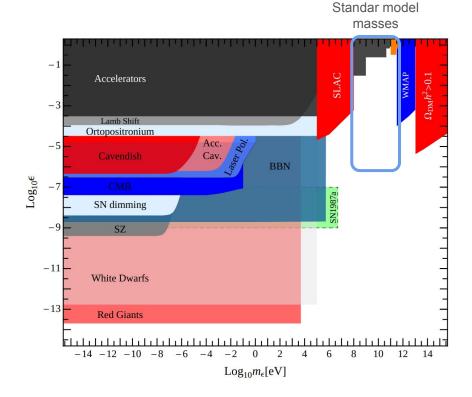


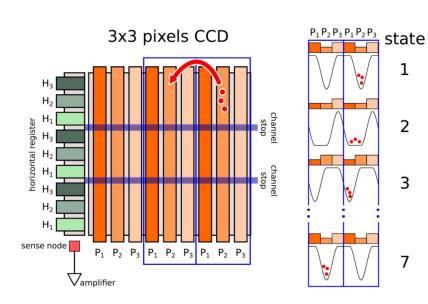
Search for millicharged particles with Skipper-CCDs at particle accelerators


Speaker: Santiago Ezequiel Perez

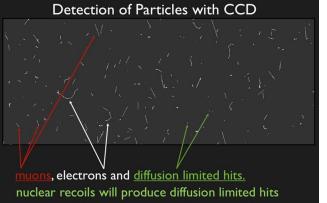
Astroparticle symposium 2025 Nov 3 – 21, 2025, Institut Pascal, France

mCP model and constraints

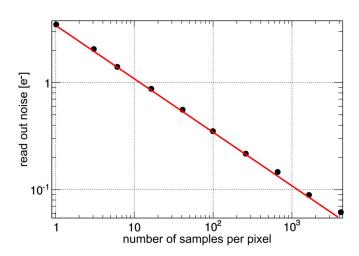
$$\mathcal{L}_{mCP} = i\bar{\chi}(\partial \!\!\!/ - i\epsilon e \!\!\!/ \!\!\!/ + M_{mCP})\chi$$


- Simple extension of the SM with deep implications if observed!
- Might be a component of Dark Matter, it can also appear effectively in grand unification theories or string theory.
- Presents itself as a fractionally charged fermion.

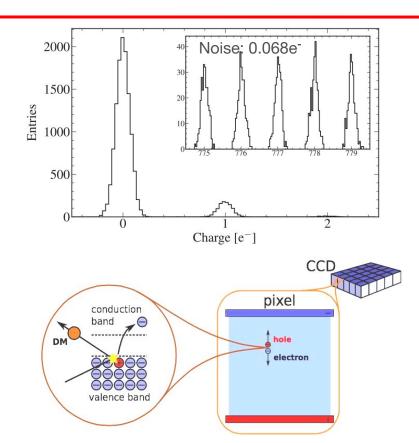
Goodsell, M., Jaeckel, J., Redondo, J., & Ringwald, A. (2009). Naturally light hidden photons in LARGE volume string compactifications. *JHEP*, 2009(11), 027.


B. Holdom, Two U(1)'s and epsilon charge shifts, Phys. Lett.B 166 (1986) 196. D.E. Brahm and L.J. Hall, U(1)'dark matter, Phys. Rev.D 41 (1990) 1067

Skipper-CCDs for Dark Matter

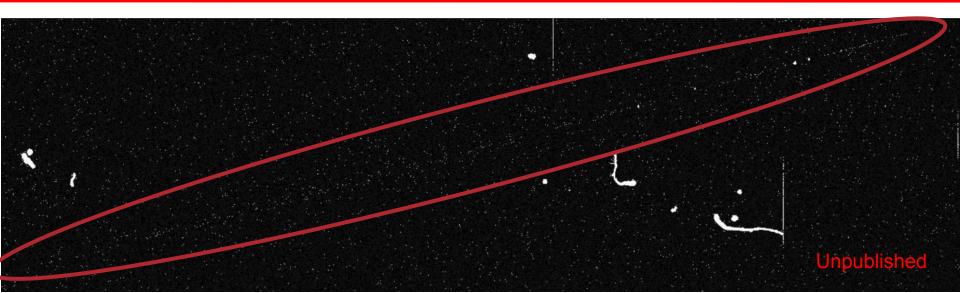


Very nice Dark Energy Camera photo (DECAM)



Some particles observed by DAMIC.

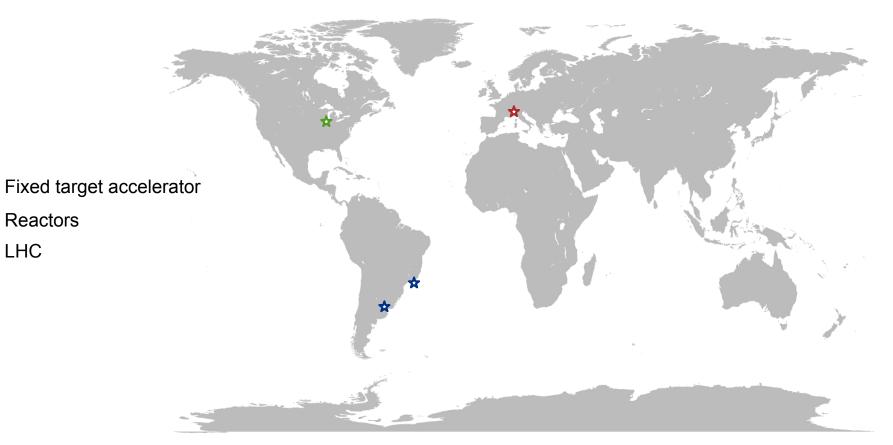
Skipper-CCDs for Dark Matter



$$\sigma = \frac{\sigma_1}{\sqrt{N}}$$

Janesick et al., New advancements in charge-coupled device technology - sub-electron noise and 4096×4096 pixel CCDs. Moroni et al., Sub-electron readout noise in a Skipper CCD fabricated on high resistivity silicon. Tiffenberg et al., Single-Electron and Single-Photon Sensitivity with a Silicon Skipper-CCD.

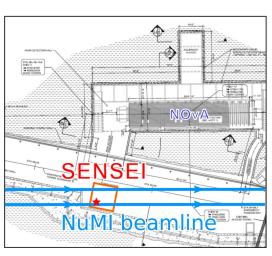
Maybe an mCP?

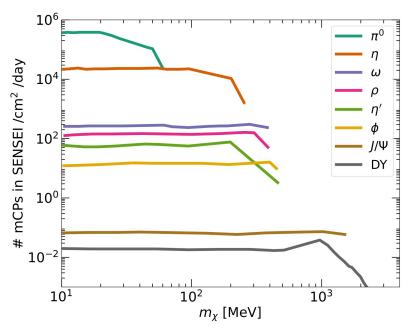

SENSEI @ MINOS 2020 data

- Low De/Dx track passing through the detector
- Not leaving a continuous track
- Maybe a milicharged particle?? In the end, No! Muon going through a dead layer

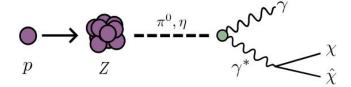
Skipper-CCD millicharged searches

Reactors

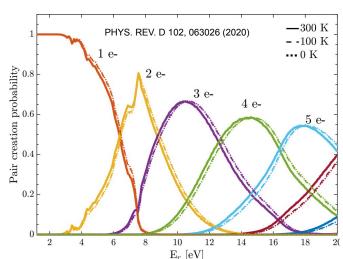

LHC

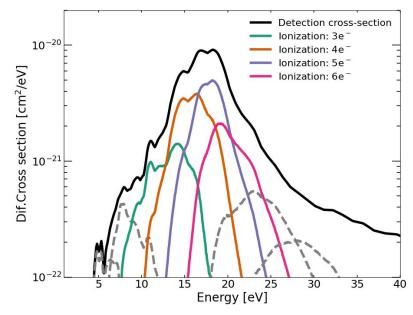


Fixed target: SENSEI@MINOS


Harnik, R., Liu, Z. & Palamara, O. Millicharged particles in liquid argon neutrino experiments. J. High Energ. Phys. 2019, 170 (2019).

Highly boosted from a 120 GeV proton beam!

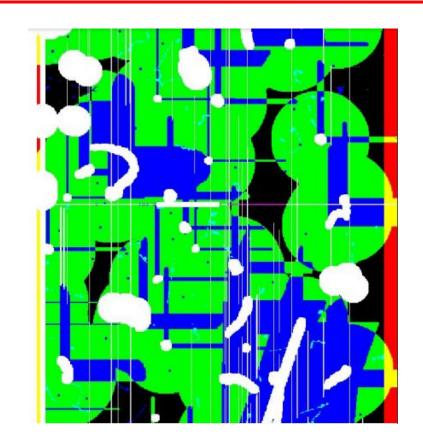



Fixed target: SENSEI@MINOS

From Fermi's energy loss formula, we can model the electron loss function using the DarkELF package

$$\frac{d\sigma}{d\omega} = \frac{8\alpha\varepsilon^2}{n_e\beta^2} \int_0^\infty dk \left\{ \frac{1}{k} \operatorname{Im} \left(-\frac{1}{\epsilon(\omega, k)} \right) + k \left(\beta^2 - \frac{\omega^2}{k^2} \right) \operatorname{Im} \left(\frac{1}{-k^2 + \epsilon(\omega, k)\omega^2} \right) \right\}$$

Once the mCP interacts we take into account the probability of exciting an electron-hole pair in silicon:



Knapen, Simon, Jonathan Kozaczuk, and Tongyan Lin. "PYTHON package for dark matter scattering in dielectric targets." Physical Review D 105.1 (2022): 015014.

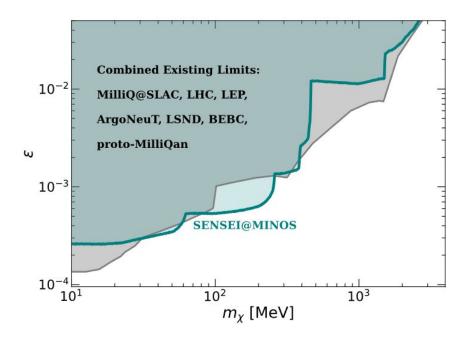
Essig, R., Plestid, R., & Singal, A. (2024). Collective excitations and low-energy ionization signatures of relativistic particles in silicon detectors. Communications Physics, 7(1), 416.

Usual mask in our analyses

- High energy event mask (White)
- Halo mask (Green)
- Bleed mask (Blue)
- Bad pixel/ Column (White)
- Edge mask (Red)
- Crosstalk (cryan)

Fixed target: SENSEI@MINOS

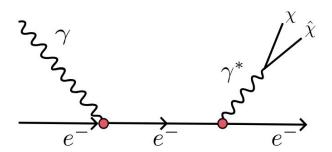
Extended the original 2020 search to 5 and 6 electrons.

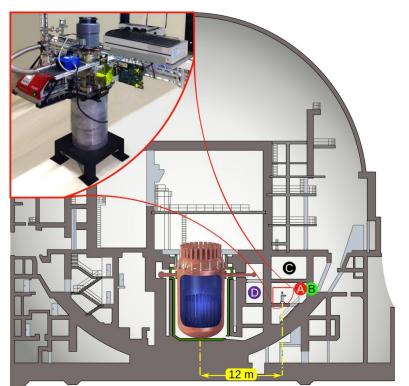

	$1e^-$	$2e^-$	$3e^-$	$4e^-$	$5e^-$	$6e^-$
Eff. Efficiency	0.069	0.105	0.325	0.327	0.331	0.338
Exp. [g-day]	1.38	2.09	9.03	9.10	9.23	9.39
Obs. Events	1311.7	5	0	0	0	0

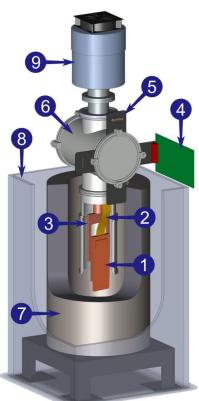
With only 2 grams of silicon!!

Source	Uncertainty [%]	Error on limit [%]
mCP flux	22	6
σ_{int}	5	2
$\frac{\sigma_{int}}{\text{CCI}}$	≪10	2
POT	2	0.5
	Total:	7

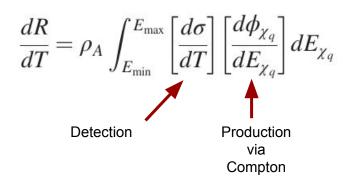
Simulated the systematics to assess impact on limit, error falls in the width of the line.

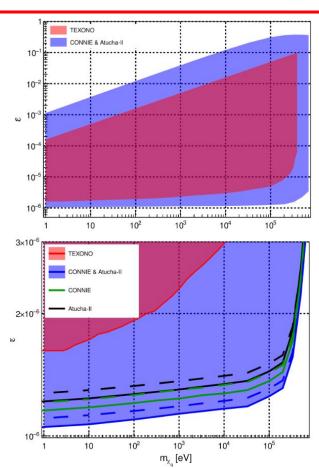

$$N(\varepsilon, m_{\chi}) = A\Delta T \int \phi(\varepsilon, E_{\chi}, m_{\chi}) P(hits \ge 1) dE_{\chi}$$



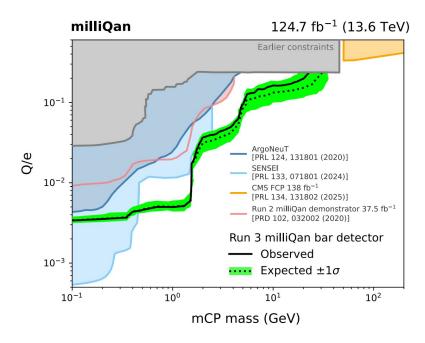

Reactor: ATUCHA-II

 Installed 12 m from the core inside the containment dome of the Atucha II 2-GWth reactor.

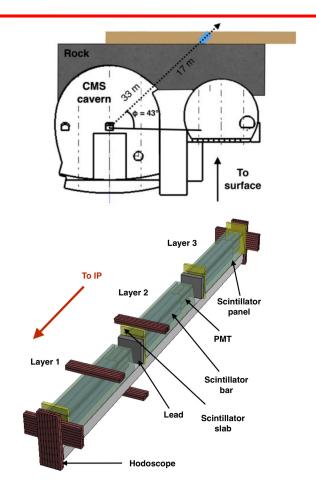

 Uses skipper-CCD, focus on neutrino physics but ideal to search for BSM physics due to its location.

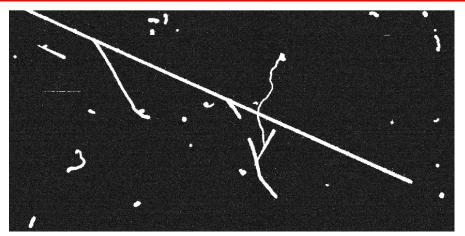


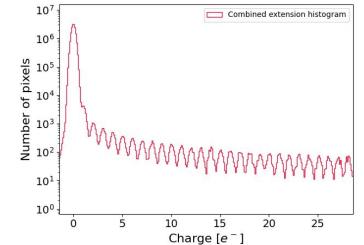
Reactor: ATUCHA-II & CONNIE

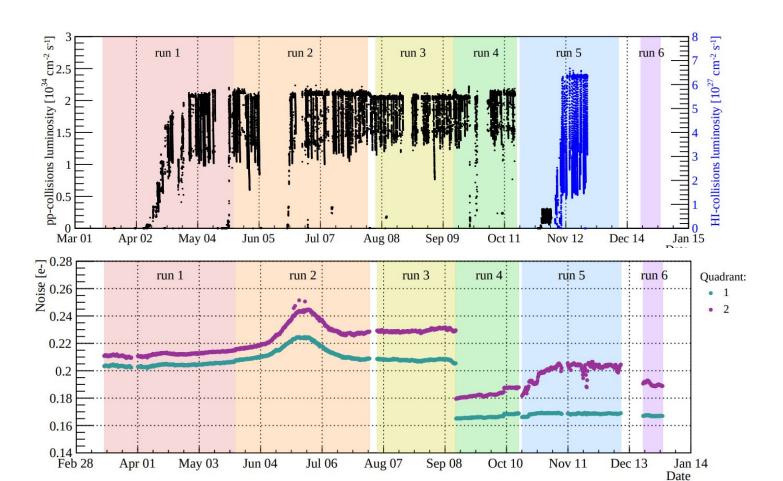


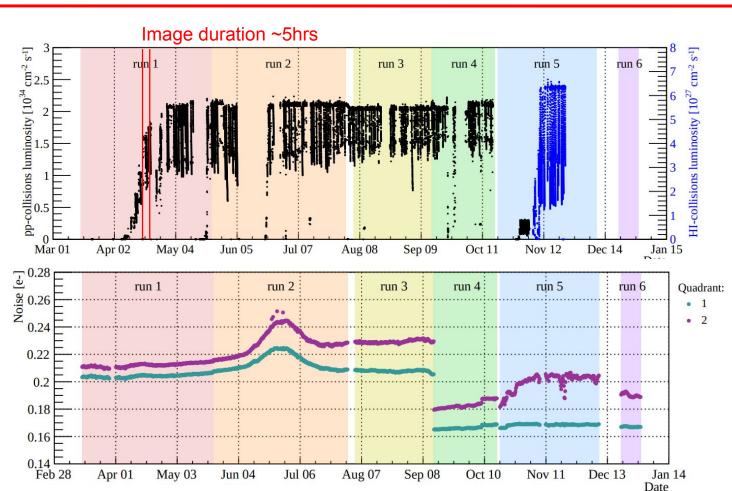
Observable	CONNIE	Atucha-II
Reactor ON exposure [g-day]	14.9	59.4
Reactor OFF exposure [g-day]	3.5	22.6
Energy bin [eV]	15-215	40 - 240
Reactor ON counts	6	168
Reactor OFF counts	2	71
90% C.L. upper limit on events	6.2	30.9

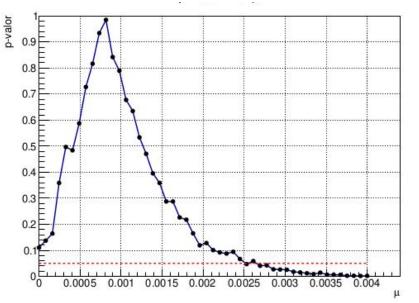

We calculate the 90% C.L for each mass and coupling and combine both reactor experiments


The milliQan collaboration identified the CMS service cavern as a good place to search for mCPs during LHC-RUN 3.




They kindly gave us some space in the cavern.





Total: 129.50 [fb^-1] Expo: 44.42 [g-day]

$$\mathcal{L}(\mathbf{n}|\mu, \mathbf{b}) = \prod_{i=1}^{N_{\text{img}}} \frac{e^{-(\mu s_i + b_i)} (\mu s_i + b_i)^{n_i}}{n_i!}$$

$$b_i = \Delta E \times \epsilon_i \times R_b$$
 $s_i = \Delta E \times \epsilon_i \times L_i$

$$\lambda(\mu) = \frac{\mathcal{L}(\mathbf{n}|\mu, \hat{\hat{\mathbf{b}}})}{\mathcal{L}(\mathbf{n}|\hat{\mu}, \hat{\mathbf{b}})}$$

$$t_{\mu} \equiv -2\ln(\lambda)$$

$$p(\mu) = \int_{t_{obs}}^{\infty} f_{\mu}(ilde{t}) d ilde{t}$$

We perform 20000 pseudo experiments to find the f distribution

Accelerator: MOSKITA@LHC - Low Energy results Proton-Proton

Bin [e ⁻]	Observe	d events	Eff. expo	sure [g-day]	Efficiency	P-value	Upper limit 95% C.L.
Din [e]	\mathbf{ALL}	L=0	ALL	L=0	Efficiency	$\mu = 0$	[events]
2	327	161	11.40	5.29	0.29	0.31	5.88
3	17	11	19.27	8.94	0.49	0.20	1.41
4	1	0	23.59	10.94	0.60	0.12	5.20
5	2	0	26.74	12.40	0.68	0.37	3.12
6	0	0	27.92	12.95	0.71	1	2.45
7	1	0	29.10	13.50	0.74	0.23	4.15
8	2	1	29.49	13.68	0.75	0.35	1.41
9	0	0	30.67	14.23	0.78	1	1.81
10	1	0	31.85	14.77	0.81	0.53	3.73
11-20	9	3	33.42	15.50	0.85	0.41	8.17

Accelerator: MOSKITA@LHC - Low Energy results Proton-Proton

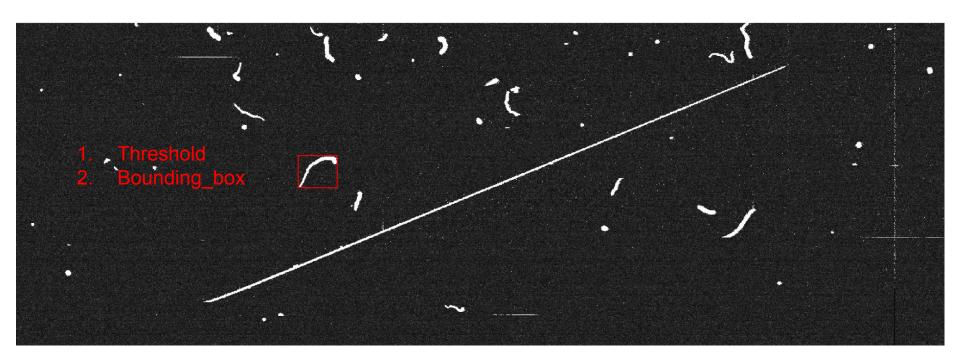
Bin [e ⁻]	Observe	d events	Eff. expo	sure [g-day]	Efficiency	P-value	Upper limit 95% C.L.		
	\mathbf{ALL}	L=0	ALL L=0		Efficiency	$\mu = 0$	[events]		
2	327	161	11.40	5.29	0.29	0.31	5.88		
3	17	11	19.27	8.94	0.49	0.20	1.41		
4	1	0	23.59	10.94	0.60	0.12	5.20		
5	2	0	26.74	12.40	0.68	0.37	3.12		
6	0	0	27.92	12.95	0.71	1	2.45		
7	1	0	29.10	13.50	0.74	0.23	4.15		
8	2	1	29.49	13.68	0.75	0.35	1.41		
9	0	0	30.67	14.23	0.78	1	1.81		
10	1	0	31.85	14.77	0.81	0.53	3.73		
11-20	9	3	33.42	15.50	0.85	0.41	8.17		

Accelerator: MOSKITA@LHC - Low Energy results Proton-Proton

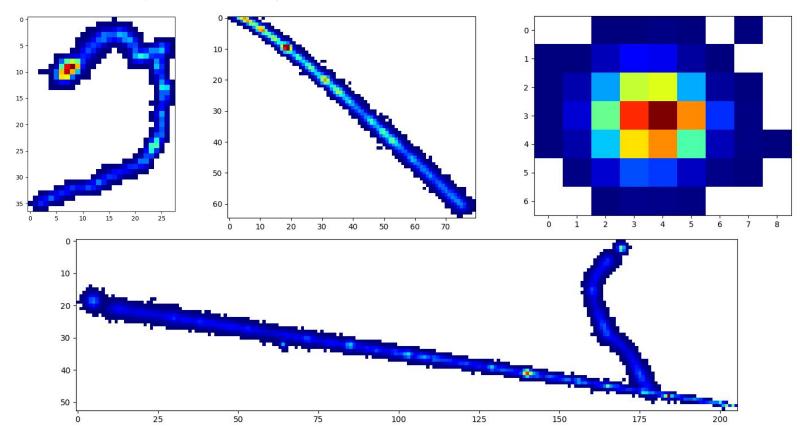
Bin [e ⁻]	Observe	d events	Eff. expo	sure [g-day]	Efficiency	P-value	Upper limit 95% C.L.
Din [e]	\mathbf{ALL}	L=0	ALL	ALL L=0		$\mu = 0$	[events]
2	327	161	11.40	5.29	0.29	0.31	5.88
3	17	11	19.27	8.94	0.49	0.20	1.41
4	1	0	23.59	10.94	0.60	0.12	5.20
5	2	0	26.74	12.40	0.68	0.37	3.12
6	0	0	27.92	12.95	0.71	1	2.45
7	1	0	29.10	13.50	0.74	0.23	4.15
8	2	1	29.49	13.68	0.75	0.35	1.41
9	0	0	30.67	14.23	0.78	1	1.81
10	1	0	31.85	14.77	0.81	0.53	3.73
11-20	9	3	33.42	15.50	0.85	0.41	8.17

From likelihood analysis and MonteCarlo Simulations

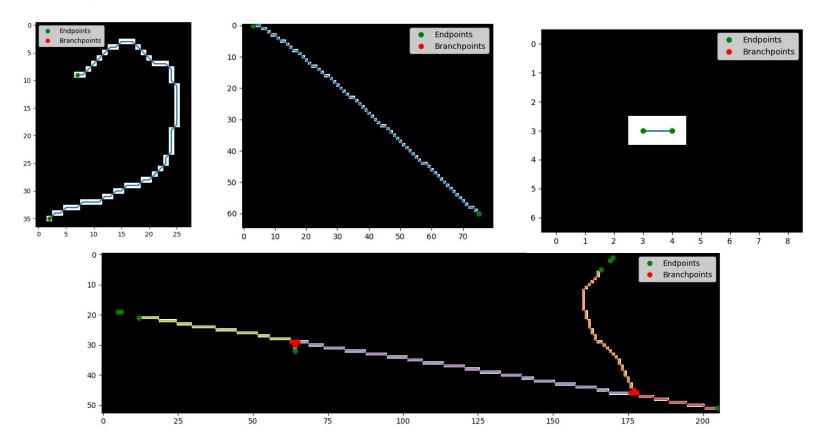
Accelerator: MOSKITA@LHC - Low Energy results - Heavy ions

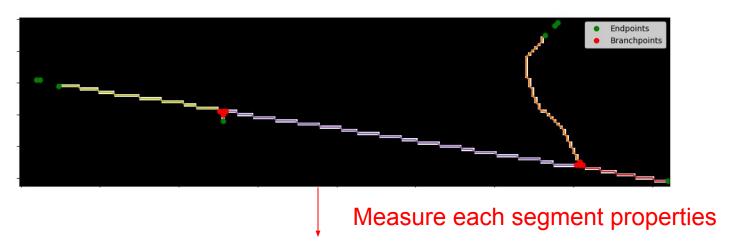

${f Bin} \ [{f e}^-]$	Observe	d events	Eff. expo	sure [g-day]	Efficiency	P-value	Upper limit 95% C.L.
Dir [e]	\mathbf{ALL}	L=0	ALL L=0		Efficiency	$\mu = 0$	[events]
2	85	72	2.74	2.22	0.29	0.52	5.80
3	6	5	4.63	3.75	0.49	0.43	2.05
4	0	0	5.67	4.59	0.60	1	1.14
5	2	2	6.43	5.20	0.68	0.57	2.02
6	0	0	6.71	5.43	0.71	1	1.50
7	2	0	6.99	5.66	0.74	0.017	5.74
8	0	0	7.09	5.74	0.75	1	1.74
9	0	0	7.37	5.97	0.78	1	1.46
10	0	0	7.65	6.20	0.81	1	2.30
11-20	6	4	8.03	6.50	0.85	0.71	4.87

Accelerator: MOSKITA@LHC - Low Energy results - Heavy ions

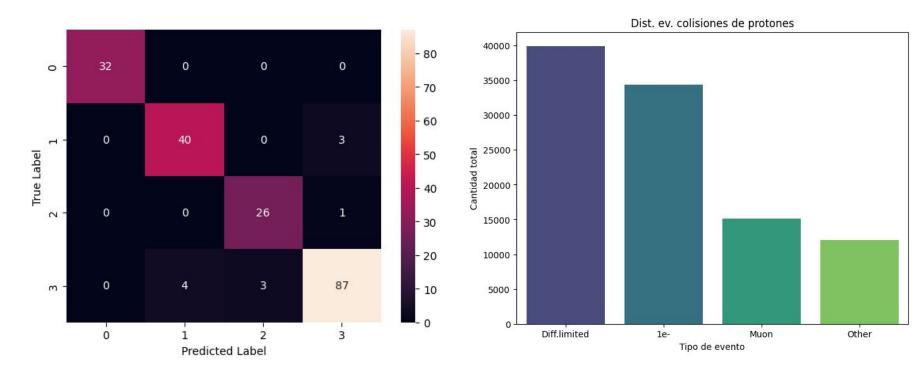

${f Bin} \ [{f e}^-]$	Observe	d events	Eff. expo	sure [g-day]	Efficiency	P-value	Upper limit 95% C.L.
Dir [e]	\mathbf{ALL}	L=0	ALL	ALL L=0		$\mu = 0$	[events]
2	85	72	2.74	2.22	0.29	0.52	5.80
3	6	5	4.63	3.75	0.49	0.43	2.05
4	0	0	5.67	4.59	0.60	1	1.14
5	2	2	6.43	5.20	0.68	0.57	2.02
6	0	0	6.71	5.43	0.71	1	1.50
7	2	0	6.99	5.66	0.74	0.017	5.74
8	0	0	7.09	5.74	0.75	1	1.74
9	0	0	7.37	5.97	0.78	1	1.46
10	0	0	7.65	6.20	0.81	1	2.30
11-20	6	4	8.03	6.50	0.85	0.71	4.87

Slightly unlikely result in the 7e bin! It washes away a little bit when considering the look-elsewhere effect. More data coming this year!

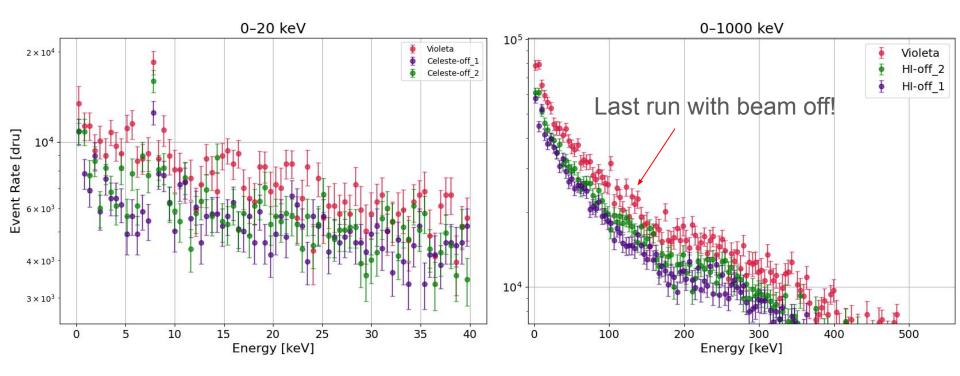

That analysis was until 20 electrons, lets see what happens to events larger than that...



We can isolate each event type to create a ground truth for classification...



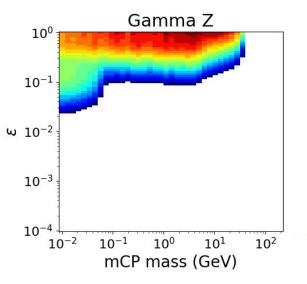
A skeletonization algorithm helps us measure if the event branches or crosses into others

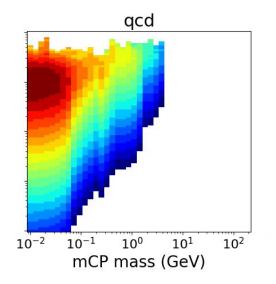

	segment_id	start	end	segment_type	length_pixels	path_length_px	length_um	angle_deg	curvature	intensity_sum	intensity_mean	intensity_std	intensity_min	intensity_max	charge_per_um	angle_change_deg
Θ	Θ	(5, 166)	(45, 177)	endpoint_to_branch	42	50.112698	751.690476	74.623749	1.207973	22006.617188	523.967102	171.056488	257.697754	906.859131	29.276169	78.690068
1		(5, 166)	(46, 178)	endpoint_to_branch	43	51.526912	772.903679	73.686148	1.206154	22497.876953	523.206421	169.127609	257.697754	906.859131	29.108254	63.434949
2		(45, 177)	(46, 178)	branch_to_branch		2.000000	30.000000	45.000000	1.414214	1760.810791	586.936951	98.252129	491.258392	722.036926	58.693693	0.000000
3		(45, 177)	(29, 65)	branch_to_branch	113	119.455844	1791.837662	-171.869898	1.055850	77837.812500	688.830200	401.224152	315.540558	3445.897217	43.440215	18.434949
4		(45, 177)	(46, 177)	branch_to_branch		2.414214	36.213203	90.000000	2.414214	2154.870361	718.290100	137.932709	547.515503	885.317932	59.505102	0.000000
5		(46, 178)	(51, 205)	endpoint_to_branch	28	29.071068	436.066017	10.491477	1.058706	28532.761719	1019.027222	720.354919	341.968445	4060.973877	65.432207	18.434949
6		(29, 65)	(29, 63)	branch_to_branch		2.828427	42.426407	180.000000	1.414214	1117.832764	372.610931	103.168243	248.450729	501.051514	26.347571	0.000000
7		(29, 63)	(21, 12)	endpoint_to_branch	52	54.313708	814.705627	-171.085073	1.052109	20762.029297	399.269806	107.885086	225.636414	703.387024	25.484087	0.000000
8		(29, 63)	(29, 64)	branch_to_branch		2.414214	36.213203	0.000000	2.414214	1044.939087	348.313019	74.718079	248.450729	428.157867	28.855196	0.000000
9		(19, 6)	(19, 5)	endpoint_to_endpoint		1.000000	15.000000	180.000000	1.000000	1744.286133	872.143066	168.877930	703.265137	1041.020996	116.285742	0.000000
10	10	(30, 64)	(32, 64)	endpoint_to_branch		2.000000	30.000000	90.000000	1.000000	1677.389526	559.129822	440.201080	247.270966	1181.667847	55.912984	0.000000
11	11	(1, 170)	(2, 169)	endpoint_to_endpoint		1.414214	21.213203	135.000000	1.000000	2269.693115	1134.846558	887.104187	247.742371	2021.950806	106.994360	0.000000
===:	=															

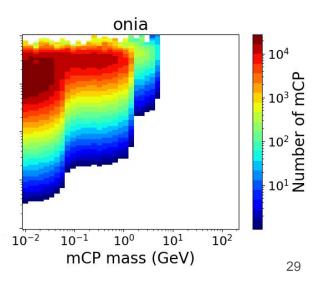
Performance of around 0.94 for the testing dataset

Distribution during the ppcol run

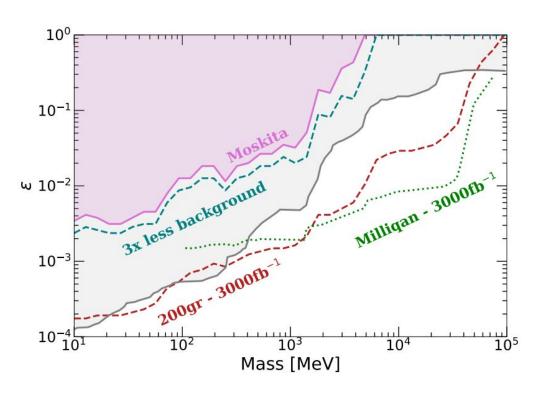
Doing a likelihood analysis for each particle type we find a very low p-value for electrons ~0.0003 dru=[events/(day x kg x keV)]

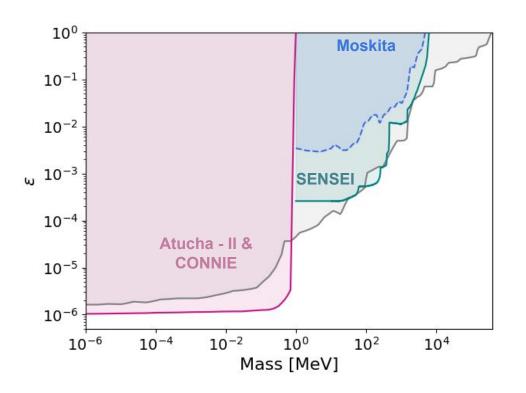

Increased event counts after heavy ion collisions, odd!


Accelerator: MOSKITA@LHC - mCP limit

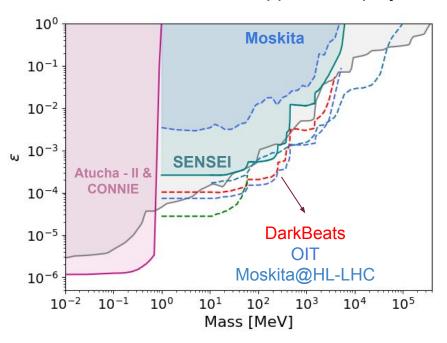

Basically the pythia simulation takes into account all process that can generate a pair $\mu^+\mu^-$ along with other particles and reescales the probability (branching ratios) by ε^2 and the "muon" mass in pythia by that of the mCP. This simulation was developed by the Milligan Team

The pythia modes used are HardQCD:all, Onia:all, and WeakSingleBoson:ffbar2gmZ.

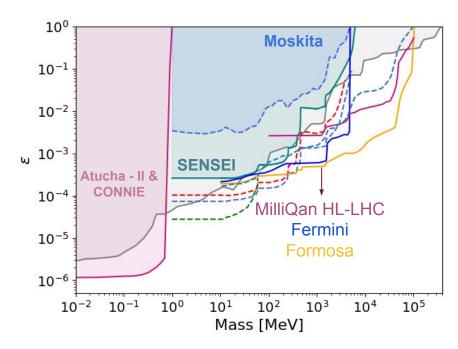

When doing this the contribution of each process to the total number of mCPs observed is:



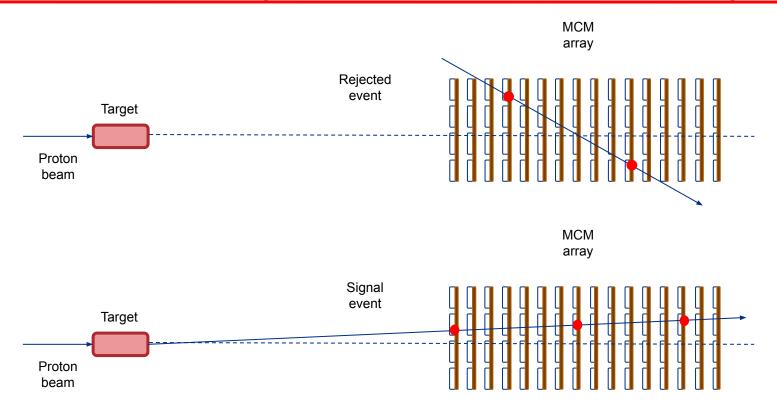
Accelerator: MOSKITA@LHC - mCP results

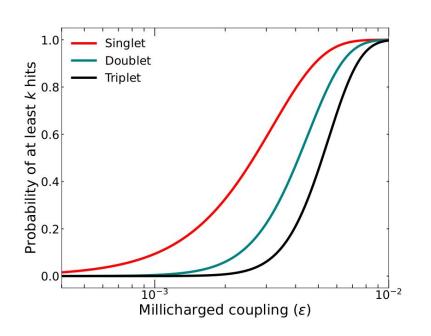


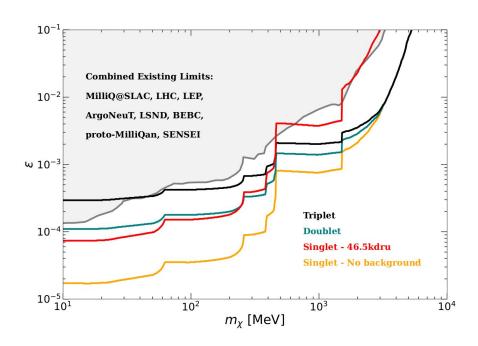
mCP limits - Whole Skipper program



mCP limits - Whole Skipper program


Current limits and future Skipper-CCD projects

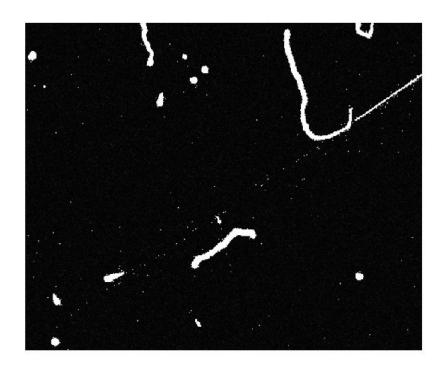

Current limits and future - all detectors

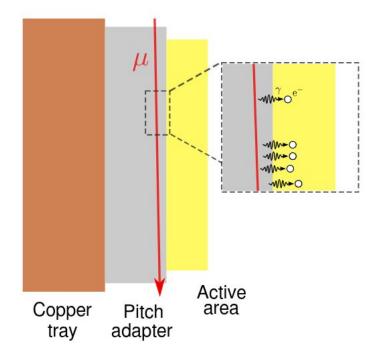


DarkbeaTs and OIT - background reduction with particle tracking

DarkbeaTs and OIT - background reduction with particle tracking

Lower probability to have doublet events but more robust to background - can help for higher masses


Conclusions


- Skipper-CCDs continue to be very promising for detecting low-energy processes.
- The mCP's mass and charge parameter space can be greatly constrained by Skipper-CCD based experiments to investigate the mystery of charge quantization.
- Accelerators experiments (LHC) can extend the search to the GeV mass mCP and also take advantage of tracking.
- Low energy likelihood analysis presented some interesting features which will be resolved this year with more statistic.
- Event ID with Machine Learning can help search for excesses or other quirks in data.
- Very active area of BSM physics right now! A lot of proposed experiments.

Thanks!

Maybe mCP? No!

Searching the whole dataset we found a muon that gives rise to a collinear event (the muon goes through a dead layer of silicon and sends Cherenkov photons to the CCD active area)

High energy was also higher for the ppcol run

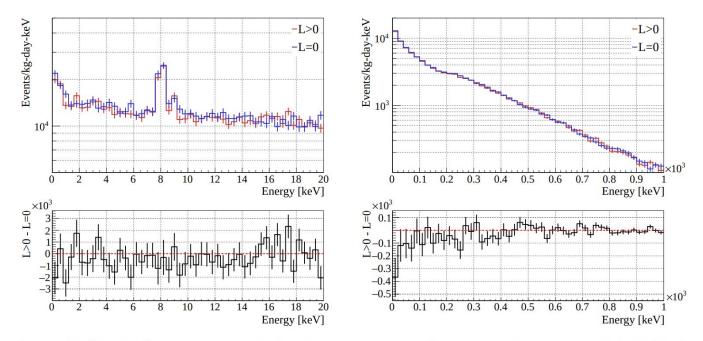


Figure 16: Top: High-energy event rates for the proton-proton collision period, for images with L=0 (blue) and L>0 (red), shown from 0 to 20 keV (left) and from 0 to 1000 keV (right). Bottom: Difference in event rates between images with and without luminosity (black), i.e. L>0 - L=0, for the same energy ranges. A higher event rate below \sim 450 keV for L=0 is observed.