$B_s \rightarrow \mu^+ \mu^- \gamma$ phenomenology

Diego Guadagnoli CNRS, LAPTh Annecy

$B_s \rightarrow \mu^+ \mu^- \gamma$ phenomenology

Diego Guadagnoli CNRS, LAPTh Annecy

An alternative way to test the existing $b \rightarrow s \mu\mu$ tensions:

- in a different q² region &
- with a decay "contained" in the $B_s \rightarrow \mu^+ \mu^-$ dataset

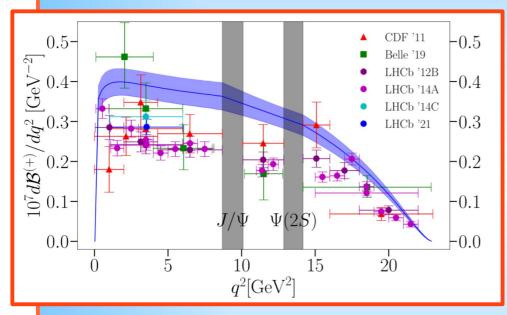
b → *s data tensions*

• $b \rightarrow s \mu^+ \mu^-$ still discrepant w.r.t. SM in several independent channels

b → s data tensions

• $b \rightarrow s \mu^+ \mu^-$ still discrepant w.r.t. SM in several independent channels

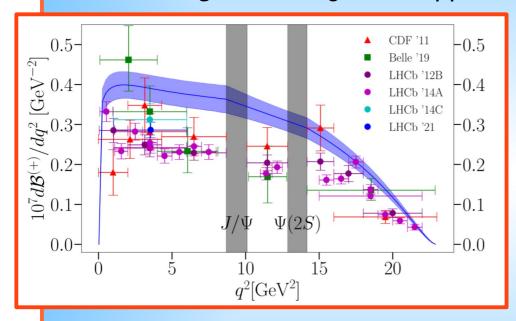
Branching Ratios: e.g. $B \rightarrow K \mu\mu$



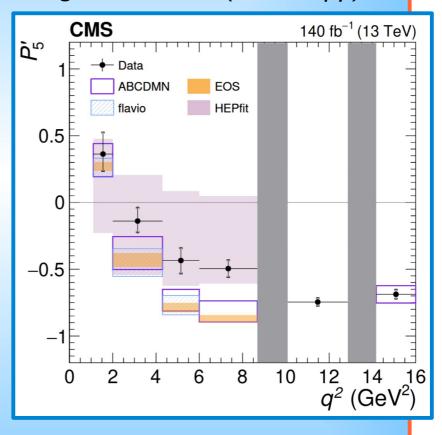
b → s data tensions

• $b \rightarrow s \mu^+ \mu^-$ still discrepant w.r.t. SM in several independent channels

Branching Ratios: e.g. $B \rightarrow K \mu \mu$

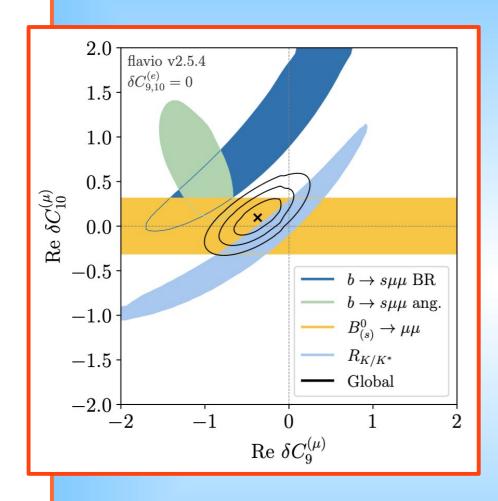


Angular Obs.: $P_5'(B \rightarrow K^* \mu \mu)$



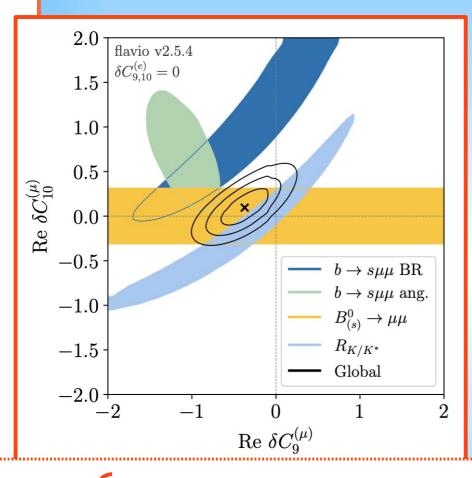
[DG, Normand, Simula, Vittorio, 2023]

 $\delta C_{9 (10)}$: vector (axial) leptonic current



[DG, Normand, Simula, Vittorio, 2023]

$\delta C_{9 (10)}$: vector (axial) leptonic current

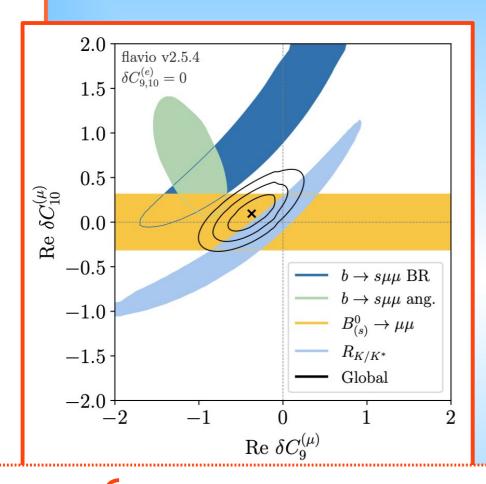


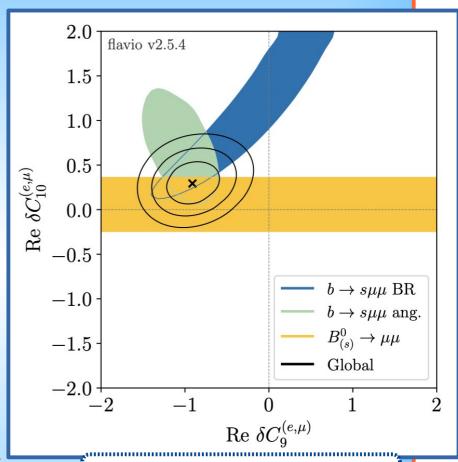
tension

- $R_{K(*)}$ & $B_s \rightarrow \mu \mu$ SM-like
- $b \rightarrow s \mu \mu BR \& ang. \underline{not} SM-like$

[DG, Normand, Simula, Vittorio, 2023]

 $\delta C_{9 (10)}$: vector (axial) leptonic current





tension

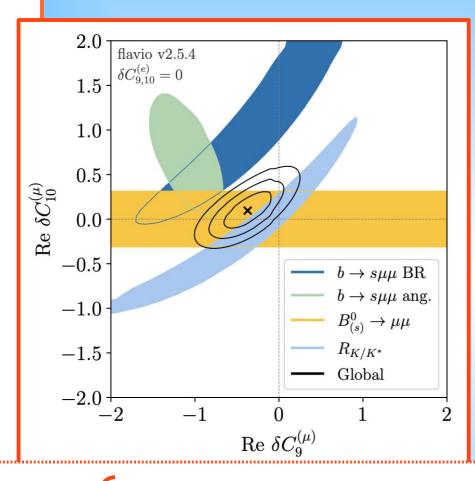
- $R_{K(*)}$ & $B_s \rightarrow \mu \mu$ SM-like
- b → s μ μ BR & ang. <u>not</u> SM-like

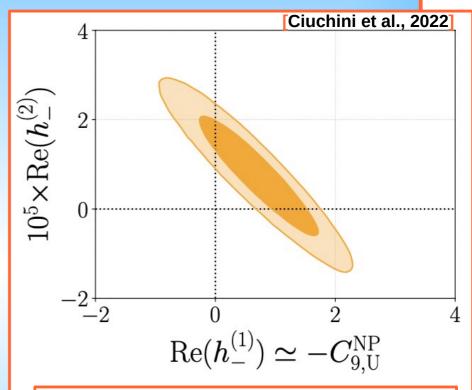
Possible solution 1

Lepton-univ. shift to C₉

 $\delta C_{9(10)}$: vector (axial) leptonic current

[DG, Normand, Simula, Vittorio, 2023]





$$H_V^- \propto \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(C_7^{\text{SM}} + h_-^{(0)} \right) \widetilde{T}_{L-} - 16\pi^2 h_-^{(2)} q^4 \right] + \left(C_9^{\text{SM}} + h_-^{(1)} \right) \widetilde{V}_{L-} ,$$

tension

- $R_{K(*)}$ & $B_s \rightarrow \mu \mu$ SM-like
- b → s μ μ BR & ang. <u>not</u> SM-like

Possible solution 2

Hadronic effects difficult to assess by direct calculation

• High-q² $B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed

- High- q^2 $B_s \to \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \to \mu\mu$ dataset. First LHCb analysis completed
- $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \to \ell \ell$. Plus, it probes them at high q^2
 - If "exp < SM" pattern is NP, it must show up there also

- High- q^2 $B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \to \ell \ell$. Plus, it probes them at high q^2
 - ☐ If "exp < SM" pattern is NP, it must show up there also
- The additional photon lifts chirality suppression
 - L>

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

- High-q² $B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \to \ell \ell$. Plus, it probes them at high q^2
 - ☐ If "exp < SM" pattern is NP, it must show up there also
- The additional photon lifts chirality suppression
 - For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude
- With Run 3 (ightharpoonup comparable e and μ efficiencies), $B_s
 ightharpoonup$ becoming realistic (with challenges)

 $B_s \rightarrow \mu\mu \ \gamma \ \text{from} \ B_s \rightarrow \mu\mu$

......

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

• Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu \mu \gamma$ from $B_s \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the m_{uu} energy imbalance to E_{y} (even w/ undetected y)
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

- Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset
- ... to access $B_s \rightarrow \mu \mu \gamma$, that probes any $\mu \mu$ "anomaly"
 - via a larger set of EFT couplings
 - in a different, not well tested, q² region
 - with a completely different exp approach

[thanks F. Dettori]

Pros (besides those already stated)

• No need to reconstruct the γ (factor-of-20 loss in efficiency)

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

Cons

Signal is a shoulder, not a peak as in several semilep. B decays

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco

[thanks F. Dettori]

Pros (besides those already stated)

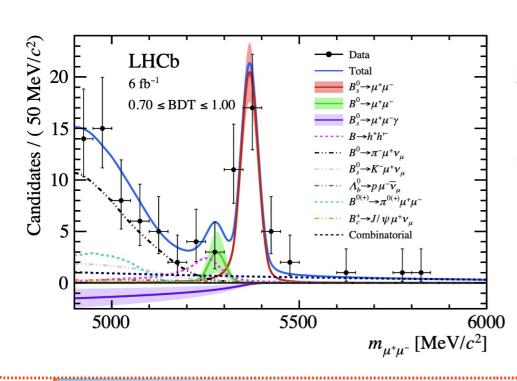
- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS

Pros (besides those already stated)

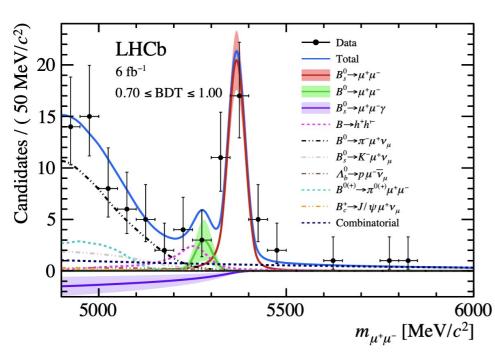
- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS
- Calibration not trivial no "analogous" channel



$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09 \, {}^{+\, 0.46 \, +\, 0.15}_{-\, 0.43 \, -\, 0.11}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10}$$



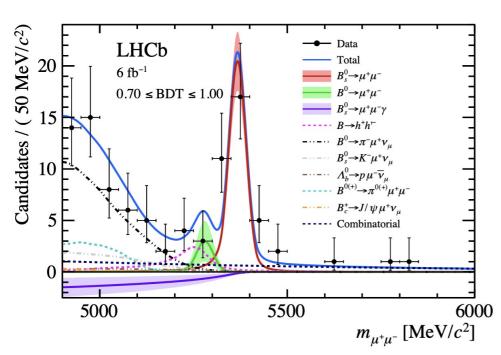
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09 \, {}^{+\, 0.46 \, +\, 0.15}_{-\, 0.43 \, -\, 0.11}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+\mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \,\text{GeV}} =$$

$$(-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$

First world limit (new PDG entry)



$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09 \, {}^{+\, 0.46 \, +\, 0.15}_{-\, 0.43 \, -\, 0.11}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10}$$

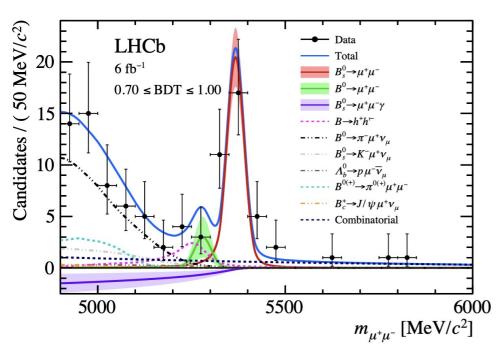
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \,\text{GeV}} =$$

$$(-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$
First we red limit (new PDC entry)

First world limit (new PDG entry)

Outlook

Reanalysis of Run-2 data is underway, with q² window down to (4.2 GeV)²
 (as desirable – see later)



$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09 \, {}^{+\, 0.46 \, +\, 0.15}_{-\, 0.43 \, -\, 0.11}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \text{ GeV}} =$$

$$(-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$
First was delimit (2.22 PDC entry)

First world limit (new PDG entry)

Outlook

- Reanalysis of Run-2 data is underway, with q² window down to (4.2 GeV)²
 (as desirable see later)
- Run 3 analyses will dramatically increase sensitivity
 For ref: Run 3 data thus far = 20 fb = 2x Run 1 & 2 combined

The elephant in the room (FFs)

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small E_y

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell' \ y \ \text{width,}$$
 wheither 0 or 1 γ

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small
$$E_{y}$$

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate

Total width
$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell' \text{ y width,}$$
 where 0 or 1 y
$$\ell\ell' \text{ width (no ext y)}$$

as
$$\Gamma(E_{\gamma}^{\max}) = \lim_{V o \infty} \left[\Gamma_0 - \Gamma_0^{\mathrm{sQED}} \right] + \lim_{V o \infty} \left[\Gamma_0^{\mathrm{sQED}} + \Gamma_1^{\mathrm{sQED}} (E_{\gamma}^{\max}) \right]$$
IR-safe

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell' \text{ y width,}$$
 whose ther 0 or 1 y
$$\ell\ell' \text{ width (no ext y)}$$

as
$$\Gamma(E_{\gamma}^{\max}) = \lim_{V \to \infty} \left[\Gamma_0 - \Gamma_0^{\mathrm{sQED}} + \lim_{V \to \infty} \left[\Gamma_0^{\mathrm{sQED}} + \Gamma_1^{\mathrm{sQED}} (E_{\gamma}^{\max}) \right] \right]$$
IR-safe

LQCD $O(\alpha)$ $\ell\ell'$ width

Radiative leptonic FFs in LQCD

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small
$$E_{y}$$

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate

Total width
$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell' \text{ y width,}$$
 where 0 or 1 y
$$\ell\ell' \text{ width (no ext y)}$$

$$\Gamma\left(E_{\gamma}^{\max}\right) = \\ \lim_{V \to \infty} \left[\Gamma_0 - \Gamma_0^{\mathrm{sQED}}\right] + \lim_{V \to \infty} \left[\Gamma_0^{\mathrm{sQED}} + \Gamma_1^{\mathrm{sQED}}(E_{\gamma}^{\max})\right] \\ IR\text{-safe}$$

$$LQCD O(\alpha)$$

$$\ell\ell' \text{ width}$$

$$Continuum, \\ \mathrm{scalar-QED O}(\alpha)$$

$$\ell\ell' \text{ γ width}$$

Radiative leptonic FFs in LQCD

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small
$$E_{y}$$

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max})$$
 Total width, when 0 or 1 γ width, (no ext γ)

$$\Gamma\left(E_{\gamma}^{\text{max}}\right) = \\ \lim_{V \to \infty} \Gamma_0 - \Gamma_0^{\text{sQED}} + \lim_{V \to \infty} \Gamma_0^{\text{sQED}} + \Gamma_1^{\text{sQED}} \left(E_{\gamma}^{\text{max}}\right) \\ \text{IR-safe} \qquad \qquad \text{IR-safe}$$

$$LQCD O(\alpha) \qquad \qquad Continuum, \\ \text{Scalar-QED O}(\alpha) \qquad \qquad \text{Scalar-QED O}(\alpha) \\ \ell \ell' \text{ width} \qquad \qquad \ell \ell' \text{ y width}$$

Radiative leptonic FFs in LQCD

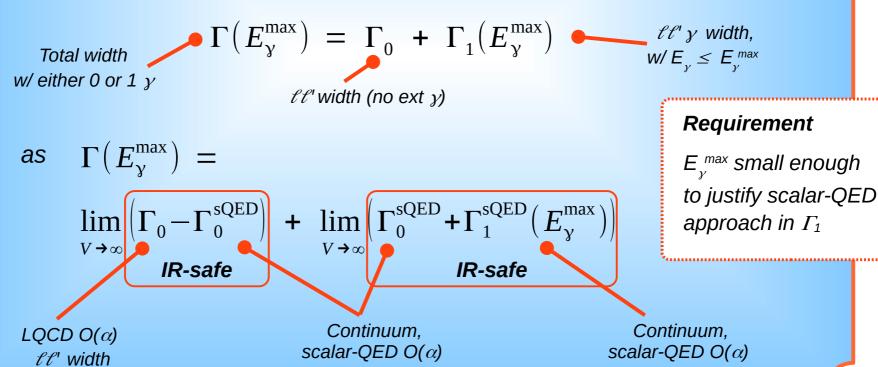
Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small E_{y}

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate



ff' width

 $\ell\ell'\gamma$ width

FFs at low q^2 within factorization

[Beneke-Bobeth-Wang, '20]

• For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\triangleleft expressible in terms of B-meson LCDA λ_B)
 - + $O(\alpha_s)$ corr's

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to y^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_{\gamma}$
- In particular
 - LP (\triangleleft expressible in terms of B-meson LCDA λ_B) + $O(\alpha_s)$ corr's
 - local NLP

similar to $B_u \to \ell \nu \gamma$

$$B_u \to \ell \nu \gamma$$

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to y^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_y$
- In particular
 - LP (\sim expressible in terms of B-meson LCDA λ_B) + $O(\alpha_s)$ corr's
 - local NLP
 - non-local NLP

similar to $B_u \to \ell \nu \gamma$

resonance paramet'n

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP ($\triangleleft \sim$ expressible in terms of B-meson LCDA λ_B) + $O(\alpha_s)$ corr's
 - local NLP
 - non-local NLP
 - actually dominant contribution by far
 - escapes first-principle description

similar to $B_u \to \ell \nu \gamma$

resonance paramet'n

[Beneke-Bobeth-Wang, '20]

• Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_{B} (as expected)

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_{B} (as expected)
- Also continuum contribution gives large error (± 35-45%)

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_{B} (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + small phase space available + large λ_B dependence challenge a precise $B_s \to \mu \overline{\mu} \gamma$ prediction at low q^2

annumumumumumum

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + small phase space available + large λ_B dependence challenge a precise $B_s \to \mu \overline{\mu} \gamma$ prediction at low q^2
- Prediction

$$\langle \mathcal{B} \rangle_{[4m_{\mu}^2, 6.0]} = (12.51^{+3.83}_{-1.93}) \cdot 10^{-9}, \quad \langle \mathcal{B} \rangle_{[2.0, 6.0]} = (0.30^{+0.25}_{-0.14}) \cdot 10^{-9}$$

i.e. ϕ region gives 97.6% of the BR

FFs within LCSRs

[Janowski, Pullin, Zwicky, '21]

see also [Pullin, Zwicky, '21; Albrecht et al., 19]

FFs fitted to a z-expansion ansatz

$$F_n^{\bar{B}\to\gamma}(q^2) = \frac{1}{1 - q^2/m_R^2} \left(\alpha_{n0} + \sum_{k=1}^N \alpha_{nk} (z(q^2) - z(0))^k \right)$$

FFs within LCSRs

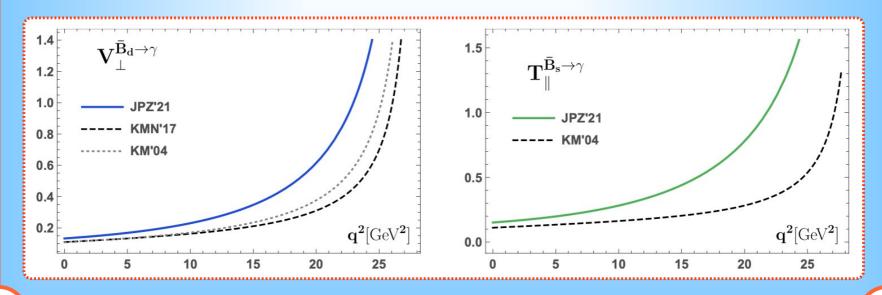
[Janowski, Pullin, Zwicky, '21]

see also [Pullin, Zwicky, '21; Albrecht et al., 19]

FFs fitted to a z-expansion ansatz

$$F_n^{\bar{B}\to\gamma}(q^2) = \frac{1}{1 - q^2/m_R^2} \left(\alpha_{n0} + \sum_{k=1}^N \alpha_{nk} (z(q^2) - z(0))^k \right)$$

 Comparison with the quark-model FF parameterizations in [Melikhov, Nikitin, '04; Kozachuk, Melikhov, Nitikin, '17]



FFs at high q²

A phenomenological approach using LQCD and heavy-quark symmetry

Our approach

[DG, Normand, Simula, Vittorio, '23]

① Use available $D_s \rightarrow y$ LQCD data (directly computed in very range of interest)

Our approach

[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow y$ LQCD data (directly computed in very range of interest)
- ② Frame these data within vector meson dominance

Our approach

[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow y$ LQCD data (directly computed in very range of interest)
- Prame these data within vector meson dominance
- 3 Such description obeys well-defined heavy-quark scaling

Scale up from the D_s to the B_s

- ① Use available $D_s \rightarrow y$ LQCD data (directly computed in very range of interest)
- Prame these data within vector meson dominance
- 3 Such description obeys well-defined heavy-quark scaling
 - Scale up from the D_s to the B_s
- Validate as much as possible

① Use $D_s \rightarrow \gamma LQCD$ data

Our region of interest is high $q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$ In precisely this region, LQCD has directly computed $D_s \to \gamma$ FFs

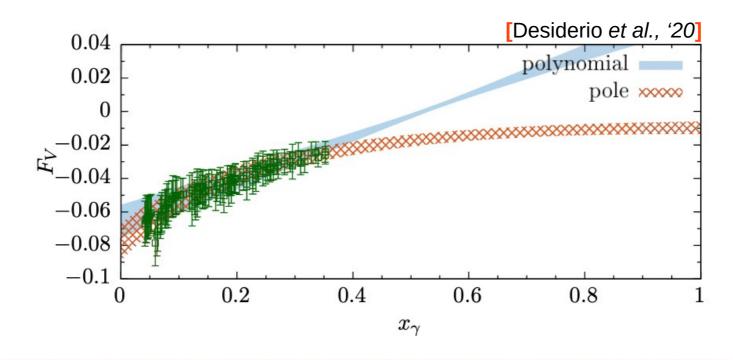
Use $D_s \rightarrow \gamma LQCD$ data

Our region of interest is high $q^2 \in [4.2, 5.0]^2$ GeV² In precisely this region, LQCD has directly computed $D_s \rightarrow \gamma$ FFs

High q² means low $x_{\gamma} \equiv 1 - q^2 / m_{Ds}^2$

$$q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$$
 $x_y \in [0.39, 0.13]$

$$x_y \in [0.39, 0.13]$$



High q^2 means small E_y

The nearest vector (or axial) meson dominates

High q^2 means small E_y

The nearest vector (or axial) meson dominates

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \frac{\langle 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \rangle \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}{q^{2} - m_{B_{s}^{*}}^{2}}$$

High q^2 means small E_y

The nearest vector (or axial) meson dominates

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \frac{\langle 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \rangle \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}{q^{2} - m_{B_{s}^{*}}^{2}}$$

$$\stackrel{\checkmark}{\propto} V_{\perp}(q^2) = \frac{1}{\pi} \int_0^{\infty} dt \frac{\text{Im}[V_{\perp}(t)]}{t - q^2} = \frac{r_{\perp}}{1 - q^2 / m_{B_s^*}^2} + \dots$$

High q^2 means small E_y

The nearest vector (or axial) meson dominates

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \underbrace{\begin{pmatrix} 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \end{pmatrix} \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}_{q^{2} - m_{B_{s}^{*}}^{2}} \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}}$$

$$\propto m_{B_{s}^{*}} f_{B_{s}^{*}}$$

$$\propto V_{\perp}(q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} dt \frac{\operatorname{Im}[V_{\perp}(t)]}{t - q^{2}} = \frac{r_{\perp}}{1 - q^{2}/m_{B_{s}^{*}}^{2}} + \dots$$

High q^2 means small E_y

The nearest vector (or axial) meson dominates

[Becirevic, Haas, Kou, '09]

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \underbrace{\langle 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \rangle \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}_{q^{2} - m_{B_{s}^{*}}^{2}} \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}} \times \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma} \times \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}} \times \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma} \times \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}$$

One can thus relate the (fitted) residue to the (otherwise unknown) tri-coupling

$$r_{\perp}=rac{m_{B_s}f_{B_s^*}}{m_{B_s^*}}g_{B_s^*B_s\gamma}$$

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

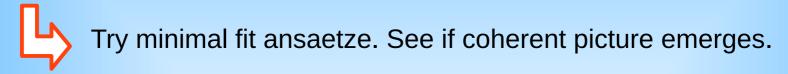
Try minimal fit ansaetze. See if coherent picture emerges.

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

Try minimal fit ansaetze. See if coherent picture emerges.

Pfit A single, physical pole Fit for one residue

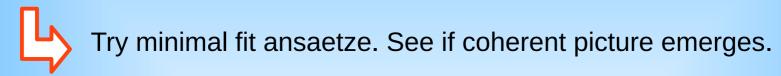
FFs are described as a sum of poles + cuts Description useful if one or two terms dominate



P fit A single, physical pole Fit for one residue

PP fit Two physical poles Fit for two residues

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate



- Pfit A single, physical pole Fit for one residue
- PP fit Two physical poles Fit for two residues
- E fit One effective pole Fit for residue & pole mass

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

Try minimal fit ansaetze. See if coherent picture emerges.

P fit A single, physical pole Fit for one residue

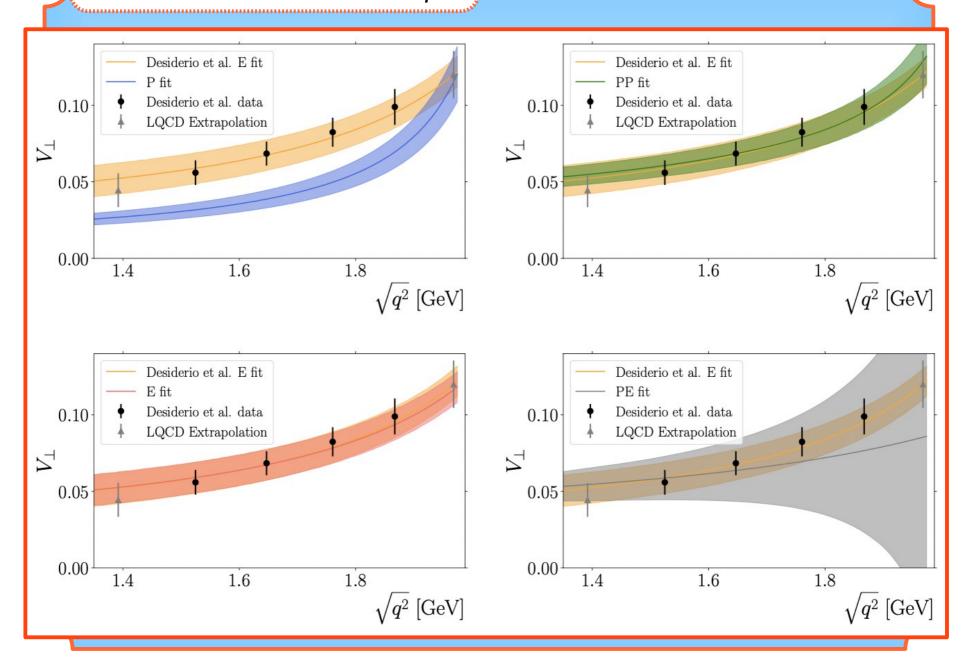
PP fit Two physical poles Fit for two residues

E fit One effective pole Fit for residue & pole mass

PE fit One phys & one eff pole

...

2 VMD: the vector-FF example



 \bigcirc From the D_s to the B_s

The state of the s

4......

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

 \bigcirc From the D_s to the B_s

V vs. A currents have opposite behavior under C The r.h.s. for A must vanish if quarks are degenerate

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

 \bigcirc From the D_s to the B_s

V vs. A currents have opposite behavior under C The r.h.s. for A must vanish if quarks are degenerate

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

Hence such expansion allows to scale up from m_c to m_b

 \bigcirc From the D_s to the B_s

łarana antonia antonia

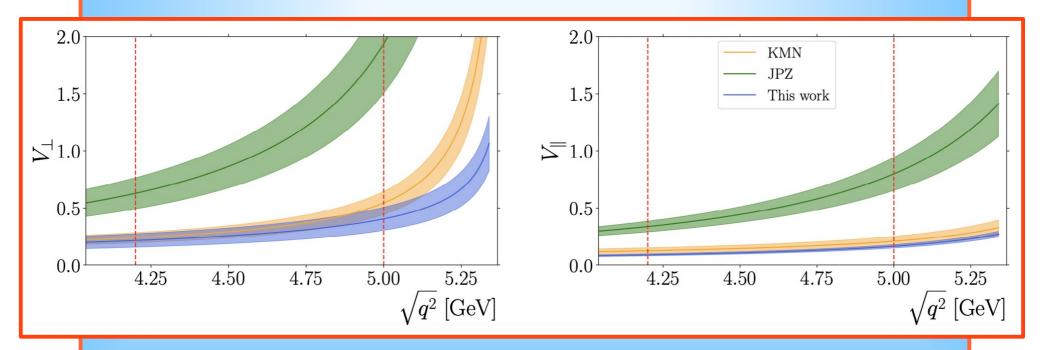
V vs. A currents have opposite behavior under C The r.h.s. for A must vanish if quarks are degenerate

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

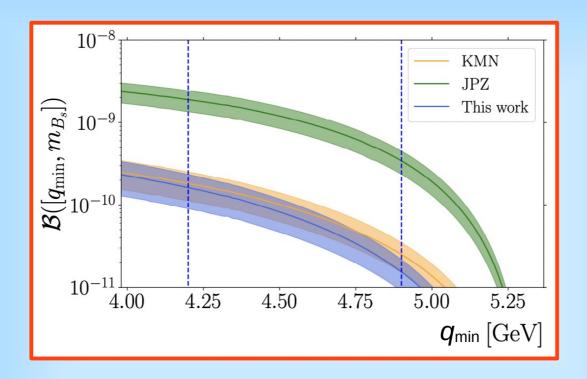
L>

Hence such expansion allows to scale up from $m_{\text{\tiny c}}$ to $m_{\text{\tiny b}}$

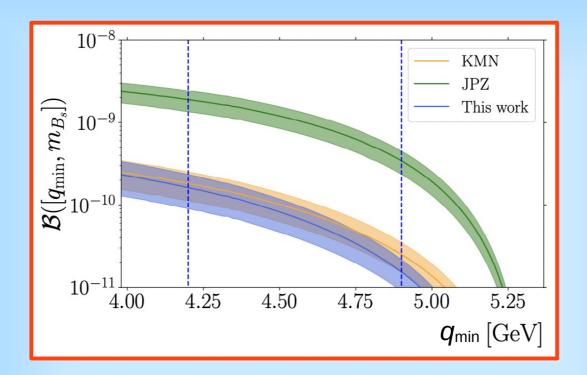


$BR(B_s \rightarrow \mu^+ \mu^- \gamma) \ prediction$

64......



BR($B_s \rightarrow \mu^+ \mu^- \gamma$) prediction

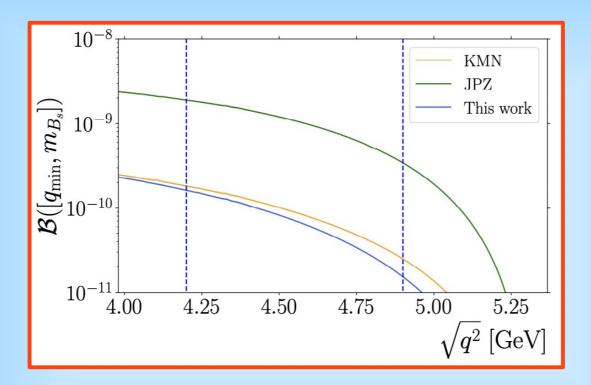


Below ~ 4.4 GeV there is broad-cc pollution

These contributions are incalculable from first principles

How large is their share of the total error?

$BR(B_s \to \mu^+ \mu^- \gamma) \ prediction$



How large is their share of the total error?

Tiny!

• Low impact of broad $c\bar{c}$ encouraging, given that this systematics inherently escapes a rigorous description

- Low impact of broad $c\bar{c}$ encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"

- Low impact of broad $c\bar{c}$ encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"
- Maybe worthwhile to look for more observables with such properties

Example: the $B_s \to \mu \mu \gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Example: the $B_s \to \mu\mu\gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \Big[\Big(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cosh(\Delta \Gamma_s t/2) \pm \Big(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cos(\Delta M_s t)$$

$$- 2 \operatorname{Re} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sinh(\Delta \Gamma_s t/2) \mp 2 \operatorname{Im} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sin(\Delta M_s t)$$

Example: the $B_s \to \mu \mu \gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \Big[\Big(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cosh(\Delta \Gamma_s t/2) \pm \Big(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cos(\Delta M_s t)$$

$$- 2 \operatorname{Re} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sinh(\Delta \Gamma_s t/2) \mp 2 \operatorname{Im} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sin(\Delta M_s t)$$

yields the following quantity sensitive to new CPV

$$A_{\Delta\Gamma_s}^f = \frac{-2\int_{PS} \operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_f \mathcal{A}_f^*\right)}{\int_{PS} \left(|\mathcal{A}_f|^2 + |q/p|^2|\bar{\mathcal{A}}_f|^2\right)}$$

Example: the $B_s \to \mu\mu\gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \Big[\Big(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cosh(\Delta \Gamma_s t/2) \pm \Big(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cos(\Delta M_s t)$$

$$- 2 \operatorname{Re} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sinh(\Delta \Gamma_s t/2) \mp 2 \operatorname{Im} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sin(\Delta M_s t)$$

yields the following quantity sensitive to new CPV

$$A_{\Delta\Gamma_s}^f = \frac{-2\int_{PS} \operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_f \mathcal{A}_f^*\right)}{\int_{PS} \left(|\mathcal{A}_f|^2 + |q/p|^2|\bar{\mathcal{A}}_f|^2\right)}$$

 A_{AΓ} can be extracted from (an accurate measurement of) the effective lifetime • $A_{\Delta\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

• $A_{A\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

• $A_{A\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

With some luck, new CP phases may sizeably "misalign" numerator/denominator w.r.t. SM

... while ratio will still (partly) cancel hadr. matrix elem. dependence

- $A_{A\Gamma}$ looks like a natural "ratio-of-amplitudes-squared" observable

 With some luck, new CP phases may sizeably "misalign"

 numerator/denominator w.r.t. SM
 - ... while ratio will still (partly) cancel hadr. matrix elem. dependence
- NP with non-standard CPV less constrained than NP with CKM CPV
 - (For NP with non-standard CPV, also constraints on Re(WCs) get looser)

[Carvunis et al., '21]

• Consider the range $s \in [(4.1 \text{ GeV})^2, m_{Bs}^2] = [0.59, 1] m_{Bs}^2$

[Carvunis et al., '21]

• Consider the range $s \in [(4.1 \text{ GeV})^2, m_{Bs}^2] = [0.59, 1] m_{Bs}^2$

We set FSR to 0 (subtracted by PHOTOS).

We keep ISR-FSR interference (not subtracted by PHOTOS, but small)

[Carvunis et al., '21]

• Consider the range $s \in [(4.1 \text{ GeV})^2, m_{Bs}^2] = [0.59, 1] m_{Bs}^2$

We set FSR to 0 (subtracted by PHOTOS).

We keep ISR-FSR interference (not subtracted by PHOTOS, but small)

Size of effects ≤ 30% (mostly C₉, C₁₀, C_{LL})

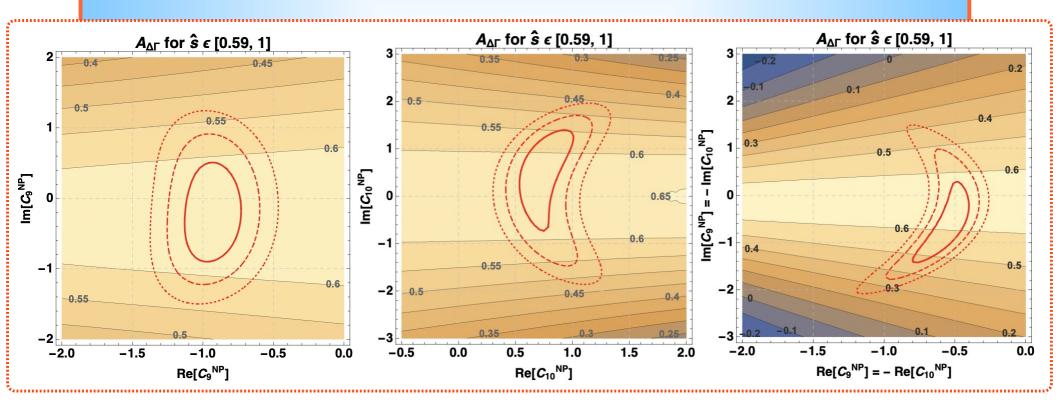
[Carvunis et al., '21]

• Consider the range $s \in [(4.1 \text{ GeV})^2, m_{Bs}^2] = [0.59, 1] m_{Bs}^2$

We set FSR to 0 (subtracted by PHOTOS).

We keep ISR-FSR interference (not subtracted by PHOTOS, but small)

Size of effects $\leq 30\%$ (mostly C_9 , C_{10} , C_{LL})



 $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects

It's new – never measured

- It's new never measured
- It's now measurable from $B_s \rightarrow \mu\mu$ for high q^2

- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs

- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method

- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method
 - Preferred region for lattice QCD

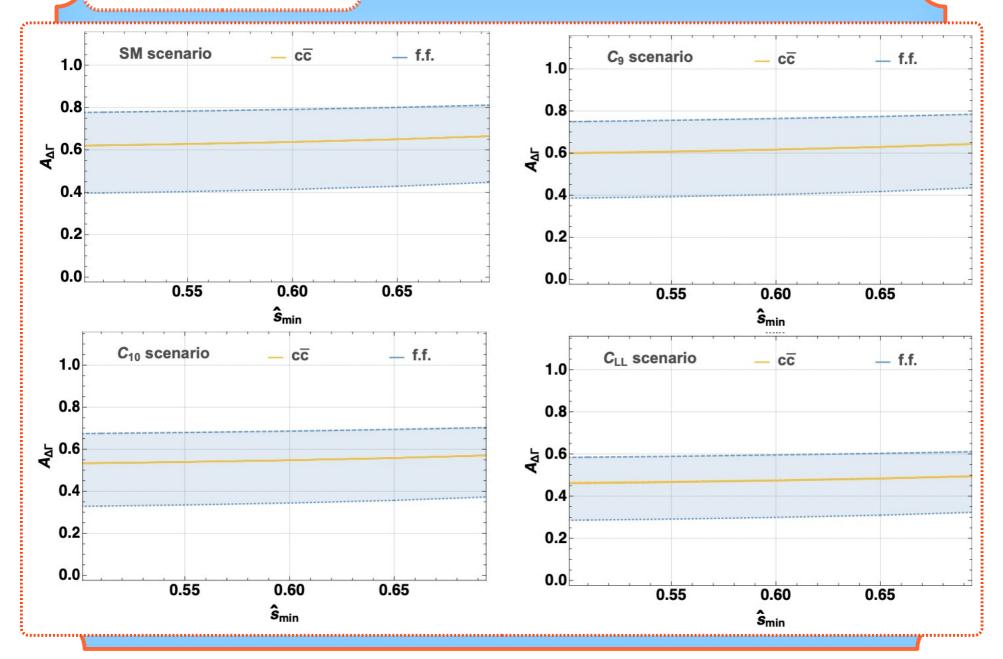
- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method
 - Preferred region for lattice QCD
- Yields several observables also in the ee channel

• Parameterize the effect most generally (e.g. discussion in [Lyon, Zwicky, '14])

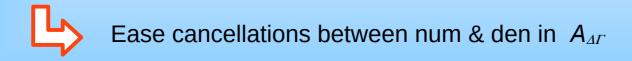
$$C_9 \to C_9 - \frac{9\pi}{\alpha^2} \bar{C} \sum_{V} |\eta_V| e^{i\delta_V} \frac{\hat{m}_V \mathcal{B}(V \to \mu^+ \mu^-) \hat{\Gamma}_{\text{tot}}^V}{\hat{q}^2 - \hat{m}_V^2 + i\hat{m}_V \hat{\Gamma}_{\text{tot}}^V}$$

- $|\eta_{\mathcal{N}}| \in [1, 3] \& \delta_{\mathcal{N}} \in [0, 2\pi)$ (uniformly and independently for the 5 resonances)
- for $s_{min} \in [0.5, 0.7]$ m_{Bs}^2 $= \{0.47, 0.49, 0.57, 0.61, 0.68\}$
- for all TH scenarios

Impact of broad $c\bar{c}$



- Bottom line: broad $c\bar{c}$ has surprisingly small impact on $A_{\Delta\Gamma}$ But broad- $c\bar{c}$ shift to C_9 typically O(5%) – and with random phase
 - Far from obvious why such a small impact on $A_{\Delta\Gamma}$
- Closer look (App. D for an analytic understanding)
 Cancellation is a conspiracy between
 - Complete dominance of contributions quadratic in C_9 and C_{10}
 - Multiplying f.f.'s F_V , $F_A \in \mathbb{R}$
 - Broad $c\bar{c}$ can be treated as small modif. of (numerically large) C_9



Radiative leptonic FFs in LQCD

Large E_y

 The required correlator (weak & e.m. current insertion between a B and the vac) has always the desired large-Euclidean-t behavior
 [Kane, Lehner, Meinel, Soni, '19]

Note that this is non-trivial — e.g. it doesn't seem to hold if there are hadronic final states

 However, the low-q² spectrum is dominated by resonant contributions (~98% of the BR), that LQCD is unable to capture • Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

$$\overline{A} \propto \epsilon_{\mu}^* \left\{ \sum_{i} C_i \left[T_i^{\mu\nu} \left\langle \ell \bar{\ell} \right| J_{i\nu}^{(l)}(0) \left| 0 \right\rangle \right. \right. \\ \left. + S_{\nu}^{(i)} \left. \operatorname{FT}_x \left\langle \ell \bar{\ell} \right| T \left\{ J_{\mathrm{em}}^{\mu}(x), J_i^{(l)\nu}(0) \right\} \left| 0 \right\rangle \right] \right\}$$

FSR: only $S_{\nu}^{(10)} \neq 0$ ($\propto m_{\ell}$) \implies tiny

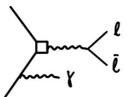
Main object to calculate

$$T_i^{\mu\nu} \propto \operatorname{FT}_x\langle 0| T\{J_{\mathrm{em}}^{\mu}(x), J_i^{(q)\nu}(0)\}|B\rangle$$

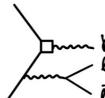
Notes on structure

a

[Beneke-Bobeth-Wang, '20]



but also



•
$$T_i^{\mu\nu} = T_i^{\mu\nu}(k,q) \propto (g^{\mu\nu}k \cdot q - q^{\mu}k^{\nu}) (F_L^{(i)} - F_R^{(i)}) + i\varepsilon^{\mu\nu qk} (F_L^{(i)} + F_R^{(i)}) = F_A^{(i)}$$

• For
$$\mathsf{E}_{\scriptscriptstyle{\gamma}}\gg\Lambda_{\scriptscriptstyle{\mathsf{QCD}}}$$

$$F_R^{(i)} \sim \frac{\Lambda_{
m QCD}}{E_{
m c}} F_L^{(i)}$$
 \Longrightarrow $F_A^{(i)} pprox F_V^{(i)}$

$$F_A^{(i)} \approx F_V^{(i)}$$

Two-step matching onto SCET

[Beneke-Bobeth-Wang, '20]

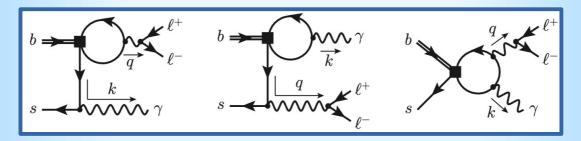
• Decoupling of h modes $O(m_b^2)$ in QCD \rightarrow SCET₁ matching

$$egin{aligned} \sum_{i}^{9} \; \eta_{i} C_{i} \; T_{i}^{\mu
u} \; &= \; \sum_{i}^{9} \; C_{i} H_{i}(q^{2}) \cdot \\ & \; \cdot \mathrm{FT}_{x} \langle 0 | \; T\{J_{\mathrm{em,SCET_{I}}}^{\mu}(x), \left[\overline{q}_{\mathrm{hc}} \gamma_{L}^{
u\perp} h_{v}\right](0)\} | B
angle \end{aligned}$$

separation $x \sim 1/\sqrt{E_{\gamma}\Lambda_{\rm QCD}}$ i.e. intermediate propagator is hc

• Decoupling of hc modes $O(E_y \Lambda_{QCD}; m_b \Lambda_{QCD})$ in $SCET_l \rightarrow SCET_{ll}$

- Three sources
 - coupling of γ to b quark
 - power corr's to SCET₁ correlator at tree level
 - annihilation-type insertions of 4q operators 🖒 local



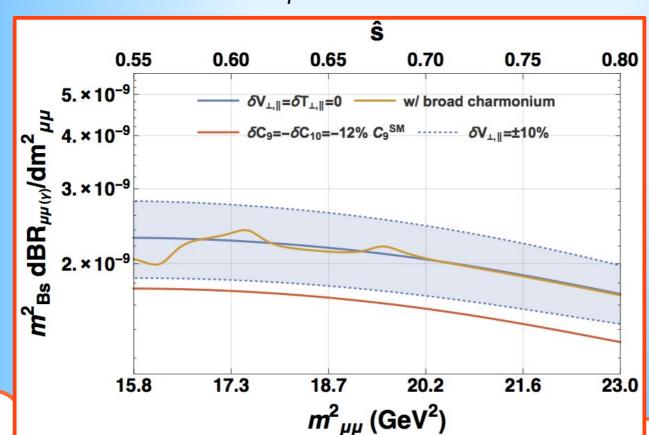
- Two soft FFs
 - $\xi(E_{\gamma})$: computable as in $B_u \to \ell \nu \gamma$ [Beneke-Rohrwild, '11]
 - For B-type contributions: $\tilde{\xi}(E_y)$ Its Im develops resonances, thus escaping a factorization description

- $T_{7B}^{\mu\nu}$ leads to \overline{A}_{res}
 - standard spectral repr. (à la BW)
 - formally power-suppressed

hence inclusion won't lead to double counting of some short-distance contributions

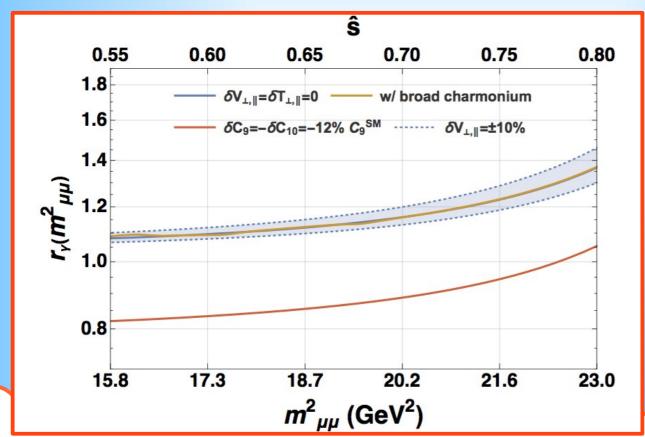
$B_s \rightarrow \mu\mu\gamma$ spectrum

- In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)
- Then main focus on large-q² region, above narrow charmonium.
 Broad-charmonium pollution estimated with similar resonant ansatz



$B_s \rightarrow \mu\mu\gamma$ spectrum

- In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)
- Then main focus on large-q² region, above narrow charmonium.
 Pollution substantially tamed in suitable ratio observable



$$r_{\gamma} \equiv \frac{dBR(B_s \rightarrow \mu \mu \gamma)/dq^2}{dBR(B_s \rightarrow e e \gamma)/dq^2}$$