b and c production in CMS and ATLAS

Francesco Fiori on behalf of CMS and ATLAS collaborations

VII Meeting on B-physics (LAL)

LHC luminosity evolution

- ☐ LHC startup in March 2010
- □ 9.67 pb⁻¹ delivered lumi
- □ 5 pb⁻¹ certified lumi
- ☐ 6 pb-1 in the last 2 weeks
- \square Inst. lumi 10²⁶ -> 5 10³¹cm⁻²s⁻¹
- \square Now up to ~ 500 nb⁻¹/day
- No explosions so far ☺

b and c physics 🗈 LHC

- The study of heavy quark production is of main interest in LHC:
 - Quarkonia production (J/psi, Y)
 - Test of QCD (NRQCD)
 - CP violation (B-mesons)
 - Higgs (if light enough)
- Huge programme (already started):
 - Quarkonia and b cross section (already in place)
 - Charmed mesons properties (1-100 pb⁻¹)
 - Quarkonia polarization
 - B-mesons properties
 - (limits to) BR of rare decays (FCNC) (> 1 fb⁻¹) $B_s \rightarrow J/\psi \ \phi$ candidate in CMS

 Need of high performance tracking detectors (b-tagging) and efficient lepton triggers

CMS and ATLAS

- Performant inner tracking detectors (based on Si pixels and strips)
- Fast and redundant muon identification system (Mu triggers)
- Extended coverage with respect to Tevatron detectors ($|\eta| \le 2.5$)
- Very different configuration of B field, in the inner region superconducting solenoids are used by both (2 vs 4 T)
- 3 Levels for trigger decision (L1 Hardware, L2/L3 software)

J/ψ

- Very inclusive trigger paths:
 - ATLAS: MinBias + L1 single Muon
 - CMS: L1 Double Muon + single Mu (pT>3 GeV/c)
- Pairs of opposite charge muons
- Good primary vertex and secondary vertex by the two muons
- Quality cuts (n° of hits, χ2 fit ... See backup)

Yields extracted by MLL fits to data:

CMS: CB + Exp

ATLAS: Gauss + Linear

Cross Section

- ATLAS weights event by event with 1/Aε (efficiency taken by simulation)
- CMS correct the yields in each bin with 1/<A ε>
- The acceptance is strongly dependent by the polarization, 5 scenarios considered: ATLAS include in systematic error, CMS quotes 5 Xsections

Collins-Soper fully long.

Differential Cross Section

Systematics:

- Signal (background) PDF (1-8%)
- Single Mu efficiencies (10-15%)
- Momentum scale (>1%)
- FSR (1-2%)
- Polarization (not included in sys.)

Total production cross section in 4 < pT<30 and |y| < 2.4: 289.1 ±16.7(stat) ±60.1(syst) nb

For details on J/psi see:

ATLAS CMS

B-Fraction

pseudo-proper decay length

$$\ell_{xy} = \frac{L_{xy}^{J/\psi} \cdot M^{J/\psi}}{p_T^{J/\psi}}$$

- Prompt J/ψ: triple Gaussian resolution function
- •Simultaneus MLL fit to the mass and lifetime distributions

B-hadron component, two approaches:

- A. MC template of true pseudo-decay length, convoluted with the same resolution function extracted from prompt decays (used as reference)
- B. Assume a convolution of an exponential decay with two resolution functions:
 - A Boost resolution function to account for differences between the B-hadron and the J/Psi boost
 - Decay length resolution R (assumed to be the same of prompt J/Psi)

(The difference is taken as systematic)

Lifetime Fits

Resolution:

Barrel

pT 4.0-6.0 (85 ± 15) um pT 6.0-10.0 (46 ± 5) um pT 10.0-30.0 (39 ± 7) um

Forward

pT0.0-2.0 (253 \pm 9) um pT2.0-4.0 (141 \pm 6) um pT4.0-6.0 (74 \pm 4) um pT6.0-10.0 (55 \pm 4) um pT10.0-30.0 (37 \pm 6) um

Total cross secion x Br for B hadron decays in 4 < pT < 30 and |y| < 2.4:

56.1±5.5(stat)±7.2(syst) nb

Comparison with predictions

04/10/2010 F.Fiori 10

... and with other experiments

compilation by Hermine Woehri

Ψ(2S)

N J/psi: 7010 +/- 108

Resolution J/psi: 20 MeV +/- 0.6

Mean J/psi: 3.097 GeV +/- 0.0003

N psi(2S): 311 +/- 23

Resolution psi(2S): 18 MeV +/- 2 **Mean psi(2S)**: 3.691 GeV +/- 0.001

R= N(psi(2S))/N(J/psi):

 $R_{CMS} = 0.044 \pm 0.004 (<p_T>=11.7 GeV/c)$

 $R_{ATLAS} = 0.042 \pm 0.005$

Y family

- ✓ Y family well visible in CMS and ATLAS data
- ✓ CMS already published a pT differential cross section
- ✓ The selection of events is the same of the J/psi

Y production in CMS

Trigger: Double Muon at L1

Fit: 3 Gaussians + Linear

Dominant source of systematics is the efficiency computation (statistical origin)

5 cross sections quoted for the different polarizations

$$\sigma(pp \to Y(1S)) \cdot Br(\mu^+\mu^-) =$$

$$8.3 \pm (0.5) \pm (0.9) \pm (1.0) nb$$

Stat. Lumi. sys.

$$B(Y(1S) \to \mu^+ \mu^-) = (2.48 \pm 0.05) \%,$$

$$B(Y(2S) \rightarrow \mu^{+}\mu^{-}) = (1.93 \pm 0.17) \%,$$

$$B(Y(3S) \to \mu^{+}\mu^{-}) = (2.18 \pm 0.21) \%.$$

R=
$$[\sigma(Y_{2S}) + \sigma(Y_{3S})]/\sigma(Y_{1S})$$
 $R = 0.44 \pm 0.06 \pm 0.07$

Deatails **here**

B±-mesons in CMS

Details here

- ☐ Single Mu trigger (pT> 3GeV/c)
- ☐ Opposite sign di-muon combinations, if more than one chose the one with mass closest to the J/psi mass
- ☐ di-muon vertex Probability >0.1%
- ☐ Combine J/psi candidate with tracks (pT>0.9 GeV/c)
- ☐ Kinematic fit with J/psi mass constraint
- ☐ Require vertex probability > 0.1%
- ☐ If multiple candidates/event, choose
- highest pT B- candidate
- \Box ct(J/ ψ K)/ Δ ct > 1

Inclusive b-jet production in CMS

CMS measured a double differential cross section for b-jet production and the ratio to inclusive jet production in the kinematic range |y|<2 and $18 < J_{DT} < 300$ GeV/c

- ✓ b-tag: The secondary vertex is fitted with at least three charged particle tracks.
- ✓ A selection on the reconstructed 3D decay length significance is applied, corresponding to about 0.1% efficiency to tag light flavor jets and 60% efficiency to tag b jets at pT = 100 GeV.
- ✓ Purity and mistag probability taken from MC (Pythia)
- ✓ Trigger: MinBias + single-jet

b-jets/inclusive-jets

- The ratio reduces the uncertainties on
- Good agreement with Pythia
- NLO calculations are in agreement at low pT, with very different shape at
- Leading systematics:
 - b-tagging efficiency (20%)
 - Mistag (1-10%)

Conclusions

- After 6 months from the LHC start up ATLAS and CMS have produced good quality physics results
- New results with much more statistics coming soon (weeks)
- J/psi X section measurement in place for both experiments

More refined B-physics studies require more data however the

 The re-discovery of the Standard Model is just started

Back up

Selection I

Event selection:

Good Vertex, Anti Scraping [+L1 tech bits (only for runs<136086)]

Mu selection:

- Use GlobalMuons and TrackerMuons
 - see next slide for selection details
 - No Mu cleaning (does not affect x-section once using trigger bits)

Triggers used:

- HLT_L1DoubleMuOpen (pT<4 GeV/c) + HLT_Mu3 (pT>4 GeV/c)
 - strategy: keep the loosest unprescaled trigger path and that gives the smallest systematics

Analysis is performed on GG+GT+TT

- In case more than a combination use the GG; if both are GG, GT or TT take the one with larger p_T
 - Given the small number of events the three categories are lumped into a single category.

Selection II

- Both muons in acceptance
- Muon tracker tracks:
 - $-\chi 2/ndof < 4.0$
 - |d0| < 3.0 cm (calculated w.r.t. PV)
 - |dz| < 15.0 cm (calculated w.r.t. PV)
 - number of valid hits (pixel + strips) > 11
 - number of pixel layers with hits ≥ 2
- Global muons:
 - $-\chi 2/ndof$ (global fit) < 20.0
 - number of valid muon hits > 0
 - also tracker muons arbitrated and passing TMLastStationAngTight selector
- Tracker muons:
 - arbitrated and passing TMLastStationAngTight
- a secondary vertex must be found with P(χ2) > 0.1%

Mass Fit

CB signal + Exponential background

Example of two (very) different bins:

High background level, worse resolution

Fit: 923 +/- 59

Resolution : $45.2 + /- 2.4 \text{ MeV/}c^2$

Mean: $3.090 + /- 0.002 \text{ GeV/}c^2$

S/B = 1.4

Practically no background

Fit : 412 +/- 22

Resolution: $26.1 + /- 1.4 \text{ MeV/}c^2$

Mean: $3.097 + /- 0.001 \text{ GeV/}c^2$

S/B = 26.5

we have considered a CB+Gauss for the signal and a linear fit for the outlook of the outlook of the outlook of the outlook outlook of the out

Efficiencies

Determined by T&P (single muon)

$$\mathcal{E}_{reco} = \mathcal{E}_{track} \cdot \mathcal{E}_{id}$$

From single mu to J/ψ:

$$\begin{split} \mathcal{E}_{J/\psi} &= \mathcal{E}_{reco}(\mu^{+}) \cdot \mathcal{E}_{reco}(\mu^{-}) \cdot \mathcal{E}_{Trigger} \cdot \rho \cdot \mathcal{E}_{Vertex} &\longleftarrow \text{From data} \\ \mathcal{E}_{Trigger} &= \mathcal{E}_{Trigger}(\mu^{+}) \cdot \mathcal{E}_{Trigger}(\mu^{-}) &\longleftarrow \text{For double Mu trigger} \\ \mathcal{E}_{Trigger} &= \mathcal{E}_{Trigger}(\mu^{+}) + \mathcal{E}_{Trigger}(\mu^{-}) - \mathcal{E}_{Trigger}(\mu^{+}) \cdot \mathcal{E}_{Trigger}(\mu^{-}) \end{split}$$

All the single muon efficiency computed on data

For single Mu trigger

- Triggers used:
 - L1DoubleMuOpen (Forward region for pT<4 GeV/c)
 - HLT_Mu3 (For pT>4 GeV/c, gives a better S/B)

Trigger efficiency (T&P)

DoubleMuOpen

ld and Tracking

Muon Id

- Tracking: use the T&P from PAS TRK-10-002.
 - assumed that the pT behaviour is the same between the data and MC. Correct for phi-eta dependence.

Inclusive Xsection

$p_T^{J/\psi}$	$\langle p_T^{J/\psi} \rangle$	$BR(J/\psi \to \mu^+\mu^-) \cdot \frac{d\sigma}{dp_{\perp}}$ (nb/ GeV/c)				
(GeV/c)	(GeV/c)	Prompt J/ψ polarization				
		null	$\lambda_{\theta}^{CS} = -1$	$\lambda_{\theta}^{CS} = +1$	$\lambda_{ heta}^{HX} = -1$	$\lambda_{\theta}^{HX} = +1$
y < 1.4						
4 - 6	5.11	$34.9 \pm 2.5 \pm 6.0$	45.5 ± 14.6	32.2 ± 6.3	25.5 ± 10.3	42.9 ± 12.1
6 - 8	6.98	$16.18 \pm 0.84 \pm 2.33$	18.84 ± 4.04	15.15 ± 2.58	12.22 ± 4.58	19.30 ± 4.41
8 - 10	8.89	$8.49 \pm 0.45 \pm 1.35$	9.80 ± 1.64	7.97 ± 1.69	6.56 ± 2.84	9.98 ± 1.75
10 - 30	13.41	$0.653 \pm 0.031 \pm 0.097$	0.724 ± 0.099	0.622 ± 0.120	0.543 ± 0.184	$\boldsymbol{0.728 \pm 0.101}$
1.4 < y < 2.4						
0 - 1	0.64	$185 \pm 12 \pm 38$	131 ± 67	234±68	134 ± 65	229 ± 63
1 - 1.5	1.24	$419 \pm 40 \pm 138$	298 ± 172	524 ± 205	314 ± 162	501 ± 187
1.5 - 2	1.73	$393 \pm 24 \pm 110$	281 ± 150	490 ± 167	-302 ± 136	464 ± 147
2 - 3	2.44	$214 \pm 9 \pm 33$	155 ± 71	265 ± 65	169 ± 58	248 ± 51
3 - 4	3.45	$116\pm 5\pm 19$	86 ± 36	141 ± 35	93 ± 30	133 ± 28
4 - 6	4.87	$54.6 \pm 3.0 \pm 10$.	45.0 ± 14.0	62.7 ± 14.6	44.5 ± 13.7	62.0 ± 14.1
6 - 8	6.84	$14.92 \pm 0.64 \pm 2.60$	13.74 ± 2.87	15.95 ± 3.00	12.74 ± 3.38	16.42 ± 3.24
8 - 10	8.86	$5.88 \pm 0.34 \pm 1.00$	5.80 ± 1.09	5.97 ± 1.03	5.18 ± 1.46	6.31 ± 1.01
10 - 30	12.97	$0.307 \pm 0.024 \pm 0.048$	$\boldsymbol{0.309 \pm 0.054}$	0.308 ± 0.054	0.281 ± 0.057	$\textbf{0.323} \pm \textbf{0.058}$

As the data sample grows, it will become possible to measure the polarization and re-evaluate the corresponding cross section.

B-tagging efficiency

Purity

