Ultra-relativistic freeze-out during reheating: cold dark matter from a hot birth

Stephen E. Henrich

Co-authors: Keith A. Olive, Yann Mambrini, and Mathieu Gross **Based on:** arXivs 2511.02117 (*PRL*), 2505.04703 (*PRD*), and 2511.... (forthcoming *JCAP* submission)

University of Minnesota

Department of Physics

November 12, 2025

Outline

- Characterize the basic features of UFO and compare to standard (WIMP-like) freeze-out and freeze-in
- UFO during radiation domination (standard hot DM scenario)
- UFO during reheating
- Z' portal UFO DM
- Results and conclusions

Revisiting an old mechanism

(Ultra)relativistic freeze-out (UFO) has been considered since the 1960's-70's ⇒ hot or warm dark matter. But, reheating changes the story

Why is UFO worth studying?

- UFO is inevitable in the WIMP-to-FIMP transition for many interactions
- UFOs have distinct properties from both WIMPs and FIMPs

	WIMPs	FIMPs	UFOs
DM reaches equilibrium?	Yes	No	Yes
Relic density determined by	annihilations	production	production *
Interaction strength	weak	feeble	intermediate
UV vs. IR behavior	No	Yes	Yes
Can be cold DM?	Yes	Yes	Yes

^{*}Annihilations play an important role for UV UFO

Ultra-relativistic freeze-out

Definition: Chemical freeze-out without Boltzmann suppression.

 $T_{\rm FO} \gg m_\chi$ such that the interaction rate $\Gamma = \langle \sigma v \rangle n$ at freeze-out is in the ultra-relativistic regime.

Cross section

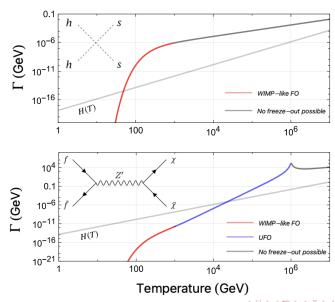
Number density

Rate

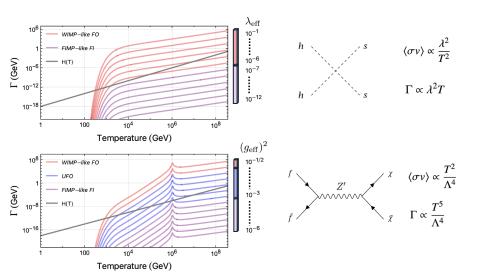
$$\langle \sigma v \rangle = \beta \frac{T^n}{\Lambda^{n+2}} \qquad n_\chi(T) = g_\chi \frac{\zeta(3)}{\pi^2} T^3 \quad \rightarrow \qquad \Gamma = \frac{g_\chi \zeta(3) \beta}{\pi^2} \frac{T^{n+3}}{\Lambda^{n+2}}$$

 β is a numerical factor from thermal averaging

n = -2 for a contact interaction between scalars


n = 2 for a heavy mediator

Example: classical neutrino decoupling


$$\Gamma \sim H \rightarrow G_F^2 T^5 \sim T^2/M_P \rightarrow T_d \approx 1 \text{ MeV} \gg m_V$$

UFO vs. WIMP-like FO

Two distinct WIMP-to-FIMP Transitions

Conditions required for UFO

Consider a generic BSM interaction and a generic cosmological era with

$$\Gamma_{\rm rel}(T) \propto T^{\gamma_1} \text{ and } H(T) \propto T^{\gamma_2}$$

We require $\gamma_1 > \gamma_2$ for UFO to be possible. Equivalently,

Master UFO condition:

$$\frac{d\ln\Gamma_{\rm rel}}{d\ln T} > \frac{d\ln H}{d\ln T}$$

Recall that $\gamma_1 = n + 3$, where in the ultra-relativistic regime $\langle \sigma v \rangle \propto \frac{T^n}{\Lambda^{n+2}}$.

UFO during radiation domination: requires n > -1

UFO during reheating: requires $n > \frac{3-k}{k-1}$ (n > 1 for quadratic minimum)

Heavy mediator interactions (n = 2) automatically satisfy these conditions

7/24

UFO during radiation domination

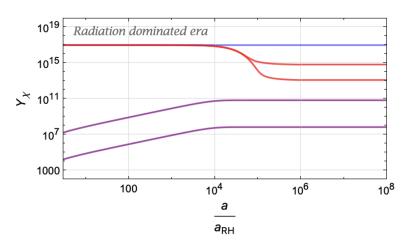
The ultra-relativistic freeze-out temperature can be determined by

$$\Gamma_{\rm rel}(T_{\rm FO}) = H(T_{\rm FO}) \implies T_{\rm FO} = \Lambda \left(\frac{\Lambda}{M_P}\right)^{\frac{1}{n+1}} \left(\frac{2\pi^2}{g_\chi \zeta(3)} \sqrt{\frac{\alpha}{3}}\right)^{\frac{1}{n+1}}.$$

The relic abundance is independent of T_{FO} and Λ , up to g_{FO} .

$$\Omega_\chi h^2 \simeq 0.12 \left[g_\chi \left(\frac{106.75}{g_{\rm FO}} \right) \left(\frac{m_\chi}{170~{\rm eV}} \right) \right] \; . \label{eq:omega_loss}$$

Thus, to satisfy $\Omega_{\chi} h^2 = 0.12$, we require

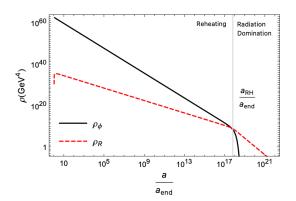

$$11 \text{ eV} \lesssim m_\chi \lesssim 170 \text{ eV}$$

However, warmness constraints from the Lyman- α forest require $m_\chi \gtrsim 5$ keV.

Conclusion:

There is no regime in which UFO during radiation domination can satisfy both $\Omega_{\chi} h^2 = 0.12$ and cold relic DM.

UFO during radiation domination



The co-moving DM number (Y_{χ}) remains essentially unchanged after freeze-out \Rightarrow minimal flexibility in parameter space

Non-instantaneous reheating

At the end of inflation, the inflaton oscillates about the minimum of its potential $(V(\phi) \propto \phi^k)$ and transfers energy to the SM radiation bath.

$$\dot{\rho}_{\phi} + 3H\left(\frac{2k}{k+2}\right)\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi}\,,\quad \dot{\rho}_{R} + 4H\rho_{R} = \Gamma_{\phi}\rho_{\phi},\qquad H^{2} = \frac{\rho_{\phi} + \rho_{R}}{3M_{P}^{2}}$$

Reheating (for k = 2):

$$H(T) = \sqrt{\frac{\alpha}{3}} \frac{T^4}{T_{\rm RH}^2 M_P}$$
$$T \propto a^{-3/8}$$
$$\rho_R = \alpha T_{\rm RH}^4 \left(\frac{a_{\rm RH}}{a}\right)^{\frac{3}{2}}$$

UFO during reheating

Solve the Boltzmann equation for n_{χ} :

$$\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma v \rangle (n_{\chi}^2 - n_{\text{eq}}^2) \tag{1}$$

After UFO, **SM** source particles continue to be produced by inflaton decays, while n_{χ} drops relative to its equilibrium density. Thus, it is the *production term* which dominates after UFO \Rightarrow

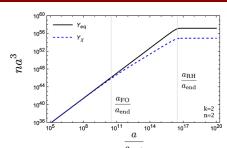
$$\frac{dY_{\chi}}{da} = \frac{a^2 R_{\chi}(a)}{H(a)} \tag{2}$$

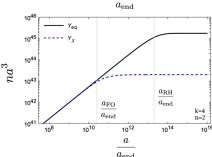
11/24

where $Y_{\chi} = n_{\chi} a^3$. We can solve this analytically to obtain

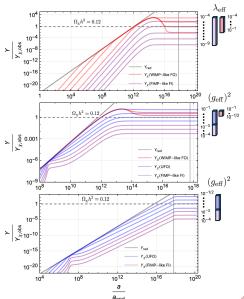
$$Y_{\chi}(a_{\rm RH}) = Y_{\rm FO} + \frac{g_{\chi}^2 \zeta(3)^2 \beta}{\pi^4} \left(\frac{2k+4}{3n-3nk-6k+30} \right) \times \sqrt{\frac{3}{\alpha}} \frac{T_{\rm RH}^{n+4} M_P}{\Lambda^{n+2}} \left[a_{\rm RH}^3 - a_{\rm FO}^3 \left(\frac{a_{\rm FO}}{a_{\rm RH}} \right)^{\frac{3n-3nk+18-12k}{2k+4}} \right] . \tag{3}$$

UV vs. IR UFO

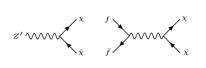

IR UFO


- Out-of-equilibrium production is greatest at low energies
- Y_{χ} increases after freeze-out
- Naive freeze-in calculation yields correct result

UV UFO

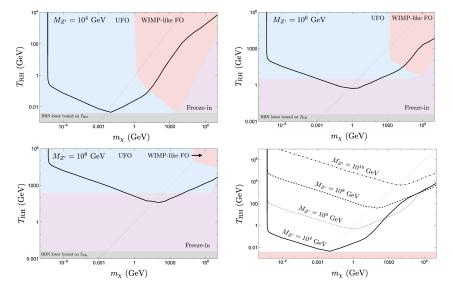

- Out-of-equilibrium production is greatest at high energies
- $Y_{\chi} \approx \text{constant after freeze-out}$
- Naive freeze-in calculation typically over-estimates by many orders of magnitude

UV if
$$n \ge \frac{10-2k}{k-1}$$
, IR if $n < \frac{10-2k}{k-1}$


Two distinct WIMP-to-FIMP Transitions

Heavy Z' portal DM necessarily includes UFO

$$\mathcal{L} \supset \bar{\chi} \gamma^{\mu} (V_{\chi} + A_{\chi} \gamma_5) \chi Z'_{\mu} + \sum_{f} \bar{f} \gamma^{\mu} (V_{f} + A_{f} \gamma_5) f Z'_{\mu} - \frac{1}{2} M_{Z'}^{2} Z'^{\mu} Z'_{\mu} - m_{\chi} \bar{\chi} \chi$$



Pure vector or axial vector contributions to $\bar{f}f \to \bar{\chi}\chi$:

$$\begin{split} |\overline{\mathcal{M}_{\text{vv}}}|^2 &= \frac{2V_f^2 V_\chi^2}{(s - M_{Z'}^2)^2 + \Gamma_{Z'}^2 M_{Z'}^2} \left[s^2 + 2st + 2(m_\chi^2 + m_f^2 - t)^2 \right], \\ |\overline{\mathcal{M}_{\text{aa}}}|^2 &= \frac{2A_f^2 A_\chi^2}{(s - M_{Z'}^2)^2 + \Gamma_{Z'}^2 M_{Z'}^2} \left[s^2 + 2st + 2(m_\chi^2 + m_f^2 - t)^2 - 4s(m_\chi^2 + m_f^2) \right. \\ &+ 16m_f^2 m_\chi^2 - 16\frac{sm_f^2 m_\chi^2}{M_{Z'}^2} + 8\frac{s^2 m_f^2 m_\chi^2}{M_{Z'}^4} \right]. \end{split}$$

$\Omega_{\chi} h^2 = 0.12$ parameter space for Z' portal DM

Is UFO DM cold though?

Lyman- α forest constraint requires a typical DM velocity at structure formation ($T \approx 1 \text{ eV}$) $v_x < 2 \times 10^{-4}$. Taking $v_y = p_y/m_y$ and $p_{\nu} \simeq T_{\rm FO}(a_{\rm FO}/a)$, we can redshift the DM momentum

$$p_{\chi} \simeq T_{\rm FO} \left(\frac{a_{\rm FO}}{a_{\rm RH}} \right) \left(\frac{a_{\rm RH}}{a} \right)$$
 (4)

so that for k=2

$$p_{\chi} \simeq T_{\rm FO} \left(\frac{T_{\rm RH}}{T_{\rm FO}}\right)^{\frac{9}{3}} \left(\frac{T}{T_{\rm RH}}\right)$$
 (5)

and at T = 1 eV, we have the constraints

$$m_{\chi} > 5 \text{ keV} \left(\frac{T_{\text{RH}}}{T_{\text{FO}}}\right)^{5/3}$$
 (for UV UFO) $m_{\chi} > 5 \text{ keV}$ (for IR UFO)

Even sub-eV DM can become cold with UFO during reheating! $\Omega_V h^2 = 0.12$ still requires $m_{\nu} \gtrsim 20$ eV.

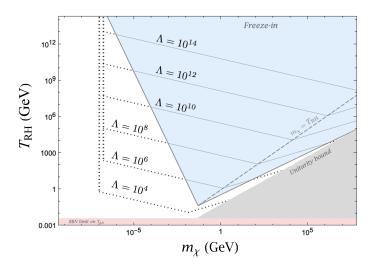
Conclusions

- UFO is an unavoidable, intermediate regime between WIMPs and FIMPs for many interactions
- UFO during radiation domination cannot produce cold relic DM with $\Omega_{\chi} h^2 = 0.12$
- UFO during reheating can produce cold relic DM and the correct abundance in large regions of parameter space
 - $10^{-7} \lesssim m_{\chi} \lesssim 10^6 \text{ GeV}$
 - $10^{-2} \lesssim T_{\rm RH} \lesssim 10^{15} \, {\rm GeV}$
 - $10^3 \lesssim \Lambda \lesssim 10^{14} \text{ GeV}$
- UFO is easily manifest in realistic, well-motivated particle physics models such as Z' portal DM

Ultra-relativistic freeze-out during reheating: cold dark matter from a hot birth

Stephen E. Henrich

Co-authors: Keith A. Olive, Yann Mambrini, and Mathieu Gross **Based on:** arXivs 2511.02117 (*PRL*), 2505.04703 (*PRD*), and 2511.... (forthcoming *JCAP* submission)


University of Minnesota

Department of Physics

November 12, 2025

$\Omega_{\chi} h^2 = 0.12$ parameter space (k = 2, n = 2)

Parameter space for UFO during reheating

DM mass	Λ	$T_{ m RH}$
5 keV	$7.1 \times 10^2 - 4.3 \times 10^{13} \text{ GeV}$	$4 \text{ MeV} - 9.7 \times 10^{11} \text{ GeV}$
100 keV	$1.5 \times 10^3 - 1.1 \times 10^{11} \text{ GeV}$	$4 \text{ MeV} - 1.2 \times 10^8 \text{ GeV}$
1 MeV	$2.7 \times 10^3 - 1.1 \times 10^9 \text{ GeV}$	$4 \text{ MeV} - 1.2 \times 10^5 \text{ GeV}$
100 MeV	$7.7 \times 10^2 - 9.6 \times 10^4 \text{ GeV}$	6.5 MeV - 0.10 GeV
1 GeV	$3.5 \times 10^3 - 2.8 \times 10^5 \text{ GeV}$	41 MeV - 0.50 GeV
100 GeV	$6.9 \times 10^4 - 2.3 \times 10^6 \text{ GeV}$	1.6 – 12 GeV
1 TeV	$3.1 \times 10^5 - 6.8 \times 10^6 \text{ GeV}$	10 - 60 GeV
100 TeV	$6.2 \times 10^6 - 5.7 \times 10^7 \text{ GeV}$	$4.1 \times 10^2 - 1.5 \times 10^3 \text{ GeV}$
1 PeV	$2.7 \times 10^7 - 1.6 \times 10^8 \text{ GeV}$	$2.6 \times 10^3 - 7.2 \times 10^3 \text{ GeV}$

UFO during radiation domination

The ultra-relativistic freeze-out temperature can be determined by

$$\Gamma_{\text{rel}}(T_{\text{FO}}) = H(T_{\text{FO}}) \implies \frac{g_{\chi}\zeta(3)}{\pi^2} \frac{T_{\text{FO}}^{n+3}}{\Lambda^{n+2}} = 2\sqrt{\frac{\alpha}{3}} \frac{T_{\text{FO}}^2}{M_P} \implies$$

$$T_{\rm FO} = \Lambda \left(\frac{\Lambda}{M_P}\right)^{\frac{1}{n+1}} \left(\frac{2\pi^2}{g_\chi \zeta(3)} \sqrt{\frac{\alpha}{3}}\right)^{\frac{1}{n+1}} \ .$$

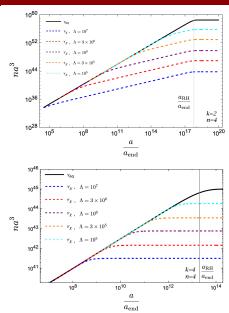
Number density at freeze-out:

$$n_\chi(T_{\rm FO}) = \frac{g_\chi \zeta(3)}{\pi^2} T_{\rm FO}^3 \Rightarrow n_\chi(T_0) = n_\chi(T_{\rm FO}) \left(\frac{a_{\rm FO}}{a_0}\right)^3 = n_\chi(T_{\rm FO}) \left(\frac{T_0}{T_{\rm FO}}\right)^3 \left(\frac{g_0}{g_{\rm FO}}\right)$$

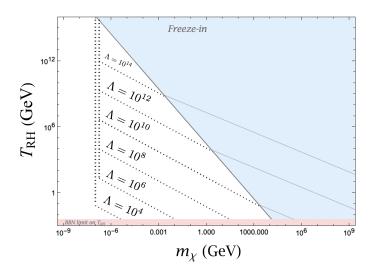
The relic abundance is given by

$$\Omega_\chi h^2 \simeq 0.12 \left[g_\chi \left(\frac{106.75}{g_{\rm FO}} \right) \left(\frac{m_\chi}{170~{\rm eV}} \right) \right] \; . \label{eq:omega_loss}$$

4 D > 4 B > 4 E > 4 E > E 990


DM Production Rate

$$\frac{dY_{\chi}}{da} = \frac{a^2 R_{\chi}(a)}{H(a)} \tag{6}$$


$$R_{\chi}(T) = \frac{1}{1024\pi^{6}} \int f(E_{1}) f(E_{2}) E_{1} dE_{1} E_{2} dE_{2} d\cos\theta_{12} \int |\mathcal{M}|^{2} d\Omega_{13}, (7)$$

Λ-dependence

$\Omega_{\chi} h^2 = 0.12$ parameter space (k = 4, n = 2)

