

1/9

Presentation : who am I & what am I working on?

Chloë Hebborn

March, 25 2024

Chloë Hebborn March, 25 2024

2/9

Master & PhD Thesis

(2015-2020)

Improving eikonal reaction model

2/9

Master & PhD Thesis

(2015-2020)

Improving eikonal reaction model

2/9

Master & PhD Thesis

(2015-2020)

Improving eikonal reaction model

2/9

FRIB Theory Fellowship (2020-2023)

Nuclear reactions with RIBs

Ab initio prediction for astrophysical reactions

Master & PhD Thesis

(2015-2020)

Improving eikonal reaction model

National Laboratory

FRIB Theory Fellowship (2020-2023)

Nuclear reactions with RIBs

Ab initio prediction for astrophysical reactions

Assistant professor (2023 - 2025)

2/9

Master & PhD Thesis

(2015-2020)

Improving eikonal reaction model

National Laboratory

FRIB Theory Fellowship (2020-2023)
Nuclear reactions with RIBs

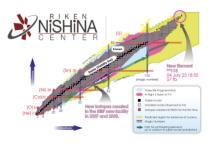
Ab initio prediction for astrophysical reactions

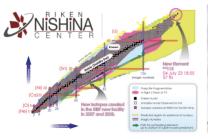
Assistant professor (2023 - 2025)

2/9

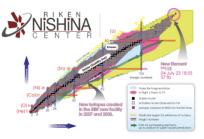
Since February 2025, CRCN at IJClab ©

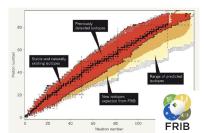
Hobbies

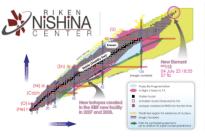

Hiking, Travelling, being outdoors!

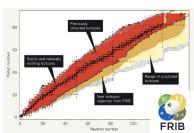


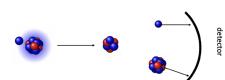
Music, concerts

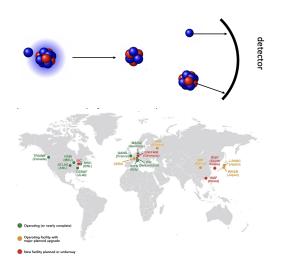

Art exhibition (credit Pacita Abbad)

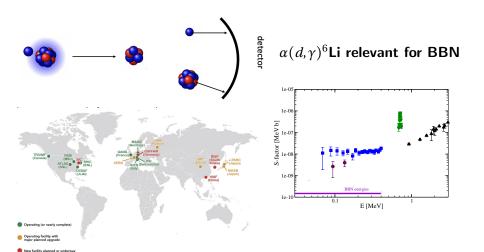


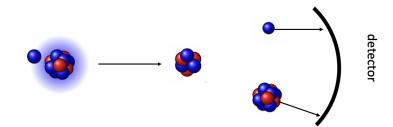


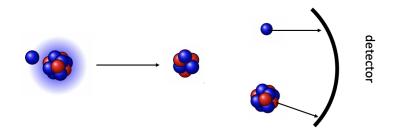






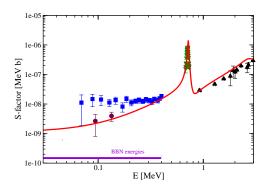

Unstable nuclei are synthetized and often studied through nuclear reactions


Accurate predictions are needed to support the analysis of experiments and for reactions not accessible experimentally


Accurate predictions are needed to support the analysis of experiments and for reactions not accessible experimentally

My goal is develop accurate & predictive reaction models!

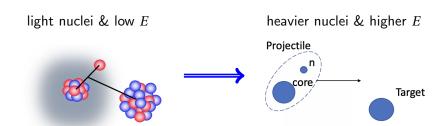
My goal is develop accurate & predictive reaction models!


- 3 ingredients to make accurate predictions:
- 1) Choose dofs & use an accurate model
- 2) Interactions grounded in the underlying theory
- 3) Have an estimate of uncertainties

Ideally, we want to describe all reactions from nucleon's degrees of freedom, with interactions derived from QCD

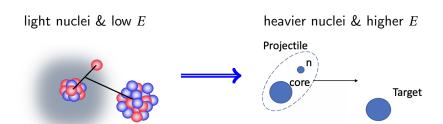
Ab initio prediction : Many-body methods & χ -EFT interactions

Ideally, we want to describe all reactions from nucleon's degrees of freedom, with interactions derived from QCD


Ab initio prediction : Many-body methods & χ -EFT interactions Accurate ab initio predictions fill the experimental gap

[Hebborn et al. PRL 129 042503 (2022)]

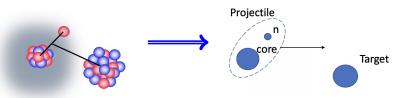
7/9


For reactions involving heavier nuclei, one needs to make approximations

Chloë Hebborn March, 25 2024

8/9

For reactions involving heavier nuclei, one needs to make approximations


To make accurate reaction predictions:

- 1) Interactions grounded in the underlying theory
- 2) Choose dofs & use an accurate model
- 3) Have an estimate of uncertainties

There are still challenges to improve our description of reactions

light nuclei & low E

heavier nuclei & higher E

To make accurate reaction predictions:

- 1) Interactions grounded in the underlying theory
 Integrating EFT potentials
- 2) Choose dofs & use an accurate model Improving eikonal model & 4-body reactions
- 3) Have an estimate of uncertainties
 Use of modern statistical tools (Bayesian analysis)