

b and *c* quark crosssection measurements at LHCb

VII B Physics Workshop Orsay

Patrick Robbe, LAL Orsay and CERN, 4 October 2010,

For the LHCb Collaboration

Introduction

At 7 TeV pp collisions, a very large data sample of D hadrons is reconstructed with very early data.

These D hadrons are produced by 2 sources:

- <u>Prompt D</u>: produced at pp interaction \rightarrow measurement of **c** production cross-section.
- <u>D from B decays</u> \rightarrow measurement of **b** production cross-section.

Cross-section measurements allow comparison with QCD predictions, and also help to assess expected performances of the experiment whose physics program is based on the study of rare B and D decays.

LHCb detector and definitions

- p_{T} : momentum in plane transverse to beam,
- η: pseudo-rapidity, -ln(tan(θ /2))
- y: rapidity, $\frac{1}{2} \log[(E+p_z)/(E-p_z)]$

<u>LHCb acceptance</u>: $2 < \eta < 6$, down to $p_T = 0$.

Prompt / B Separation

Vertex reconstruction is fundamental to separate primary (prompt), secondary (B) or tertiary (decay products) vertices:

- Suppression of large combinatorial background (also at trigger level),
- Measurement of lifetimes,
- Time dependent CP violation analysis.

Prompt / B Separation

Prompt D and D from B decays are separated using the Impact Parameter (IP), distance between:

- <u>the D line of flight</u>, computed from the D decay vertex and the reconstructed D momentum,
- <u>the Primary Vertex</u>, formed from the many fragmentation tracks from the pp interaction.

cc cross-section measurement

Use 1.8nb⁻¹ of data taken with **interaction trigger** (micro-bias trigger, based on presence of tracks reconstructed in VELO), 100% efficient on charm event.

Measure production cross-section of D^0 , D^{*+} , D^+ , D^+_s in bins of p_T (0< p_T <8 GeV) and rapidity y (2<y<5).

Contribution of D from B decays is measured on data (Impact Parameter) and subtracted to the final result.

Efficiencies are extracted from Monte Carlo, but are intensively cross-checked on data (in particular PID efficiencies are measured on data using clean calibration samples).

Charm signals (1.8nb⁻¹)

 $D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$

 $D^+ \rightarrow K^- \pi^+ \pi^+$

D^o cross-section results

• BAK et al. [Kniehl, Kramer, Schienbein, Spiesberger]

• MC et al. [Cacciari, Frixione, Mangano, Nason, Ridolfi]

D*+ cross-section results

D+ cross-section results

D_s⁺ cross-section results

bb cross-section measurement

Principle: separate statistically prompt D and D from B using the In(IP) distribution.

Use $D^0 \rightarrow K\pi$, and associate with a μ with charge correlated with D^0 flavour to enrich D^0 sample in " D^0 from B".

Infer b cross-section from LEP measurement of Br(b \rightarrow D⁰Xµ \neg v) = (6.84±0.35) %

bb cross-section measurement

2 data sample with different triggers:

• 2.9 nb⁻¹ early data, with open interaction trigger (micro-bias).

• <u>12.2 nb⁻¹ data triggered with single muon</u> trigger with p_T >1.3 GeV, 50% efficient.

Signal yield is determined from a unbinned maximum likelihood fit to the K π mass distribution and to the In(IP) distribution. Combinations of D⁰ with a misidentified μ are measured from data and subtracted from signal.

The sample is divided in 4 bins of $\eta(B)$, 2< η <6, where η of the B meson is measured with the Primary Vertex and the D⁰ μ vertex.

Efficiencies (8% in total) are taken from Monte Carlo, but crosschecked extensively on data.

bb cross-section systematic errors

Source	Error $(\%)$	Source	Error $(\%)$
Luminosity	10.0	Prompt & Dfb shapes	1.4
Tracking efficiency	10.0	$\mathcal{B}\left(D^0\to K^-\pi^+\right)$	1.3
$\mathcal{B}(b \to D^0 X \mu^- \overline{\nu})$	5.1	$D^0\mu^-$ vertex χ^2 cut	1.2
Assumed branching fractions	4.4	Kaon identification	1.2
LEP fragmentation fractions	4.2	Muon fakes	1.0
Generated $b p_{\rm T}$ distribution	3.0	D^0 mass cut	1.0
Muon identification	2.5	D^0 vertex χ^2 cut	0.6
$\chi^2_{\rm IP} {\rm cut}$	2.5	D^0 flight distance cut	0.4
MC statistics	1.5	Pion identification	0.3
Total		17.3%	

Measurement is done integrating over p_{T} spectrum and summing over different *B* species.

bb cross-section: checks

Trigger efficiency as a function of η: checked on data using independent triggers

Cross-check of $p_{T}(B)$ spectrum of our Monte Carlo generator.

bb cross-section results

Average cross-section to produce a b or b hadron:

 $\sigma(pp \to H_b X) = \frac{\# \text{ of detected } D^0 \mu^- \text{ and } \overline{D}^0 \mu^+ \text{ events}}{2\mathcal{L} \times \text{ efficiency } \times \mathcal{B}(b \to D^0 X \mu^- \overline{\nu}) \mathcal{B} \left(D^0 \to K^- \pi^+ \right)}$

Very good agreement in absolute value and η shape with 2 theories:

• MCFM [Monte Carlo for FeMtobarn processes, Nason, Dawson, Ellis, http://mcfm.fnal.gov], NLO with MSTW8NL PDF.

• CNFMR [Cacciari, Frixione, Mangano, Nason, Ridolfi, JHEP 0407 (2004) 33], NNLO with CTEQ6.5 PDF.

bb cross-section results

Over the LHCb acceptance, $2 < \eta < 6$: $\sigma(pp \rightarrow H_b X) = (75.3 \pm 5.4 \pm 13.0) \mu b$, very close to the cross-section used for LHCb performance studies.

In good agreement with cross-section from $b \rightarrow J/\psi X$, see Giulia Manca's talk.

Cross-section quoted using b hadronization fractions measured at LEP. When using fractions measured by CDF, $\sigma(pp \rightarrow H_b X) = (89.6 \pm 6.4 \pm 15.5) \ \mu b$. [Mainly due to f(b-baryon) =

 $(9.1\pm1.5)\% \rightarrow (21.4\pm6.8)\%].$

Using η spectrum from PYTHIA 6.4, the cross-section is also extrapolated to the full space (multiplying by 3.77): $\sigma(pp \rightarrow b\overline{b}X) = (284\pm20\pm49) \ \mu b.$

Conclusions

First LHCb measurements of flavour physics: c and b production cross-sections at 7 TeV pp center-of-mass energy.

Measurements in good agreement with predictions: c and b cross-sections are huge \rightarrow validate yield estimates presented since several years by LHCb.

Publication of charm cross-section measurement soon, with extended dataset, and other hadrons (Λ_c^{+}) .

Beauty cross-section measurement published, similar studies with semi-leptonic decays ongoing (b hadronization fractions, ...)