Analytic structures in $b \to s\ell\ell$

)

Helmholtz-Institut für Strahlen- und Kernphysik, Bethe Center for Theoretical Physics, Universität Bonn

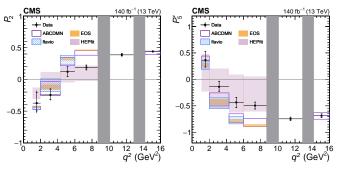
October 23, 2025

Taming Hadronic Uncertainties in and beyond the Standard Model

in collaboration with Martin Hoferichter and Bastian Kubis

Motivation: $b \rightarrow s\ell\ell$ flavor anomaly

• Flavor anomalies: sizable deviations from SM predictions for decay rates and angular observables (e.g. P_2 , P_5') in $b \to s\mu\mu$ decays (e.g. $B^0 \to K^{*0}\mu^+\mu^-$)



Credit: CMS 2024

- → BSM effects?
- Unaccounted non-local effects in form factors mimicking BSM effects?

Motivation: non-local form factors in $B \to K^{(*)}\ell\ell$

• Hadronic matrix element for $B \to K^{(*)}\ell\ell$ in Weak Effective Theory

$$\mathcal{A}ig(B
ightarrow \mathcal{K}^{(*)}\ell\ellig) \sim \mathcal{N}igg[ig(C_9 L_V^\mu + C_{10} L_A^\muig) \mathcal{F}_{m{\mu}} - rac{L_V^\mu}{q^2}ig(C_7 \mathcal{F}_{m{7},m{\mu}} + m{\mathcal{H}}_{m{\mu}}ig)igg]$$

conventions from Gubernari, van Dyk, Virto 2021

- ullet Local form factors (FFs) \mathcal{F}_{μ} and $\mathcal{F}_{\mathcal{T},\mu}$
 - \hookrightarrow known with good precision

• Non-local FFs \mathcal{H}_{μ}

- \hookrightarrow still with large uncertainties
- \hookrightarrow calculated with Operator Product Expansion, QCD factorization, . . .
- → need good understanding of the analytic structure

Analytic structure of hadronic form factors

- Fundamental principles: analyticity (causality) and unitarity (probability conservation)
- Start with analyticity: amplitudes are analytic in all kinematic invariants
 - Meson masses $p^2 = M_B^2$, $(p q)^2 = M_{K^{(*)}}^2$ \hookrightarrow only defined on-shell
 - Photon virtuality q²
 - \hookrightarrow can define analytic continuation for arbitrary q^2 in the complex plane
- Singularities in q²
 - Poles: (infinitely) narrow bound states

$$\hookrightarrow q^2 = \{M_{J/\psi}^2, M_{\psi(2S)}^2\}$$

- Thresholds: branch points of $\gamma^* \to \{\pi^+\pi^-, D\bar{D}, \ldots\}$ cuts $\hookrightarrow q^2 = \{4M_\pi^2, 4M_D^2, \ldots\}$
- Anomalous thresholds: anomalous branch points
 - → kinematic singularities, e.g., of the triangle diagram
 - \hookrightarrow position depends on all the masses

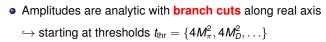
Dispersion relations

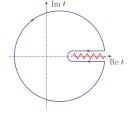
Next up: unitarity of the S-matrix implies unitarity relation

$$(\text{set } t = q^2)$$

$$\operatorname{disc} \mathcal{M}_{\mathit{if}}(t) \equiv \lim_{\varepsilon \to 0} \left[\mathcal{M}_{\mathit{if}}(t + \mathrm{i}\varepsilon) - \mathcal{M}_{\mathit{if}}(t - \mathrm{i}\varepsilon) \right] = \mathrm{i} \sum_{n} \mathcal{M}_{\mathit{fn}}^* \, \mathcal{M}_{\mathit{in}}$$

 \hookrightarrow summing over intermediate states $n \in \{\pi^+\pi^-, D\bar{D}, \ldots\}$





- Know discontinuity along cuts from unitarity relation
- Reconstruct from discontinuity via dispersion relation:

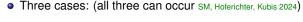
$$\mathcal{M}_{\mathit{if}}(t) = \frac{1}{2\pi \mathsf{i}} \oint \mathrm{d}t' \, \frac{\mathcal{M}_{\mathit{if}}(t')}{t'-t} = \frac{1}{2\pi \mathsf{i}} \int_{t_{\mathsf{hr}}}^{\infty} \mathrm{d}t' \, \frac{\mathsf{disc}\, \mathcal{M}_{\mathit{if}}(t')}{t'-t}$$

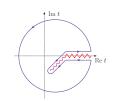
Dispersion relations with anomalous thresholds

- Need to modify dispersion relation in presence of additional singularities!
 - \hookrightarrow anomalous threshold leading to additional cuts

$$\mathcal{M}_{\it if}(t) = \frac{1}{2\pi \mathrm{i}} \int_{t_{\rm thr}}^{\infty} \mathrm{d}t' \; \frac{\mathrm{disc}\, \mathcal{M}_{\it if}(t')}{t'-t} + \frac{1}{2\pi \mathrm{i}} \int_{0}^{1} \mathrm{d}x \; \frac{\partial t_{\it x}}{\partial x} \, \frac{\mathrm{disc}_{\rm an}\, \mathcal{M}_{\it if}(t_{\it x})}{t_{\it x}-t}$$

 \hookrightarrow with integration contour $t_x = x t_{thr} + (1 - x) t_{anom}$







Anomalous thresholds: where do they come from?

Landau equations: singularities of general loop integral

$$\int \prod_{j=1}^L \frac{\mathrm{d}^4 \ell_j}{(2\pi)^4} \prod_{i=1}^n \frac{\mathrm{i}}{k_i^2 - m_i^2 + i\varepsilon} \quad \text{singular when} \quad \begin{cases} \alpha_i (k_i^2 - m_i^2) = 0 & \text{ for all } i = 1, \dots, n \\ \sum_{j=1}^n \alpha_j k_j \cdot \frac{\partial k_j}{\partial \ell_j} = 0 & j = 1, \dots, L \end{cases}$$

- \hookrightarrow "Leading singularity" \Leftrightarrow all Feynman parameters $\alpha_i \neq 0$
- \hookrightarrow "Subleading singularity" \Leftrightarrow some Feynman parameters $\alpha_i = 0$

Anomalous thresholds: where do they come from?

Landau equations: singularities of general loop integral

$$\int \prod_{j=1}^L \frac{\mathrm{d}^4 \ell_j}{(2\pi)^4} \prod_{i=1}^n \frac{\mathrm{i}}{k_i^2 - m_i^2 + i\varepsilon} \quad \text{singular when} \quad \begin{cases} \alpha_i (k_i^2 - m_i^2) = 0 & \text{ for all } i = 1, \dots, n \\ \sum\limits_{i=1}^n \alpha_i k_i \cdot \frac{\partial k_i}{\partial \ell_j} = 0 & j = 1, \dots, L \end{cases}$$

- \hookrightarrow "Leading singularity" \Leftrightarrow all Feynman parameters $\alpha_i \neq 0$
- \hookrightarrow "Subleading singularity" \Leftrightarrow some Feynman parameters $\alpha_i = 0$
- Leading singularities behave as (scalar case)

$$\sim egin{cases} (t-t_0)^{rac{4L-n-1}{2}} \log(t-t_0), & ext{if } 4L-n-1 ext{ is even and nonnegative,} \ (t-t_0)^{rac{4L-n-1}{2}}, & ext{else.} \end{cases}$$

Anomalous thresholds: where do they come from?

Landau equations: singularities of general loop integral

$$\int \prod_{j=1}^L \frac{\mathrm{d}^4 \ell_j}{(2\pi)^4} \prod_{i=1}^n \frac{\mathrm{i}}{k_i^2 - m_i^2 + i\varepsilon} \quad \text{singular when} \quad \begin{cases} \alpha_i (k_i^2 - m_i^2) = 0 & \text{ for all } i = 1, \dots, n \\ \sum\limits_{i=1}^n \alpha_i k_i \cdot \frac{\partial k_i}{\partial \ell_j} = 0 & j = 1, \dots, L \end{cases}$$

- \hookrightarrow "Leading singularity" \Leftrightarrow all Feynman parameters $\alpha_i \neq 0$
- \hookrightarrow "Subleading singularity" \Leftrightarrow some Feynman parameters $\alpha_i = 0$
- Leading singularities behave as (scalar case)

$$\sim \begin{cases} (t-t_0)^{\frac{4L-n-1}{2}}\log(t-t_0), & \text{if } 4L-n-1 \text{ is even and nonnegative,} \\ (t-t_0)^{\frac{4L-n-1}{2}}, & \text{else.} \end{cases}$$

• Two-particle threshold: $L=1, n=2 \rightarrow$ behaves as $\sim (t-t_0)^{1/2}$

$$\alpha_i(k_i^2 - m_i^2) = 0, \qquad \alpha_1 k_1 + \alpha_2 k_2 = 0 \qquad \Rightarrow \qquad t = \rho^2 = (m_1 \pm m_2)^2$$
 $k_2 = \ell - p$

 \hookrightarrow Two-particle threshold at $t_{\text{thr}} = (m_1 + m_2)^2$

 \hookrightarrow Pseudothreshold $(m_1-m_2)^2 \to$ left-hand cut on 2^{nd} sheet

$$k_2 = \ell - p$$

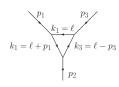
$$p$$

$$k_1 = \ell$$

Analytic structure of the triangle diagram

• Triangle diagram: L = 1, n = 3

$$\alpha_i(k_i^2 - m_i^2) = 0, \qquad \sum_{i=1}^3 \alpha_i k_i = 0$$



Analytic structure of the triangle diagram

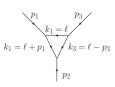
• Triangle diagram: L = 1, n = 3

$$\alpha_i(k_i^2 - m_i^2) = 0, \qquad \sum_{i=1}^3 \alpha_i k_i = 0$$

Normal thresholds: subleading singularities

$$\hookrightarrow$$
 e.g. $\alpha_1=0 \Rightarrow t \equiv p_2^2=(m_2\pm m_3)^2$

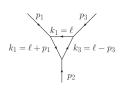
 \hookrightarrow inherits $\sim (t-t_0)^{1/2}$ behavior



Analytic structure of the triangle diagram

• Triangle diagram: L = 1, n = 3

$$\alpha_i(k_i^2 - m_i^2) = 0, \qquad \sum_{i=1}^3 \alpha_i k_i = 0$$



Normal thresholds: subleading singularities

$$\hookrightarrow$$
 e.g. $\alpha_1=0 \Rightarrow t \equiv p_2^2=(m_2\pm m_3)^2$

- \hookrightarrow inherits $\sim (t-t_0)^{1/2}$ behavior
- Anomalous threshold: all $\alpha_i \neq 0 \rightarrow$ behaves as $\sim \log(t t_0)$

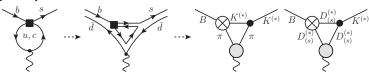
$$\hookrightarrow \mathbf{t_{\pm}} \equiv \rho_1^2 \frac{m_1^2 + m_3^2}{2m_1^2} + \rho_3^2 \frac{m_1^2 + m_2^2}{2m_1^2} - \frac{\rho_1^2 \rho_3^2}{2m_1^2} - \frac{\left(m_1^2 - m_2^2\right) \left(m_1^2 - m_3^2\right)}{2m_1^2} \pm \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} + \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_3^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right) \lambda \left(\rho_3^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2, m_1^2, m_2^2\right)} = \frac{1}{2m_1^2} \sqrt{\lambda \left(\rho_1^2,$$

- $\hookrightarrow \text{can be complex-valued}$
- $\hookrightarrow t_{-}$ always on 2nd sheet
- $\hookrightarrow t_+$ can move to 1st sheet, if external masses big enough (*B* decays!),

$$m_3p_1^2 + m_2p_3^2 - (m_2 + m_3)(m_1^2 + m_2m_3) > 0$$

Triangle loops in non-local $B \to K^{(*)}\gamma^*$ form factors

• Triangle loop contributions to non-local FFs:



- Start with *u*-quark loop and $\pi\pi$ intermediate states:
 - ullet CKM-suppressed $\sim \lambda^4$ compared to $\emph{c-quark loop} \sim \lambda^2$
 - Input (form factors, branching ratios, polarization fractions ...) well known
 - Sizable energy gap to next state $\pi\omega$ \hookrightarrow cf. various $D_{(s)}^{(*)} \bar{D}_{(s)}^{(*)}$ for hadronization of charm loop within close proximity
- Build dispersive framework

Form factor dispersion relation

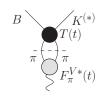
• Unitarity relation for $B \to K^{(*)} \gamma^*$ FF with intermediate $\pi \pi$

$$\operatorname{disc} \Pi(t) = 2i t \sigma_{\pi}(t)^{3} T(t) F_{\pi}^{V*}(t)$$

 \hookrightarrow pion vector FF $F_{\pi}^{V}(t)$, $B \to K^{(*)}\pi\pi$ P-wave amplitude T(t)

FF dispersion relation

$$\Pi(t) = \frac{1}{\pi} \int_{4M_{-}^{2}}^{\infty} dt' \, \frac{t' \, \sigma_{\pi}(t')^{3} \, T(t') \, F_{\pi}^{V*}(t')}{t' - t}$$



Form factor dispersion relation

• Unitarity relation for $B o K^{(*)} \gamma^*$ FF with intermediate $\pi\pi$

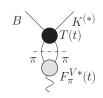
disc
$$\Pi(t) = 2i t \sigma_{\pi}(t)^3 T(t) F_{\pi}^{V*}(t)$$

 \hookrightarrow pion vector FF $F_{\pi}^{V}(t)$, $B \to K^{(*)}\pi\pi$ P-wave amplitude T(t)

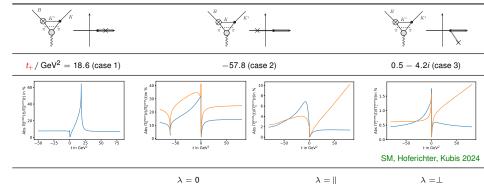
FF dispersion relation

$$\Pi(t) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \mathrm{d}t' \, \frac{t' \, \sigma_{\pi}(t')^3 \, T(t') \, F_{\pi}^{V*}(t')}{t' - t}$$

- Left-hand cut from crossed-channel $K^{(*)}$ -exchange in T(t)
 - \hookrightarrow leads to triangle topology
 - \hookrightarrow add anomalous cut, $\Pi(t) = \Pi^{\text{norm}}(t) + \Pi^{\text{anom}}(t)$
- Simple Born amplitude violates unitarity (Watson's theorem)
 - \hookrightarrow need to include $\pi\pi$ -rescattering



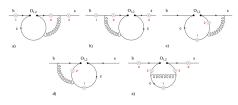
Anomalous fractions for $B^0 o K^{(*)0} \, \gamma^*$



- How important are **anom. contributions?** \to anom. fraction $|\Pi^{anom}(t)/\Pi^{norm}(t)|$
- All parameters fixed from data!
 - \hookrightarrow one ambiguity left due to lack of Dalitz plot data (blue and orange curve)
- Anomalous contributions can be ≥ 10% away from thresholds, resonances

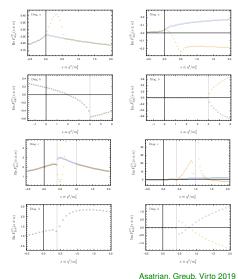
Comparison: analytic structures in $b \to s\ell\ell$ at two-loop

- What about the quark level?
- Consider $b \to s\ell\ell$ at two-loop order



Asatrian, Greub, Virto 2019

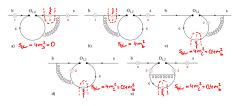
Leads to interesting analytic structures



Asaman, Greub, Virto 2019

Comparison: analytic structures in $b \rightarrow s\ell\ell$ at two-loop

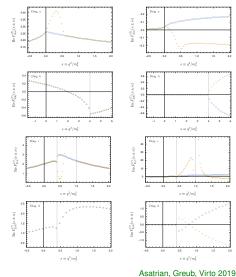
- What about the quark level?
- Consider $b \to s\ell\ell$ at two-loop order



Asatrian, Greub, Virto 2019

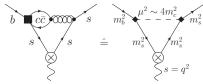
- Leads to interesting analytic structures

 - \hookrightarrow what is going on with the rest?



Analytic structure of $F_{2,(a)}^{(7)}$

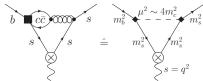
• Example: diagram $F_{2,(a)}^{(7)}$ from Asatrian, Greub, Virto 2019



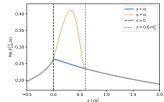
- Which singularities in s do we expect? ($m_c^2=0.1\ m_b^2\ {\rm and}\ m_s^2=0$)
 - Two-particle $s\bar{s}$ threshold at $s=4m_s^2=0 o$ unitarity cut
 - Anomalous thresholds $s_- = 0$ and $s_+ = m_b^2 \mu^2 \sim m_b^2 4m_c^2 = 0.6 m_b^2$ \Rightarrow on 2nd sheet, i.e. at $s - i\varepsilon$ on the unitarity cut

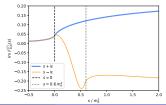
Analytic structure of $F_{2,(a)}^{(7)}$

• Example: diagram $F_{2,(a)}^{(7)}$ from Asatrian, Greub, Virto 2019



- Which singularities in s do we expect? ($m_c^2 = 0.1 m_b^2$ and $m_s^2 = 0$)
 - Two-particle $s\bar{s}$ threshold at $s=4m_s^2=0 o$ unitarity cut
 - Anomalous thresholds $s_- = 0$ and $s_+ = m_b^2 \mu^2 \sim m_b^2 4m_c^2 = 0.6 m_b^2$ \rightarrow on 2nd sheet, i.e. at $s i\varepsilon$ on the unitarity cut
- Matches the observation (plots from Asatrian, Greub, Virto 2019 with more data points)

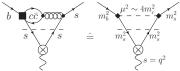




Want dispersion relation to confirm suspected analytic structures

$$F_{2,(a)}^{(7)}(s) = F_{2,(a)}^{(7)}(s_0) + \frac{s-s_0}{2\pi \mathrm{i}} \int_{s_{\mathrm{thr}}=0}^{\infty} \mathrm{d}s' \, \frac{\mathrm{disc}\, F_{2,(a)}^{(7)}(s')}{(s'-s_0)(s'-s)}$$

Discontinuity determined by two-particle cut

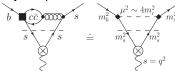


- \hookrightarrow take known discontinuity from scalar triangle diagram (with $\mu^2=4m_c^2$)
- → adjust prefactors for correct threshold behavior

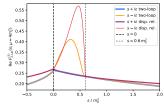
Want dispersion relation to confirm suspected analytic structures

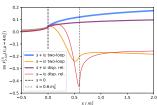
$$F_{2,(a)}^{(7)}(s) = F_{2,(a)}^{(7)}(s_0) + rac{s-s_0}{2\pi \mathrm{i}} \int_{s_{\mathrm{thr}}=0}^{\infty} \mathrm{d}s' \, rac{\mathsf{disc}\, F_{2,(a)}^{(7)}(s')}{(s'-s_0)(s'-s)}$$

Discontinuity determined by two-particle cut



- \hookrightarrow take known discontinuity from scalar triangle diagram (with $\mu^2 = 4m_c^2$)
- \hookrightarrow adjust prefactors for correct threshold behavior





 \hookrightarrow goes in promising direction, but can we do better?

- Problem: we fixed $\mu^2 = 4m_c^2$
- ullet Solution: introduce spectral density function $\Pi(\mu^2)$ and allow for any $\mu^2 \geq 4 m_c^2$

$$F_{2,(a)}^{(7)}(s) = F_{2,(a)}^{(7)}(s_0) + \frac{s-s_0}{2\pi \mathrm{i}} \int_{4m_c^2}^{\infty} \mathrm{d}\mu^2 \, \Pi(\mu^2) \int_0^{\infty} \mathrm{d}s' \, \frac{\mathsf{disc} \, F_{\mu^2}(s')}{(s'-s_0)(s'-s)}$$

- \hookrightarrow "smears out" anomalous threshold along $s_+=m_b^2-\mu^2$ between $[0,0.6~m_b^2]$
- Model $\Pi(\mu^2)$ via (3rd order) conformal polynomial in $z(\mu^2)$ and fit to $F_{2,(a)}^{(7)}(s)$

$$z(\mu^2) \equiv z(\mu^2, \mu_{\text{thr}}^2 = 4m_c^2, \mu_0^2 = 0) = \frac{\sqrt{\mu_{\text{thr}}^2 - \mu^2} - \sqrt{\mu_{\text{thr}}^2 - \mu_0^2}}{\sqrt{\mu_{\text{thr}}^2 - \mu^2} + \sqrt{\mu_{\text{thr}}^2 - \mu_0^2}}$$

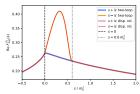
- Problem: we fixed $\mu^2 = 4m_c^2$
- ullet Solution: introduce spectral density function $\Pi(\mu^2)$ and allow for any $\mu^2 \geq 4 m_c^2$

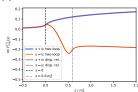
$$F_{2,(a)}^{(7)}(s) = F_{2,(a)}^{(7)}(s_0) + \frac{s-s_0}{2\pi \mathrm{i}} \int_{4m_c^2}^\infty \mathrm{d}\mu^2 \, \Pi(\mu^2) \int_0^\infty \mathrm{d}s' \, \frac{\text{disc} \, F_{\mu^2}(s')}{(s'-s_0)(s'-s)}$$

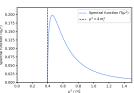
- \hookrightarrow "smears out" **anomalous threshold** along $s_+ = m_b^2 \mu^2$ between $[0, 0.6 \ m_b^2]$
- Model $\Pi(\mu^2)$ via (3rd order) conformal polynomial in $z(\mu^2)$ and fit to $F_{2,(a)}^{(7)}(s)$

$$z(\mu^2) \equiv z(\mu^2, \mu_{ ext{thr}}^2 = 4m_{ ext{c}}^2, \mu_0^2 = 0) = rac{\sqrt{\mu_{ ext{thr}}^2 - \mu^2} - \sqrt{\mu_{ ext{thr}}^2 - \mu_0^2}}{\sqrt{\mu_{ ext{thr}}^2 - \mu^2} + \sqrt{\mu_{ ext{thr}}^2 - \mu_0^2}}$$

ullet Allows one to reproduce $F_{2,(a)}^{(7)}(s)$ from Asatrian, Greub, Virto 2019 very accurately







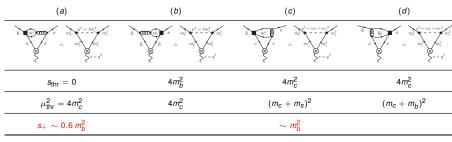
Dispersive representation for $F_{2,(a)}^{(7)}$: cross-checks

• Comparison between dispersion relation and exact result from Asatrian, Greub, Virto 2019

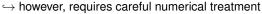
s/m_b^2	Disp. Rel. for $F_{2(a)}^{(7)}(s)$	Exact $F_{2(a)}^{(7)}(s)$ from AGV 2019
-3 + i	0.1033827 + 0.02230829i	0.103381 + 0.022309i
-1 - 2i	0.13457343 - 0.06182213i	0.134573 - 0.061823i
-4.2	0.08568058 + 0.00202792i	0.0856783 + 0.00202803i
$17 + i\epsilon$	0.02918665 + 0.25775442i	0.0292152 + 0.257753i
$17 - i\epsilon$	0.02918665 - 0.25884806i	0.0292152 - 0.258846i

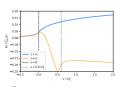
- Accurate up to several digits
 - \hookrightarrow even far away from fit range and in complex plane

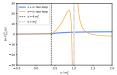
Analytic structure of the two-loop diagrams



- Also considered (b) (d)
 - \hookrightarrow (c) and (d) topologically more complicated
 - \hookrightarrow no triangle topology in $(e) \rightarrow$ analytically simpler
- Anomalous thresholds play a role in (a) and (c)!
 - ⇔ still fulfill "unmodified" dispersion relations
 ("case 1")







Summary and Outlook

- Analytic structure of non-local FFs richer than previously thought

 - \hookrightarrow essential for detailed understanding both on **hadronic** and **quark level**
- Anomalous thresholds are kinematic singularities
 - \hookrightarrow non-trivially depend on all masses involved; position in complex plane different:

hadronic level quark level

- \hookrightarrow not surprising since already normal thresholds differ, e.g., $4 \emph{m}_{c}^{2} \leftrightarrow 4 \emph{M}_{D}^{2}$
- \hookrightarrow supports strategy to match at large space-like q^2

Summary and Outlook

- Analytic structure of non-local FFs richer than previously thought

 - → essential for detailed understanding both on hadronic and quark level
- Anomalous thresholds are kinematic singularities
 - \hookrightarrow non-trivially depend on all masses involved; position in complex plane different:

hadronic level quark level

- \hookrightarrow not surprising since already normal thresholds differ, e.g., $4 \emph{m}_{c}^{2} \leftrightarrow 4 \emph{M}_{D}^{2}$
- \hookrightarrow supports strategy to match at large space-like q^2
- Open questions:
 - Can we quantify anomalous contributions to charm loop?
 - How to bring hadronic and quark picture together?
 - What are the implications for non-local FF predictions?