Taming the dark photon production via a non-minimal coupling to gravity

arXiv:2509.12309

Jong-Hyun Yoon
Chungnam National University

in collaboration with

Oleg Lebedev

Astroparticle Symposium 2025 Institut Pascal, Orsay, France

Response to Capanelli et al., PRL 133 (2024)

Outline

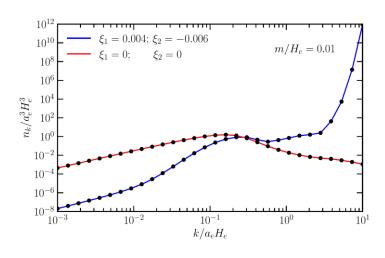
PART 1: THE PROBLEM

- Dark photons with non-minimal couplings
- Runaway production [Capanelli et al. 2024]

PART 2: UV COMPLETION

- Unitarity constraints
- Scalar coupling (ξ_1) & Tensor coupling (ξ_2)
- Universal bound: $|\xi_i| \ll m_a^2/H^2$

PART 3: RESOLUTION


- Numerical analysis with Claude Al
- Runaway = EFT breakdown artifact

Dark Photon with Non-Minimal Couplings

• Action:
$$S = \int d^4x \sqrt{|g|} \left(-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} m_A^2 g^{\mu\nu} A_\mu A_\nu - \frac{1}{2} \xi_1 R g^{\mu\nu} A_\mu A_\nu - \frac{1}{2} \xi_2 R^{\mu\nu} A_\mu A_\nu \right)$$

- ξ_1 , ξ_2 : Non-minimal couplings (required by EFT)
- Time-dependent effective masses $m_t^2 = m_A^2 \xi_1 R \frac{1}{2} \xi_2 R 3 \xi_2 H^2$, $m_x^2 = m_A^2 \xi_1 R \frac{1}{6} \xi_2 R + \xi_2 H^2$.
- → Important for particle production during inflation

The Runaway Problem

Capanelli et al., Runaway Gravitational Production of Dark Photons, PRL 133 (2024)

- High-momentum modes: explosive growth
- Tens of orders of magnitude increase
- Ghost, gradient, superluminal instabilities observed

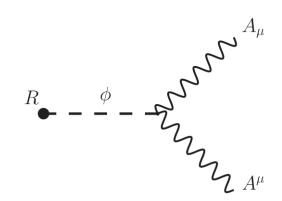
Conclusion: "No obvious solution"

Is this a fundamental problem?

Our Approach

- Observation:
- Couplings ξ_1 , ξ_2 come from effective theory
- → Must examine UV completion
- Strategy:
- Build UV-complete models
- Derive constraints on couplings
- Examine production within the allowed parameter space
- Does runaway persist in fundamental theory?

Unitarity Constraint

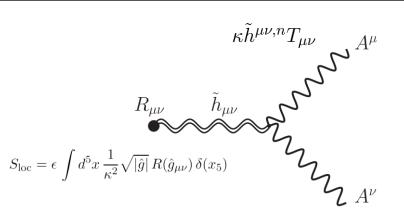

- Process: AA → GG (dark photon → gravitons)
- High-energy amplitude: $|\mathcal{A}| \propto |\xi_{1,2}| \; \frac{E^4}{m_A^2 M_{\mathrm{Pl}}^2}$
- Perturbative unitarity breaks down at: $p_{\max} \lesssim \frac{\sqrt{m_A M_{\rm Pl}}}{|\xi_{1,2}|^{1/4}}$
- Critical observation: $p_max \rightarrow 0$ as $m_A \rightarrow 0$
- $\Rightarrow \xi_i \rightarrow 0$ (required by gauge invariance!)
- $\Rightarrow \xi_i$ cannot be fundamental constants

UV Completion 1: Scalar Coupling

- Setup: $\mathcal{L}_{sc} = \overline{D_{\mu}\Phi} D^{\mu}\Phi \frac{1}{2}\xi R |\Phi|^2 V(\Phi)$
- Higgs mechanism:

$$\langle \Phi \rangle = v/\sqrt{2} \rightarrow m_A = gv$$

Physical scalar mass: m_s



Integrate out heavy scalar (m_s
$$\gg$$
 p) \Longrightarrow $\mathcal{L}_{\xi_1} = -\frac{1}{2}\xi\,\frac{m_A^2}{m_s^2}\,R\,A_\mu A^\mu \;\;,\;\; \xi_1 = \xi\,\frac{m_A^2}{m_s^2}$

- Validity conditions:
- Momentum: $p \ll m_s$
- Curvature: $|\xi R|/2 \ll m^2_s$
- During inflation (R = -12H²): $|\xi_1| \ll \frac{1}{6} \frac{m_A^2}{H^2}$

UV Completion 2: Tensor Coupling

- 5D Kaluza-Klein model: $S = \int d^5x \, \frac{1}{\hat{\kappa}^2} \sqrt{|\hat{g}|} \hat{R} + \int d^5x \sqrt{|\hat{g}|} \, \mathcal{L}_{\mathrm{mat}} \, \delta(x_5)$
- Extra dimension compactified (radius r)
- massive KK graviton modes
- Localized gravity term with parameter ϵ

- Integrate out KK modes \Longrightarrow $\mathcal{L}_{\xi_2} \simeq -\epsilon \, rac{m_A^2}{m_1^2} \, R_{\mu\nu} A^\mu A^
 u$, $\xi_2 = 2\epsilon \, rac{m_A^2}{m_1^2}$
- Validity: p \lesssim m₁ (below KK scale) $p_{
 m max} \lesssim rac{m_A}{\sqrt{|\xi_2|}}$

• Same constraint:
$$|\xi_{1,2}| \ll rac{m_A^2}{H^2}$$

$$M_{\rm Pl}^2/2 = r/\hat{\kappa}^2 + \epsilon/\kappa^2$$

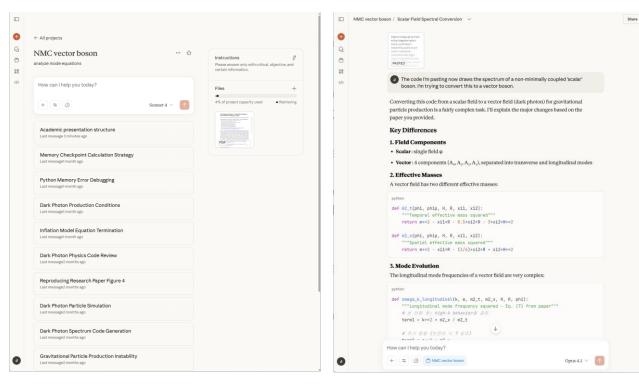
$$\hat{g}_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu} + \dots$$

$$h_{\mu\nu}(x, x_5) = \sum_n h_{\mu\nu}^n(x) \exp\left(i\frac{2\pi n x_5}{r}\right)$$

$$m_n = 2\pi n/r$$

Universal Pattern

- Form-factor behavior in ANY UV completion: $\xi_i \propto \frac{m_A^2}{p^2-M^2+\mathcal{O}(H^2)}$ where M = mass of integrated-out state
- High-energy behavior: $\xi_i(p) \rightarrow m^2 A/p^2$ (NOT constant!)
- Universal Constraint: for ξ_i constant from p = 0 to $p \sim H$: \rightarrow Require $M \gg H$
- $|\xi_i| \ll m_A^2/H^2$
- This is STRONGER than unitarity bound!


Numerical Verification

- Reproduce the known results + EFT validity boundary
- Modern computational tools:
- Al-assisted development
- High-performance computing
- Leveraging state-of-the-art technology

Al-Assisted Programming

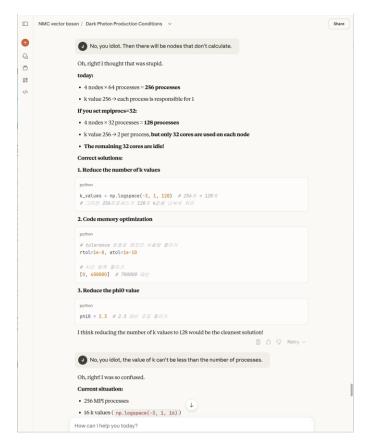
- Large Language Models (LLMs):
- Conversational AI trained on code and text
- (e.g., ChatGPT, Claude, Gemini)
- Key capability: Natural language ← Code translation
- We used Claude AI by Anthropic

Conversational Programming

• Starting point:

"The code I'm pasting now draws the spectrum of a non-minimally coupled 'scalar' boson. I'm trying to convert this to a vector boson."

- → Equation modifications
- → Implementation guidance
- → Working solver
- Physics problem → Code through dialogue


★ translated into English

Iterative Refinement

• Process: Problem \rightarrow Al suggestion \rightarrow Test \rightarrow Refine \rightarrow Problem ..(\times 100s)

Caveats

• Important notes:

Al has randomness and makes mistakes

Physics understanding required

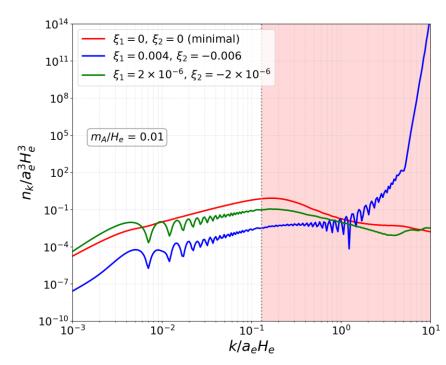
1 Tool to accelerate, not replace thinking

Critical thinking + AI = Efficient workflow

High-Performance Computing

- the use of supercomputers and computer clusters to solve advanced problems (wikipedia)
- Independent equations for each k
- → All solved simultaneously
- High-resolution spectrum efficiently
- ruche cluster (Paris-Saclay), Nurion (KISTI), ...

```
| The second sec
```



Numerical Results

• Reproduced Capanelli et al. (ξ_1 =0.004, ξ_2 =-0.006): Runaway confirmed

Our addition - EFT validity boundary:

$$p > m_A/\sqrt{|\xi_2|} \simeq 0.1 H_e$$

→ Runaway occurs OUTSIDE valid regime!

Physical Interpretation

- What's really happening?
- Effective theory approach:
- Assume ξ_i = constant
- Extrapolate to high k
- Find runaway production

- UV-complete theory:
- ξ_i (k) \propto 1/k² (form-factor)
- Already decreasing at high k
- Runaway suppressed

- ⇒ The runaway is an ARTIFACT
- ⇒ Not real physics, but EFT breakdown signal

Conclusions

- Key insight: Non-minimal couplings must come from UV completion
- \rightarrow Form-factor behavior $\xi_i(k) \propto 1/k^2$
- Universal constraint: $|\xi_i| \ll m^2 A/H^2$
- Runaway appears only where EFT breaks down
- Dark photon production with non-minimal couplings is theoretically consistent