$
- Akaike-Information-Criterion analysis: average over all possible fits with at least two data points and then weighted average

$$w_{\{\alpha,i\}} = \mathcal{N}^{-1} \exp\left(-\frac{1}{2}(\chi^2_{\{\alpha,i\}} - 2N_{\mathrm{dof},\{\alpha,i\}})\right) \qquad \text{where} \quad \mathcal{N} = \sum_{\mathrm{sets}\,\{\alpha,i\}} w_{\mathrm{set}}$$

$$|V_{cb}| = \langle |V_{cb}| \rangle \equiv \sum w_{\rm set} |V_{cb}|_{\rm set}$$

Exclusive V_{cb} from total branching fraction

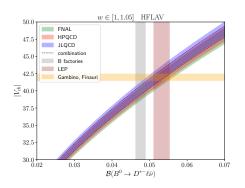
MB, A. Jüttner, '23 + WIP

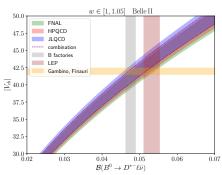


Experiment	BF (rescaled) [%]	Parameters		
ALEPH	5.56 +/- 0.27 +/- 0.33	input parameters		
OPAL incl	6.13 +/- 0.28 +/- 0.57	input parameters		
OPAL excl	5.17 +/- 0.20 +/- 0.36	input parameters		
DELPHI incl	4.96 +/- 0.14 +/- 0.35	input parameters		
DELPHI excl	5.23 +/- 0.20 +/- 0.42	input parameters		
CLEO	6.17 +/- 0.19 +/- 0.37	input parameters		
BELLE untagged	4.90 +/- 0.02 +/- 0.16	input parameters		
BELLE tagged	4.95 +/- 0.11 +/- 0.22	input parameters		
BABAR untagged	4.52 +/- 0.04 +/- 0.33	input parameters		
BABAR tagged	5.26 +/- 0.16 +/- 0.31	input parameters		
Average	5.06 +/- 0.02 +/- 0.12	chi2/dof = 16.0/9 (CL = 0.06		

 Shape information shifts the total branching fraction prediction

Thanks to C. Schwanda for the averages!





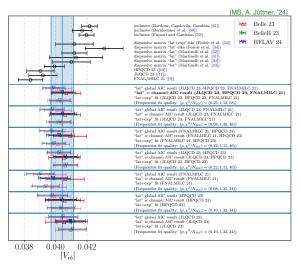
B factories: $|V_{cb}|=40.07\pm0.86$

LEP: $|V_{cb}| = 42.37 \pm 1.09$

B factories: $|V_{cb}|=41.24\pm1.15$

LEP: $|V_{cb}| = 43.60 \pm 1.35$

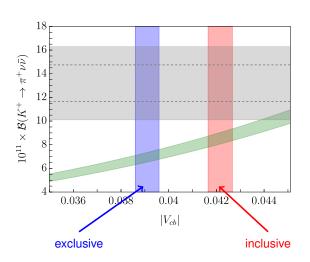
$|V_{cb}|$ - Summary



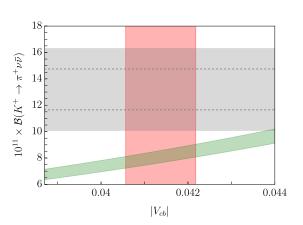
- Residual 2σ difference with inclusive
- The AIC produces slightly larger uncertainties, overall all results are quite consistent

$$\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu}) \propto \left| \lambda_{ts} \right|^{2} \quad \lambda_{ts} \equiv \lambda |V_{cb}|^{2} \left[\left(\bar{\rho} - 1 \right) \left(1 - \frac{\lambda^{2}}{2} \right) + i \bar{\eta} \left(1 + \frac{\lambda^{2}}{2} \right) \right] + \mathcal{O}(\lambda^{4})$$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \propto |\lambda_{ts}|^2 \quad \lambda_{ts} \equiv \lambda |V_{cb}|^2 \left[(\bar{\rho} - 1) \left(1 - \frac{\lambda^2}{2} \right) + i \bar{\eta} \left(1 + \frac{\lambda^2}{2} \right) \right] + \mathcal{O}(\lambda^4)$$



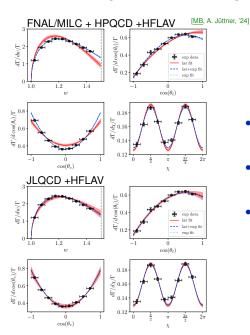
$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \propto \left|\lambda_{ts}\right|^2 \quad \lambda_{ts} \equiv \lambda \left|V_{cb}\right|^2 \left[(\bar{\rho} - 1) \left(1 - \frac{\lambda^2}{2}\right) + i\bar{\eta} \left(1 + \frac{\lambda^2}{2}\right) \right] + \mathcal{O}(\lambda^4)$$



$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})^{\text{SM}} = (8.09 \pm 0.63) \times 10^{-11}$$

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})^{\text{SM}} = (2.58 \pm 0.30) \times 10^{-11}$

Comparison with experimental data



- Fit to HPQCD and FNAL/MILC misses experimental points
- BGL fit to experimental and lattice data has p-value $\sim 18\%$
- BGL coefficients shift of a few σ between using or not experimental data

The Heavy Quark Expansion in a nutshell

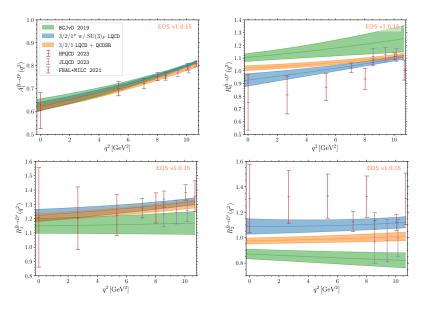
The HQE exploits the fact that the b and c quarks are heavy

- Double expansion in $1/m_{b,c}$ and α_s
- The HQE symmetries relate $B^{(*)} \to D^{(*)}$ form factors
- At $1/m_{b,c}$ drastic reduction of independent degrees of freedom

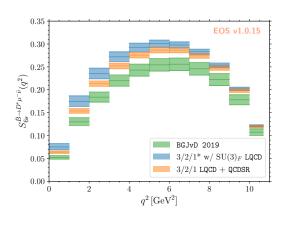
With current precision we know we have to go beyond the $1/m_{b,c}$ order and we use the following form

$$F_i = \left(a_i + b_i \frac{\alpha_s}{\pi}\right) \xi + \frac{\Lambda_{\rm QCD}}{2m_b} \sum_j c_{ij} \xi_{\rm SL}^j + \frac{\Lambda_{\rm QCD}}{2m_c} \sum_j d_{ij} \xi_{\rm SL}^j + \left(\frac{\Lambda_{\rm QCD}}{2m_c}\right)^2 \sum_j g_{ij} \xi_{\rm SSL}^j$$

- Total of 10 independent structures to be extracted from data
- We use the conformal mapping $q^2\mapsto z(q^2)$ to include bounds and have a well-behaved series

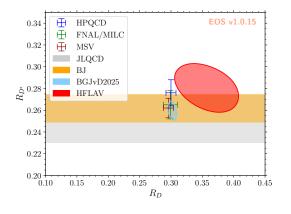


An example: $A_{\rm FB}$



- Using different datasets results in different theory predictions
- Current experimental measurements still use larger bins
 - ⇒ These effects are less evident in wider bins

Impact on lepton flavour universality



- Various predictions all agree within the 1σ range
- For BJ we apply a systematic error to account that all central values from the 3 LQCD collaborations are covered
- BGJvD has smaller uncertainties due to the correlations in the HQET framework and the inclusion of B → D data

Where do we stand and where do we go next?

Experimental data

- New measurements of inclusive and exclusive branching fractions
- New shape measurements at LHCb
- Where are the differences between Belle and Belle II coming from?

Theory

- For inclusive decays, lattice has started, and results will come
- For exclusive decays, we can try to validate the LQCD results a posteriori, but major or new reanalyses are needed

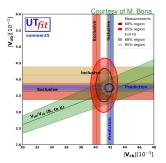
Where do we stand and where do we go next?

Experimental data

- New measurements of inclusive and exclusive branching fractions
- New shape measurements at LHCb
- Where are the differences between Belle and Belle II coming from?

Theory

- · For inclusive decays, lattice has started, and results will come
- For exclusive decays, we can try to validate the LQCD results a posteriori, but major or new reanalyses are needed



- \Rightarrow Unitarity fits without inputs on V_{cb} and V_{ub} predict very specific values
- ⇒ Direct determinations cannot be superseded, but maybe we can use this as a guideline to focus on specific issues

Appendix

Unitarity Bounds

$$=i\int d^4x\,e^{iqx}\langle 0|T\left\{j_{\mu}(x),j_{\nu}^{\dagger}(0)\right\}|0\rangle=(g_{\mu\nu}-q_{\mu}q_{\nu})\Pi(q^2)$$

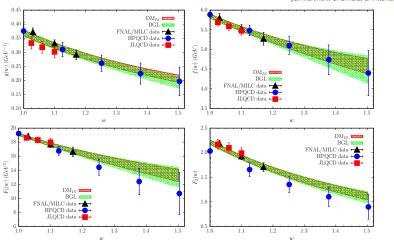
- If $q^2 \ll m_b^2$ we can calculate $\Pi(q^2)$ via perturbative techniques $\Rightarrow \chi(0)$
- Dispersion relations link $\operatorname{Im}\left(\Pi(q^2)\right)$ to sum over matrix elements

$$\sum_{i} \left| F_i(0) \right|^2 < \chi(0)$$

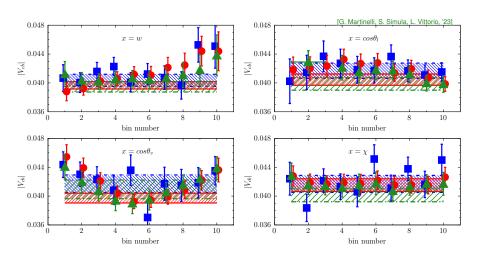
[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over <u>all</u> possible states hadronic decays mediated by a current $\bar{c}\Gamma_{\mu}b$
 - The unitarity bounds are more effective the most states are included in the sum
 - The unitarity bounds introduce correlations between FFs of different decays
 - $B_s \to D_s^{(*)}$ decays are expected to be of the same order of $B_{u,d} \to D_{u,d}^{(*)}$ decays due to $SU(3)_F$ simmetry

Comparison with DM

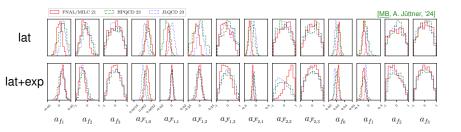


Results from the DM method



⇒ similar behaviour as we observe

Posterior distribution



- Small shifts between lattice only and lattice + data
- Higher order coefficients well constrained by unitarity
- a_{F2,2} has a strange behaviour, maybe kinematic constraints?