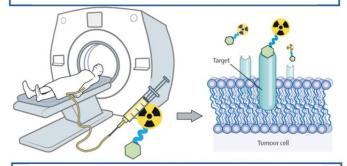


SPECT imaging of ¹⁶¹Tb and ¹⁵⁵Tb and impact of ¹⁵⁶Tb pollution on image quality

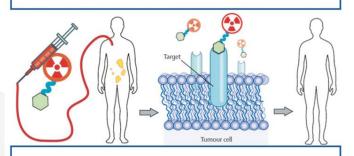
M. Hussein^{a,b}, M. Bouteculet^{a,b}, M.-A. Duval^{a,b}, S. Gnesin^c, S. Medici^c, D. Viertl^d, C.-O. Bacri^{a,b}, M.-A. Verdier^{a,b}.

- a: Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France.
- b:Université Paris Cité, IJCLab, F-91405, Orsay, France.
- c: Department of Nuclear Medicine and Molecular Imaging, University Hospital of Lausanne, Lausanne, Switzerland.
- d: Institute of Radiation Physics, University Hospital of Lausanne, Lausanne, Switzerland.

Vectorized internal radiotherapy and Theranostic approach


- Vectorized internal radiotherapy (VIR) involves injecting radionuclide isotopes to target and treat cancer.
- To develop new VIR radiotracers, particularly those enabling a theranostic (therapeutic + diagnostic) approach.
- Terbium (Tb) features four key isotopes ideal for theranostic applications in nuclear medicine¹.

Isotope Diagnosis		Therapy	1/2 life	
¹⁴⁹ Tb	? β+ 14.2% , γ	α	4.118 h	
¹⁵² Tb	β+ (PET)		17.5 h	
¹⁵⁵ Tb	γ (SPECT)		5.32 d] .
¹⁶¹ Tb	Low energy γ (47.5 keV, 74.6 keV)	β-	6.89 d	


Potential theranostic pair

Potential theranostic pair

Therapeutic approach in medicine

Diagnostic phase for evaluating the fixation of the radiopharmaceutical with a radionuclide for imaging purposes

Therapeutic phase with injection of a radiopharmaceutical with a radionuclide for tumoricidal purposes

¹ Naskar N, Lahiri S. Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application. Front Med (Lausanne). 2021 May 31;8:675014.

PRALINE Project

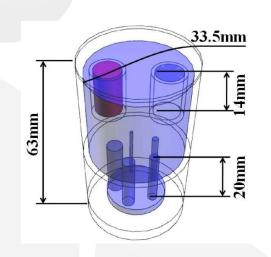
- PRALINE project: Production RAdioisotopes et Ligants pour l'Imagerie NucléairE
 - Aims to develop new methodologies of radioisotopes production, and develop approaches and methods for nuclear imaging (and new ligands).
 - PRALINE-Imaging (SPECT) sub-project Objectives:
 - Study ¹⁶¹Tb SPECT imaging capability.

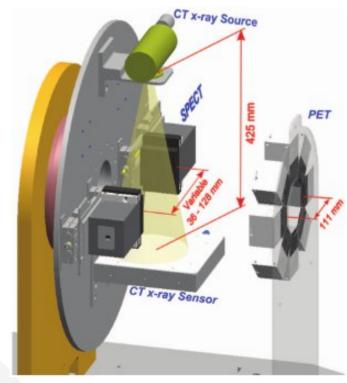
Evaluate the impact of ¹⁵⁶Tb contamination (co-produced with ¹⁵⁵Tb) on quantitative ¹⁵⁵Tb SPECT imaging (same

 $T_{1/2}$), and acceptable contamination limit in ROI [60, 125] keV.

- Methodology:
 - SPECT imaging experiment of ¹⁶¹Tb.
 - SPECT imaging exp. of: pure (155Tb) and contaminated (155Tb+156Tb).
 - Monte Carlo simulation validated by the experiments.

Gamma rays (keV)				
¹⁶¹ Tb	¹⁵⁵ Tb	¹⁵⁶ Tb		
25.65(23.2%) 48.92 (17.0%) 74.56 (10.2)	86.54 (32%) 105.3 (25.1%) 180.1 (7.5%) 262.3 (5.3%)	88 (18%) 199.2 (41%) 356.3 (13.6%) 534.3 (67%) 1065.1 (10.8%) 1154.1 (10.4%) 1222.4 (31%) 1421.7 (12%)		




Experimental Setup: Albira S108 – BRUKER

 Detector: ALBIRA S108 small animal PET/SPECT/CT (industrial) imaging system (BRUKER)¹.

- 2 rotating SPECT heads, 30 positions/camera (6°).
 - Camera optimized for ^{99m}Tc (140 keV).
 - Single pinhole collimator (2 mm W).
 - Spatial Res.(FWHM): ~1.5 mm (BRUKER).
- Tomo-Reconstruction program implemented.
- Phantom: NEMA NU 4-2008 phantom².
- Study and understand camera performance, include corrections in reconstruction.

¹ Sánchez et al. Med. Phys, 40, No. 5, May 2013.

² NEMA Standards Publication NU 4-2008 Performance Measurements of Small Animal Positron Emission Tomographs National Electrical Manufacturers Association 1300 N. 17th Street, Suite 1752 Rosslyn, VA 22209.

Experimental Setup: Tomographic reconstruction and MC simulation

a. 2D Projection

Projection after Energy Cut - Preliminary

True ¹⁵⁵Tb Events Only

c. 3D reco. image

¹⁵⁵Tb Reco Simulated Data - Preliminary

Monte Carlo simulation: GATE¹ 10 Platform (Geant4 based)

- Tomographic Reconstruction:
 - Ordered Subset Expectation Maximization (OSEM)
 algorithm, a Faster MLEM variant used for reconstruction.
 - CASToR¹ platform used for reconstruction, camera implemented and parameters optimized within it.
 - > Different parameters was optimized.
 - Corrections factors implemented.

-30

-20

-10

position in x (mm)

b. 3D image

(OSEM)

0.0010

0.0005

reconstruction

20

10

Z = 25

Profile of 155Tb simu reconstructed image

0.05

Expected Act dens. (Bq/m) = 0.049

Z = 20, y = 0

0.01

Reconstructed Act dens. (Bq/m) = 0.049

Z = -25

0.01

¹ David Sarrut et al 2021 Phys. Med. Biol. 66 10TR03.

² CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction, Thibaut Merlin et al., 2018.

Experiments and Quantification

- Experiments: 3 experiments at CHUV, Lausanne for simulation calibration:
 - 7 MBq of 155 Tb ($T_{1/2}$: 5.32 d) phantom (12 h acquisition) Produced by MEDICIS/CERN .
 - 32.4 MBq (89 %-8%) 155 Tb $^{-156}$ Tb phantom (12 h acquisition) Produced by PSI. (154 Tb)
 - 50 MBq of ¹⁶¹Tb phantom (4 h acquisition) Produced by PSI.

Isotope	Half life	
¹⁵⁴ Tb	21.5 h	
¹⁵⁵ Tb	5.32 d	
¹⁵⁶ Tb	5.35 d	
¹⁶¹ Tb	6.96 d	

• To quantify the reconstructed images, multiple factors were calculated:

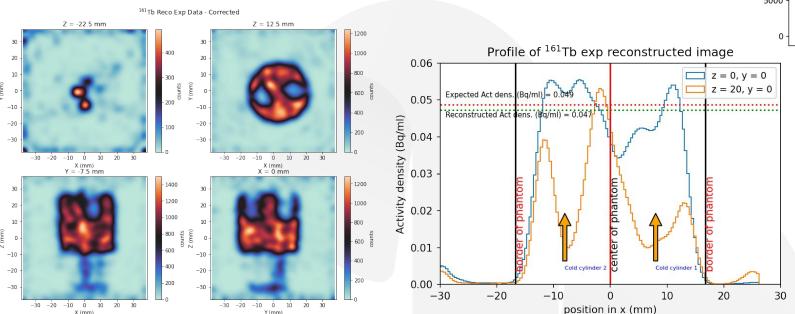
$$IU = \frac{\sigma_N}{\overline{N}}$$

$$SNR = \frac{|N_s - N_n|}{N_n}$$

$$Q_{cold} = \left[1 - \frac{\bar{S}_{cold}}{\bar{S}_{Phantom}}\right]$$

 $\underline{\sigma}_N$: Standard deviation of voxels values in ROI. \overline{N} : Sum of counts in ROI averaged by # of voxels.

 N_s : # of counts considered as signal in ROI. N_n : # of counts considered as noise in ROI.

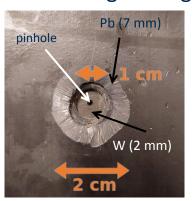

 \overline{S}_{cold} : average counts in the cold cylinder. $\overline{S}_{Phantom}$: average counts in the ROI of the phantom.

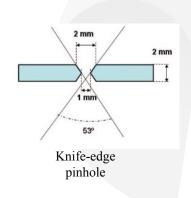
Study ¹⁶¹Tb SPECT imaging capability: Results

- 2 γ peaks (48.9 keV, 74.6 keV) utilizable for SPECT tomographic reconstruction.
- Despite the notable in-homogeneity & non negligible BG, largest rods well-reconstructed.
- → Strong potential of ¹⁶¹Tb in imaging clinical application.

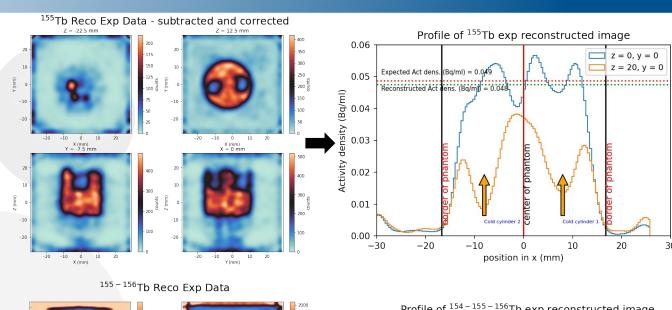
		Albira ¹⁰	⁵¹ Tb sp	ectrum	(sum of	projecti	ons) - 4	H - Head	12
	25000 -		K					161	Tb
	20000 -	٨	//						
	2 15000 -	//		M					
	10000 -	/ 1		W \					
	5000 -	/			Marian	hadangi zalikindo nadistrio	op for production of the	marija po livorostoj	hanjamasa
	0 -								
9		25	50	75	100	125	150	175	200
_	_				Energy (keV)			

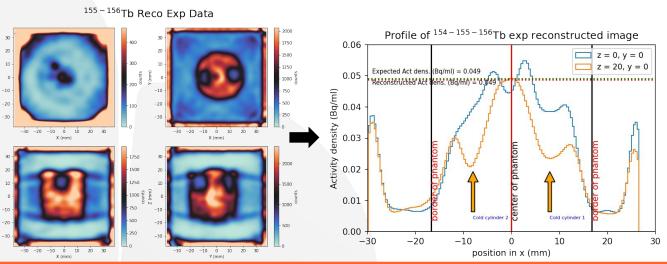
Quantification factor	¹⁶¹ Tb Pure
SNR	104.5
IU (%)	16.31
Q _{cold} (%)	88.97


¹⁵⁵Tb - ¹⁵⁴⁻¹⁵⁵⁻¹⁵⁶Tb experimental results



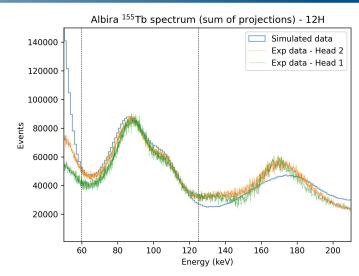
Quant. factor	¹⁵⁵ Tb exp	¹⁵⁴⁻¹⁵⁵⁻¹⁵⁶ Tb exp
SNR	50.86	7.12
IU (%)	8.39	7.54
Q _{cold} (%)	84.48	63.19

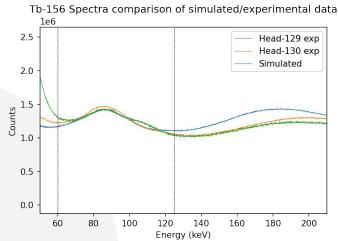

→ ~ 7 times better


- Image immensely polluted with ¹⁵⁶Tb.
- → Shielding and collimation not adapted for these high energies.

→ To study it using simulation.

MC simulation: GATE



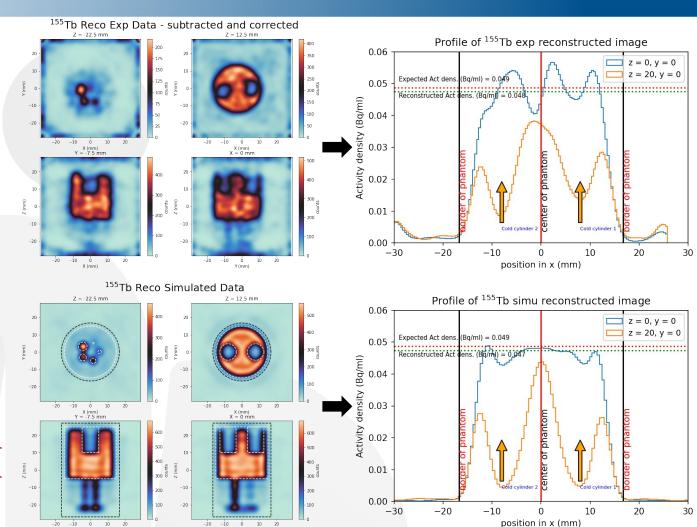

Objectives of simulation:

- Accurately replicate Albira and validate the simulation based on experimental data.
- Determine contamination acceptable limit.
- Optimize collimation and shielding.

Methodology:

- GATE 10 simulation¹ (reproduction) of camera, phantom and all sources (isotopes and contaminants).
- Simulate different mixtures of isotopes.
- Simulated spectrum approximately reproduce the experimental one in [50, 200] keV.
- ➤ Reproduction of the camera within ROI [60, 125] keV.

Simulation-experiment comparison

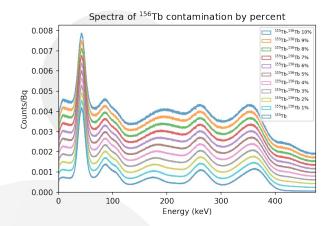


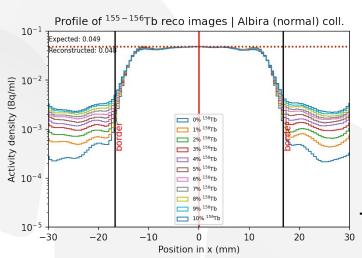
- Simulation reconstructed images are more homogeneous, rods ~ 2 mm SR.
- Successful reproduction of the camera output and effective reconstruction.
- Diffusion at borders of phantom even for simulated data > Reco. effect, scattering?
- Profiles show that this SPECT camera is not perfectly reproduced by simulation.

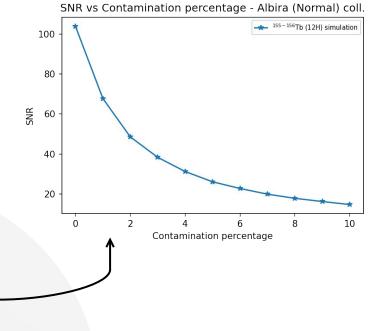
Quantification factor	¹⁵⁵ Tb simu	¹⁵⁵ Tb exp
SNR	103.9	50.86
IU (%)	4.49	8.39
Q _{cold} (%)	89.73	84.48

→ >2 times better

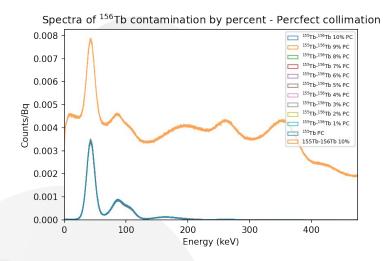
→ ~2 times better



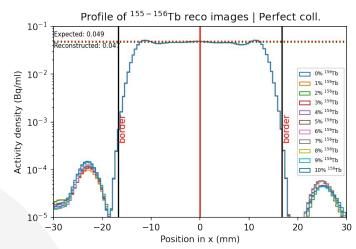



Normal density collimator

- To study the impact of contamination: ¹⁵⁵Tb with ¹⁵⁶Tb contamination from 0% to 10% was simulated.
- At 2% ¹⁵⁶Tb contamination, SNR drop (exponentially) to its half.
- ¹⁵⁶Tb detected counts contribution in ROI:
 - At 1% activity cont. = 25.8%
 - At 10% activity cont. = 79.3%



Infinite (Perfect) density collimator



 To study the impact of low collimator thickness & weak shielding: density of collimator and shielding is set into infinity in the simulation.

- Notably ¹⁵⁶Tb contribution is negligible if HE collimator is used.
 - Results are not dependent on the radionuclide alone; it depends on the specific imaging camera used.

- ¹⁵⁶Tb detected counts contribution in ROI:
 - At 1% activity cont. = 0.5% detected counts
 - At 10% activity cont. = 4.9%

Conclusion and Summary

- SPECT camera (Albira) was calibrated, studied and implemented in CASTOR.
 - Camera has good performance at low energy, however, high energy gammas are not collimated.
- Experiments of ¹⁶¹Tb, ¹⁵⁵Tb & ¹⁵⁵⁻¹⁵⁶Tb were performed.
 - Strong ¹⁵⁶Tb contamination due to insufficient collimation.
 - 161 Tb and (pure) 155 Tb projections reconstructed and quantified \rightarrow confirm imaging capability.
 - 161Tb has strong potential in imaging clinical application.
- Preliminary simulation of MC digital twin of this SPECT camera were done.
- Contamination acceptable limit is dependent on used instrumentation (camera and collimation).
- A well-collimated camera effectively addresses imagery requirements, while dosimetry questions remain under investigation.

- ➤ Determine acceptable contamination limit of ¹⁵⁶Tb (as a function of collimation) for clinical purposes using simulation.
- > Study dosimetric aspects of ¹⁵⁶Tb contamination.
- ➤ Determine acceptable contamination limit with well-collimated medium energy camera (THIDOS¹).

(1) Medium energy camera developed in our group, optimized at 370 keV.

Thank You

Thank to PRISMAP¹ European project and CNRS MITI, this project was financed by them.

Thanks to C. Duchemin^a, N. van der Meulen^b, Z. Talip^b

- 1: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008571 (PRISMAP)
- a: MEDICIS, CERN.
- b: Paul Scherrer Institute PSI.

Quantifying The Results of the Reconstruction

> To quantify the reconstructed images, multiple factors were calculated:

Integral uniformity (IU) [%]:

$$IU = \frac{\sigma_N}{\overline{N}}$$

Signal to noise ratio (SNR):

$$SNR = \frac{|N_s - N_n|}{N_n}$$

Contrast factor of the cold cylinders (Q_{cold}) [%]:

$$Q_{cold} = \left[1 - \frac{\overline{S}_{cold}}{\overline{S}_{Phantom}}\right]$$

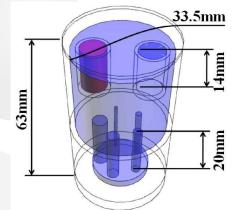
 σ_N : Standard deviation of voxels values in ROI.

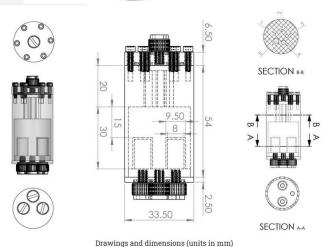
 \overline{N} : Sum of counts in ROI averaged by # of voxels.

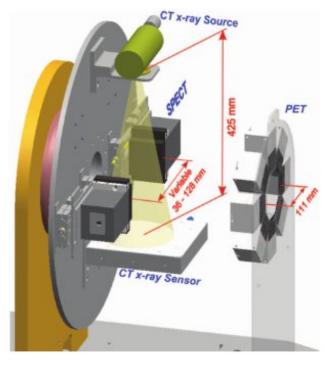
 N_s : # of counts considered as signal in ROI. N_n : # of counts considered as noise in ROI.

 S_{cold} : average counts in the cold cylinder.

 $\overline{S}_{Phantom}$: average counts in the ROI of the phantom.




Experimental Setup: Albira S108 – BRUKER



 Detector: ALBIRA S108 small animal PET/SPECT/CT (industrial) imaging system (BRUKER)¹.

- 2 rotating SPECT heads, 30 positions/camera (6°).
 - Camera optimized for ^{99m}Tc (140 keV).
 - Single pinhole collimator (2 mm W).
 - Energy range 30-400 keV (BRUKER).
 - Energy Res. (FWHM): 13.5% @140 keV (BRUKER).
 - Spatial Res.(FWHM): ~1.5 mm (BRUKER).
 - Projection image in-uniformity.
- Tomo-Reconstruction program implemented.
- Offer access to List-mode data (x,y,E)
- for each projection.
- Phantom: NEMA NU 4-2008 phantom².
- > Study and understand camera performance.

¹ Sánchez et al. Med. Phys, 40, No. 5, May 2013.

² NEMA Standards Publication NU 4-2008 Performance Measurements of Small Animal Positron Emission Tomographs National Electrical Manufacturers Association 1300 N. 17th Street, Suite 1752 Rosslyn, VA 22209.

Experimental setup: camera challenges

- Background studying → count rate 30-40 cps (negligible).
- Sensitivity disparity between the two heads + geometrical effect → corrected for each projection.
- Sensitivity drop below ~ 50 keV, and above ~ 200 keV.
- Measured spatial resolution: 17% at 140 keV.
- New calibration, calibration of head 1 is non-linear → Complicate treatment and analysis!
- Projection image non-uniformity cause artifacts in reco images and lower SNR! → Corrected.
- Very thin collimator: 2 mm W with pinhole → septal penetration.
- Shielding adapted for < 140 keV: 6 mm Pb behind collimator and 2 mm on camera sides
 → high potential scattering.
- ➤ An external reconstruction performed to include all these corrections.