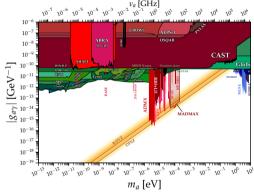


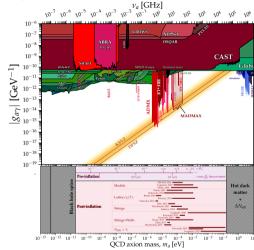
The MADMAX collaboration:



MAgnetized Disk and Mirror Axion eXperiment

Searching for dark matter

- > MADMAX motivated by cosmological predictions
- > PQ symmetry breaking before or after inflation
- > Pre-inflationary:
 - Production only from misalignment
 - Angle θ completely random
- > Post-inflationary:
 - \blacksquare Causally disconnected θ patches
 - "Effective" angle from average
 - Additional production from topological defects
 - $m_a \gtrsim$ 30 $\mu {
 m eV}$ (in principle fully predictable)

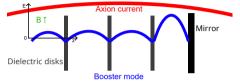


Axion landscape with MADMAX projection

MAgnetized Disk and Mirror Axion eXperiment

Searching for dark matter

- > MADMAX motivated by cosmological predictions
- > PQ symmetry breaking before or after inflation
- > Pre-inflationary:
 - Production only from misalignment
 - Angle θ completely random
- > Post-inflationary:
 - Causally disconnected θ patches
 - "Effective" angle from average
 - Additional production from topological defects
 - $m_a \gtrsim 30\,
 m{\mu eV}$ (in principle fully predictable)
- Fullsize MADMAX designed to be sensitive down to QCD band at 40 µeV to 400 µeV

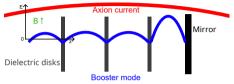

Axion landscape with MADMAX projection Bottom: Cosmological predictions (from arXiv:2403.17697)

Content

- Dielectric haloscope principle
- Current prototypes
- 3 Analysis procedure
 - Common analysis steps
 - Receiver chain
 - Statistical analysis
 - Individual data takings and analysis procedures
 - Axion search with closed booster
 - Dark photon search with open booster
- The future of MADMAX

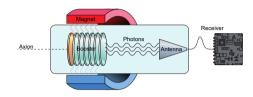
Working principle

Dielectric haloscope



Schematic of E-field and axion current

- Axion within B-field gives effective current J_a
- > Booster mode **E** coupled to detector
- > Extracted signal power $P_{sig} \propto \int dV \mathbf{E} \cdot \mathbf{J}_a$
- Dielectric disks allow shaping of E
 - \rightarrow Increase amplitude by resonance
 - ightarrow Decrease negative regions


Working principle

Dielectric haloscope

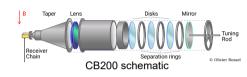
Schematic of E-field and axion current

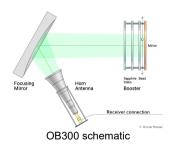
- Axion within B-field gives effective current J_a
- > Booster mode **E** coupled to detector
- > Extracted signal power $P_{sig} \propto \int dV {f E} \cdot {f J}_a$
- Dielectric disks allow shaping of E
 - \rightarrow Increase amplitude by resonance
 - → Decrease negative regions

Schematic MADMAX setup

- MADMAX plans a dielectric haloscope:
 - Stack of up to 80 dielectric disks
 - Placed in ~10 T magnetic field
 - Scanning possible by disk movement
 - Amplification quantified by the boost factor where $P_0 =$ signal power using only a mirror: $\beta^2 = P_{sig}/P_0$

(central for sensitivity calculation!)

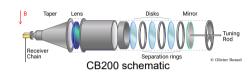

Booster prototypes

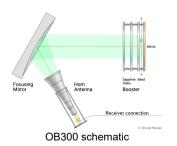

Closed booster:

- > CB200: 3 \(\times 200 \) mm sapphire disks
- > Easier simulation due to fixed boundary conditions

Open booster:

- > OB300: 3 Ø300 mm sapphire disks
- > Easier tunability due to free movement of components

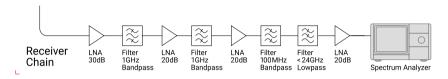

Booster prototypes


Closed booster:

- > CB200: 3 \(\times 200 \) mm sapphire disks
- > Easier simulation due to fixed boundary conditions

Open booster:

- > OB300: 3 Ø300 mm sapphire disks
- > Easier tunability due to free movement of components
- → First results with CB200 and OB300 shown later



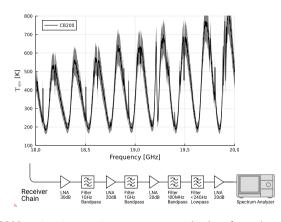
Common parts

Receiver chain

Receiver chain

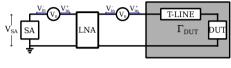
- Expected signal below the typical noise floor of a spectrum analyser
 - ightarrow Multiple amplifier stages required
 - Additional filters prevent amplifier saturation
- > First stage amplifier dominates noise of the chain
 - → Low Noise Amplifier (LNA) required
- > Power calibration using known noise source
- Note: system temperature = temperature at which a black body would emit the same power
 - \rightarrow For microwaves: $P = k_B B T_{sus}$

Receiver chain


Boost factor modification

- > Receiver chain reflects parts of signal
- > Modifies boost factor by:

$$\beta_{RC}^2 = \frac{1 - |\Gamma_{RC}|^2}{|1 - \Gamma e^{i\delta} \Gamma_{RC}|^2} \beta^2$$

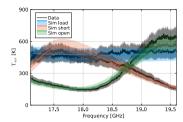

(Γ : Booster reflectivity, Γ_{RC} : receiver chain reflectivity, δ : phase difference)

- > Causes oscillation in T_{sys} due to resonance between booster and receiver
- > δ related to oscillation length!

CB200 system temperature measurement (top) performed with receiver chain (bottom)


Amplifier noise

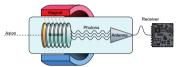
LNA schematic


- Amplifier noise modelled by correlated voltage sources
- Parameters extracted from fits to measurements of RF standards
- > Combined with booster model: adjusting δ fits booster system temperature!

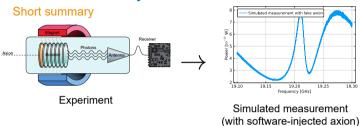
Amplifier noise

LNA schematic

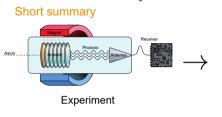
- Amplifier noise modelled by correlated voltage and current source
- Parameters extracted from fits to measurements of RF standards
- > Combined with booster model: adjusting δ fits booster system temperature!

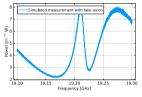


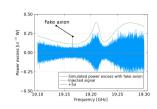
Standards measurements



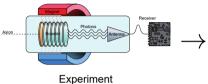
Resulting booster noise fit

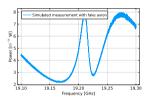

Short summary



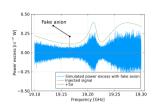

Experiment

> Baseline shape subtracted using savitzky golay filter



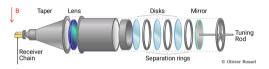

Simulated measurement (with software-injected axion)

Residual power (with software-injected axion)


- Baseline shape subtracted using savitzky golay filter
- > Expected noise fluctuation $\sigma \propto \frac{P}{\sqrt{t_{int}}}$ known
 - ightarrow Power excess can be translated to units of σ (with some extra steps)

Simulated measurement (with software-injected axion)

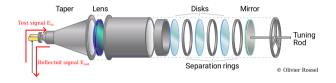
Residual power (with software-injected axion)


- Baseline shape subtracted using savitzky golay filter
- Expected noise fluctuation $\sigma \propto \frac{P}{\sqrt{t_{col}}}$ known
 - \rightarrow Power excess can be translated to units of σ (with some extra steps)
- Potential outcomes:
 - $> 5\sigma$ excess found:
 - → potential discovery, perform rescan
 - No $> 5\sigma$ excess found, set bin-by-bin limit:
 - $\rightarrow q_{a\gamma}$ that is ruled out by measurement with 95 % confidence (requires boost factor!)

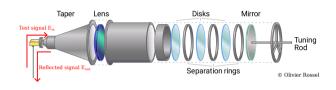
Recent results

Axion run

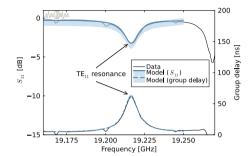
CFRN


Setup schematic

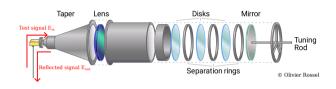
- > 3 \varnothing 200 mm sapphire ($\epsilon \simeq 9.36$) disks
- Tuning rod enables frequency fine-tuning
- > Closed design allows for easy simulation
- > 1.6 T Morpurgo dipole magnet
- > Run performed from February to March 2024

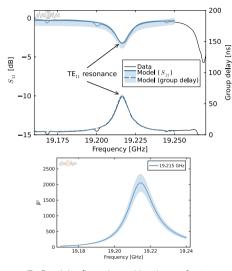

Setup in Morpurgo magnet

Model based

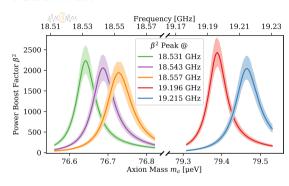


- Boost factor is not directly measureable
- > Reflectivity is: $S_{11} = \Gamma = \frac{E_{
 m out}}{E_{
 m in}} = |\Gamma| e^{-i\phi}$
- > S_{11} depends on the same quantities as eta^2
 - ightarrow Model parameters extracted from S_{11} fit

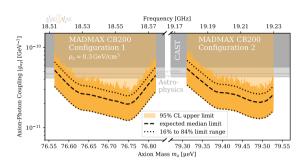

Model based


- Boost factor is not directly measureable
- > Reflectivity is: $S_{11} = \Gamma = \frac{E_{\rm out}}{E_{\rm in}} = |\Gamma| e^{-i\phi}$
- > S_{11} depends on the same quantities as β^2 \rightarrow Model parameters extracted from S_{11} fit
- > Group delay: $au_{gd} = rac{\partial \phi}{\partial \omega}$

Model based



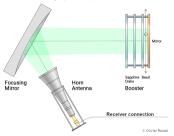
- Boost factor is not directly measureable
- > Reflectivity is: $S_{11} = \Gamma = \frac{E_{
 m out}}{E_{
 m in}} = |\Gamma| e^{-i\phi}$
- > S_{11} depends on the same quantities as β^2 \rightarrow Model parameters extracted from S_{11} fit
- > Group delay: $au_{gd} = rac{\partial \phi}{\partial \omega}$
- > β^2 uncertainties from goodness of fit, 3D correction and time stability


Reflectivity fit and resulting boost factor

Axion run

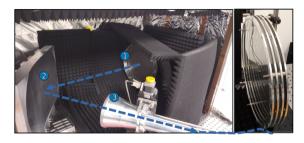
Boost factors of all datasets

- > 5 different booster configurations used
 - → Demonstrates tuning capability

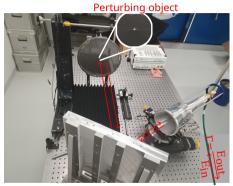


Combined limit

- > First axion search with a dielectric haloscope
- Published in PRL (10.1103/c749-419q)


Dark photon run

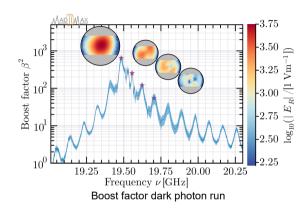
Universität Hamburg (UHH)


Setup schematic

- > 3 \varnothing 300 mm sapphire ($\epsilon \simeq$ 9.36) disks
- No magnet: perform dark photon search (massive photon mixing with SM photon)
- Open prototype for full-scale MADMAX
- > Run performed over Christmas 2023

Setup with added absorbers
1: Booster, 2: Focusing mirror, 3: Antenna

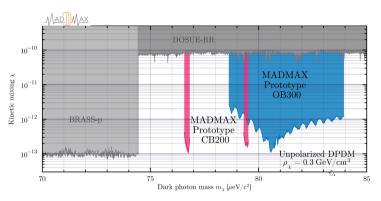
Measurement based



- > Boost factor $eta^2 \propto \int_V dV {f E} \cdot {f J}$ (E: Antenna induced field, J: axion/dark photon current)
- > Difference perturbed unperturbed reflectivity: $\Delta\Gamma \propto {\bf E}^2$

Measurement based

Perturbing object


- > Boost factor $eta^2 \propto \int_V dV {f E} \cdot {f J}$ (E: Antenna induced field, J: axion/dark photon current)
- > Difference perturbed unperturbed reflectivity: $\Delta\Gamma \propto {\bf E}^2$

Described in detail in [JCAP04(2024)005] (J. Egge et al) and [JCAP04(2023)064] (J. Egge)

Dark photon run

Results

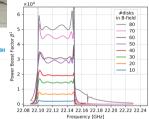
Results of OB300 dark photon search, including reinterpreted axion limits

- > Sensitivity to the kinetic mixing χ
- Published in PRL (10.1103/PhysRevLett.134.151004)

> Leading dark photon limits over a \sim 1.2 GHz = 5 μ eV range

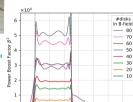
The Future

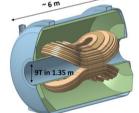
Estimated sensitivity gains

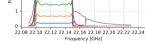

> Going cold, reduce noise: $g_{a\gamma} \propto \sqrt{T_{sys}}$ \rightarrow factor $\sim 10-100$ improvement

Estimated sensitivity gains

- > Going cold, reduce noise: $g_{a\gamma} \propto \sqrt{T_{sys}}$ \rightarrow factor $\sim 10-100$ improvement
- > More disks: $g_{a\gamma} \propto 1/\sqrt{\beta^2}$
 - \rightarrow factor $\sim 5-10$ improvement



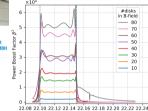


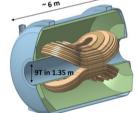

Estimated sensitivity gains

- > Going cold, reduce noise: $g_{a\gamma} \propto \sqrt{T_{sys}}$ \rightarrow factor $\sim 10 - 100$ improvement
- > More disks: $g_{a\gamma} \propto 1/\sqrt{\beta^2}$ \rightarrow factor $\sim 5-10$ improvement
- > Stronger magnetic fields: $g_{a\gamma} \propto 1/B$
 - \rightarrow factor ~ 5 improvement

Development in innovation partnership

BILFINGER NOFLL GMBH

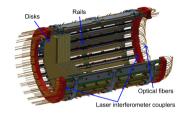



Estimated sensitivity gains

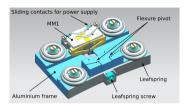
- > Going cold, reduce noise: $g_{a\gamma} \propto \sqrt{T_{sys}}$ \rightarrow factor $\sim 10 - 100$ improvement
- > More disks: $g_{a\gamma} \propto 1/\sqrt{\beta^2}$ \rightarrow factor $\sim 5-10$ improvement
- > Stronger magnetic fields: $g_{a\gamma} \propto 1/B$ \rightarrow factor ~ 5 improvement
- Bigger disks, different materials, longer integration time, ...
- \rightarrow Improvement from $g_{a\gamma} \simeq 10^{-10}$ (CB200 result) to $g_{a\gamma} \simeq 10^{-13}$ (QCD band)!

Frequency [GHz]

Development in innovation partnership

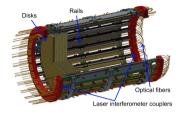


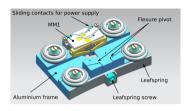
BILFINGER NOFLL GMBH



Next setup

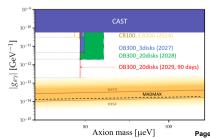
Booster structure with movable disks


Piezo motor

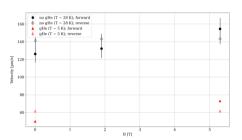

MADMAX cryostat

- > Work on fully tunable open booster ongoing
- > Up to 20 disks, movable using piezo motors
- > Commissioning of custom cryostat in Hamburg

Next setup



Piezo motor


MADMAX cryostat

- > Work on fully tunable open booster ongoing
- Up to 20 disks, movable using piezo motors
- Commissioning of custom cryostat in Hamburg
- Placed in 1.6 T Morpurgo magnet at CERN in 2027
- Tender process for intermediate ∼4 T magnet started

Next setup

Mechanics

Loaded motor movement at cryogenic temperatures in a magnetic field

Qualification of piezo-electric actuators for the MADMAX booster system at cryogenic temperatures and high magnetic fields

[JINST 18 P08011]

Disk movement at cryogenic temperature in a magnetic field

First mechanical realization of a tunable dielectric haloscope for the MADMAX axion search experiment [JINST 19 T11002]

General news

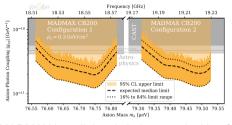
MADMAX is growing - from 11 to 13 partner institutes!

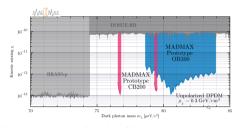
Welcome to our new associate members:

KC Fong

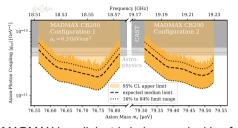
Working on the DAQ, cryogenic receiver and single photon detection

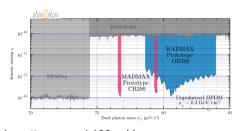
Working on graphene based single-photon detection and the characterization of components





Summary




- MADMAX is a dielectric haloscope looking for axion dark matter around 100 μeV
- Axion and dark photon search successfully performed with prototypes
- > Scanning capacity demonstrated
- Limits already world-leading at their mass range

Future plans:

- New tunable open booster is being build
- > Custom cryostat is in commissioning
- New Axion data taken at CERN in 2027

Summary

- MADMAX is a dielectric haloscope looking for axion dark matter around 100 μeV
- Axion and dark photon search successfully performed with prototypes
- Scanning capacity demonstrated
- Limits already world-leading at their mass range

Future plans:

- New tunable open booster is being build
- Custom cryostat is in commissioning
- > New Axion data taken at CERN in 2027

Publications:

> Design:

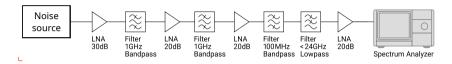
10.1103/PhysRevLett.118.091801 (PRL, 2017) 10.1088/1475-7516/2017/01/061 (JCAP, 2017)

- Mechanics: 10.1088/1748-0221/19/11/T11002 (JINST, 2019)
- Magnet development: 10.1109/TASC.2023.3273734 (IEEE, 2023)
- > Calibration:

10.1088/1475-7516/2023/04/064 (JCAP, 2023) 10.1088/1475-7516/2024/04/005 (JCAP, 2024)

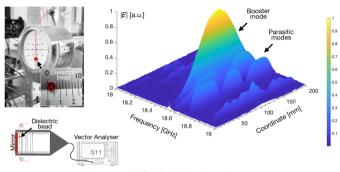
> Results:

10.1103/c749-419q (PRL, 2025) 10.1103/PhysRevLett.134.151004 (PRL, 2025)



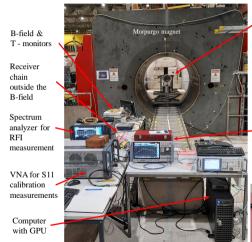
Backup

Receiver chain


Power calibration

Receiver chain with noise source

- Connect known noise source to chain
- > Two unknowns: receiver gain and its added noise
 - → Two well-known measurements needed
 - Noise source on: power given by datasheet
 - Noise source off: power given by thermal radiation
- Note: system temperature = temperature at which a black body would emit the same power
 - \rightarrow For microwaves: $P = k_B B T_{sus}$

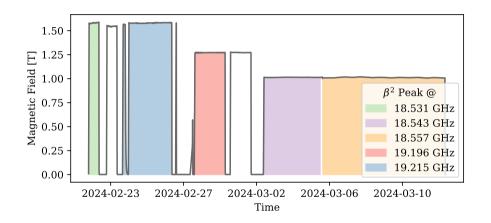

CB200 bead pull

Measured E field within closed booster

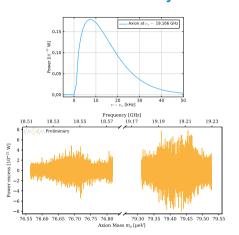
- > Frequency of TE₁₁ mode resonance confirmed by bead pull measurement
- > Parasitic modes well separated

CB200 full setup

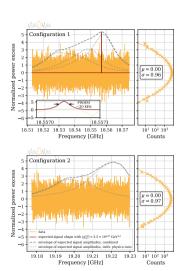
CB200 B-field probe First LNA with Tsensor attached spectrum analyzer


R&S

FSW43


Tunable Lowpass Bandpass bandpass filter filter

Receiver chain outside the B-field


CB200 B field overview

CB200 statistical analysis

Axion lineshape and cross-correlated power excess

Cross-correlated normalized power excess

Uncertainties

Effect	Uncertainty in $ g_{a\gamma} $
Y-factor power calibration	3% to 5%
Receiver chain power stability	$\leq 2 \%$
Axion field – TE_{11} overlap	6%
Boost factor determination	< 5 %
Frequency stability of TE_{11} mode	< 2 %
Total	5% to $10%$

Axion	run	unce	rtaint	ies

Effect	Uncertainty on χ
Bead-pull measurements	2 to 17%
Bead pull finite domain correction	5%
Receiver chain impedance mismatch	<1%
Y-factor calibration	4%
Power stability	3%
Frequency stability	2%
Line shape discretization	4%
Total	9 to 19%

Dark photon run uncertainties