Present status of Charm Measurements

Arantza Oyanguren (IFIC - Valencia)

<u>Outline:</u>

 Introduction Charm fragmentation • Leptonic decays • Semileptonic decays Mixing and CP violation • Rare and forbidden decays • Hadronic decays

Introduction: why charm?

The aim: find NEW PHYSICS

1) Overconstraining the UT

***** The role of charm:

• Understand the strong interaction: Hadronic effects in leptonic and semileptonic decays, fragmentation, hadronic decays

Help for inputs in B decays (more sensitive to NP) validating Lattice QCD computations

• Search for New Physics in Mixing and CP violation, rare and forbidden decays

VII Meeting on B Physics

Charm Landscape

Charm Data Samples

Physics at charm threshold: $(D\overline{D})$

Physics at Y(4S) : (BB threshold)

📩 Clean environment:

- less background
- easy to recontruct all decay products

VII Meeting on B Physics

Charm Fragmentation

🜟 @ the Y(4S) the c quark hadronizes into D, D*, D**, D_s , baryons...

The charm fragmentation:

- Provide reference data on D_s, D^{**}, charm baryons.

-Help in the understanding of the QCD processes (test of models)

 \rightarrow Important to validate simulations in other environments (LHC)

Present Status:

- Old measurements from Belle and CLEO-III (BaBar on the way)

-Would like to have all (D, D*, D**, Ds, Λc , etc...) fragmentation functions

- Important to separate perturbative and non-perturbative parts

VII Meeting on B Physics

Leptonic Decays:

***** Measurement of decay constants: f_{D.} f_{Ds}

SM: D→ℓv = 2.35 x 10⁻⁵ : 1: 2.65 (e:μ:τ)

$$\Gamma = \frac{1}{8\pi} G_F^2 f_D^2 m_\ell^2 M_D \left(1 - \frac{m_\ell^2}{M_D^2} \right)^2 |V_{cd}|^2$$

f_{D(s)} provides Lattice-QCD validation

Γ

VII Meeting on B Physics

Leptonic Decays:

Present Status:

- Good agreement between lattice and experiments on f_D , not so good (2σ) on f_{Ds} .
- Lattice quite precise.

VII Meeting on B Physics

1) Pseudoscalar: 1 form factor; $D \rightarrow P\ell \nu$ (P=K, π) 2) Vectorial: 3 form factors; $D_{(s)} \rightarrow V\ell \nu$ (V=K*, ρ , ϕ)

@ charm threshold:

- -Full reconstruction in the tag side - pion + lepton in the signal side - U = $E_{miss} - |p_{miss}|$
 - \rightarrow good signal/bkg separation \rightarrow good q² resolution (~20 MeV²)

$$rac{1}{2} = rac{G_F^2}{24\pi^3} \left| V_{cd} \right|^2 p_\pi^3 \left(q^2
ight) \left| rac{f_+(q^2)}{f_+(q^2)}
ight|^2$$

VII Meeting on B Physics

Present Status:

- Precise measurements of $D \rightarrow K \ell v$ and $D \rightarrow \pi \ell v$ form factors (BaBar, CLEO-c)

- New precise results from Lattice agree with experiment

- New preliminary results from CLEO-c on D $\!\!\!\!\to\!\!\eta\;\ell\nu$ form factor

VII Meeting on B Physics

VII Meeting on B Physics

2) D \rightarrow K* $\ell \nu$

d Γ depends on m, q², θ_v , θ_l , χ and 2 form factor ratios: r_v and r₂

@ charm threshold:

- Full reconstruction method -Also measure the suppressed decay $D \rightarrow \rho ev \ (\rho \rightarrow \pi \pi)$

VII Meeting on B Physics

Present Status:

BaBar

- Lattice lacks precision: Comparison with LQCD:

- No evidence of flavour dependence of form factors

VII Meeting on B Physics

BaBar

(GeV/c²)

🜟 Charm mixing:

mass and flavor eigenstates are different

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle$$

 $|p|^2 + |q|^2 = 1$

The mixing is measured with two parameters: x and y

x=(m₁-m₂)/Γ y=(\Gamma_1-\Gamma_2)/2Γ (with \Gamma=(\Gamma_1+\Gamma_2)/2) In the SM |x| and $|y| << 10^{-2}$

- New Physics can enter in x
- Long distance hadronic effect enter in x and y

CP Violation in the SM may occur at per mil level and could be found:

- In the decay (direct) $\left| \frac{\overline{A}_{\overline{f}}}{A_{\overline{f}}} \right| \neq 1$
- In mixing (indirect)

$$\left|\frac{\overline{A_f}}{\overline{A_f}}\right| \neq 1$$

$$\left|\frac{q}{n}\right| \neq 1$$

Weak phase:

- In the interference between mixing and decay

$$f = \arg\left(\frac{q}{p}\frac{\overline{A}_f}{A_f}\right) \neq 0, \pi$$

VII Meeting on B Physics

@ B factories:

Time dependent mesurements:

- Select D⁰ mesons from D^{*+} \rightarrow D⁰ π ⁺ (tags flavour)
- $\Delta m = mD^{*+} mD^0$ to supress bkg.
- Measure the decay time ($\sigma_t^{\,\sim}$ 0.2 ps)

First evidence for $D^{\circ}-D^{\circ}$ mixing

Wrong sign $D^0 \rightarrow K^+\pi^-$ decays: RS/WS ratio as function of time, extract rotated mixing parameters (x'², y').

Amplitude analysis of $D^0(t) \rightarrow K_s \; h^{\scriptscriptstyle +} h^{\scriptscriptstyle -}$

Average decay time as function of Dalitz-plot position allows to get the mixing parameters x and y

VII Meeting on B Physics

Present Status:

 Time dependent measurements, many experimental results (no individual 5σ):

- Mixing established at 10.2σ

- No CPV point within 1σ

- SM predictions difficult due to non-perturbative (long-distance) contributions...

VII Meeting on B Physics

Present Status:

- Direct CP Violation

Λ^f _	$\Gamma(D^0\to f)-\Gamma(\bar{D}^0\to f)$
$\Lambda_{CP} -$	$\overline{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)}$

Further info: www-cdf.fnal.gov/physics/new/bottom/100916.blessed-Dpipi6.0/

$$-A_{CP}(K^{+}K^{-}) = -0.0016 \pm 0.0023$$
 (HFAG)

New result from CDF ($D^0 \rightarrow \pi^+\pi^-$): ~ 220,000 D*+ $\rightarrow D^0 \pi^+ \rightarrow (\pi^+ \pi^-) \pi^+$

(Released to public October 1st, 2010)

No Indirect CPV $a_{CP}^{dir}(D^0 \rightarrow \pi^+\pi^-)$ [%]

No direct CPV @ permil level

VII Meeting on B Physics

Rare and forbidden decays

★ Lepton decays (D⁰→ $\ell^+\ell^-$), GIM suppressed decays (D→Meson $\ell^+\ell^-$), decays violating Lepton Flavour (D→eµ) or Lepton Number (D⁺→Meson $\ell^+\ell^+$)

 \rightarrow Very suppressed (B < 10⁻⁶), ultra-suppressed or forbidden in the SM

 \rightarrow New Physics could enhance the rates through virtual non-standard particles

Present Status:

- Some present results and projections (BESIII with 20fb⁻¹)

	SM 10 ^{_6}	Current limit 10 ^{–6}	BESIII 10 ⁻⁸
D⁺→K⁻e⁺e⁺	0	4.5 (CLEO-c)	6.7
$D^+ \rightarrow \pi^- e^+ e^+$	0	3.6 (CLEO-c)	5.6

	SM (×10 ^{−6})	Current limit $(\times 10^{-6})$	BESIII 10 ⁻⁸		
D⁺→K⁺µ⁻µ⁺	-	9.2 (FOCUS)	10.5		
D⁺→π⁺µ⁻µ⁺	1.9	8.8 (FOCUS)	8.7		
D⁺→K⁺e⁻e⁺	-	3 (CLEO-c)	6.7		
D⁺→π⁺e⁻e⁺	2.0	5.9 (CLEO-c)	5.6		

	SM	Current Limit	CLEO-c	BESIII
D⁰→e⁺e⁻	10 ⁻²³	7.9×10 ⁻⁸ (Belle)	6.9×10 ⁻⁷	2.4 ×10 ⁻⁸
$D^0 \rightarrow \mu^* \mu^-$	10 ⁻¹³	1.4 ×10 ⁻⁷ (Belle)		1.7 ×10 ⁻⁷
D⁰→e [±] µ∓	0	2.7 ×10 ⁻⁷ (Belle) 8.1×10 ⁻⁷ (BaBar)	-	4.3 ×10 ⁻⁸

VII Meeting on B Physics

Summary

Measurements in the charm sector are important for the CKM picture \rightarrow control of hadronic effects, validation of Lattice QCD It can also give signs of New Physics

🜟 Leptonic decays:

theory and experiment agree on $D \rightarrow \ell v$, not so well on $D_s \rightarrow \ell v$ (2 σ) Some results from LQCD more accurate than experiment (BESIII?)

\star Semileptonic decays:

Experimental results from B-Factories and CLEO-c agree Theory lacks precision (LQCD for sl decays improving...)

🜟 Charm mixing:

Charm mixing established, need to separate x and y. No CPV at present. What does the SM say?

\star Rare decays:

Sensitivity ~10⁻⁶ -10⁻⁷, waiting BESIII (~10⁻⁸ with 20fb⁻¹) and/or SuperB, LHC-b?