

About b \rightarrow d $\ell\ell$ transitions and the B_c meson

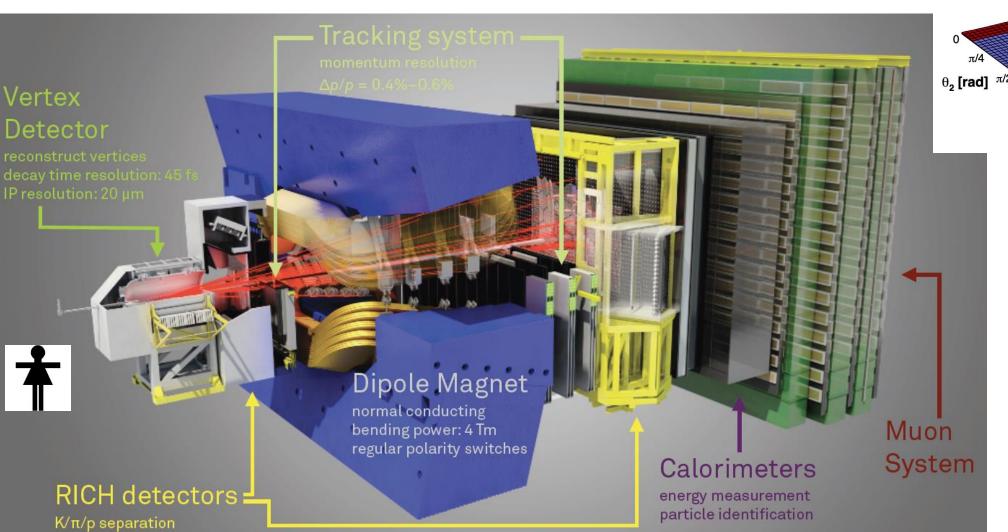
Fabian Glaser

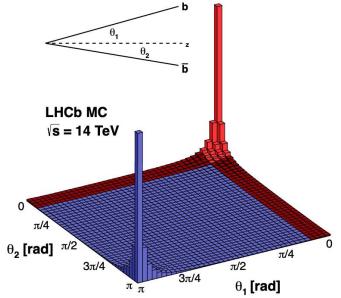
Marie-Helene Schune

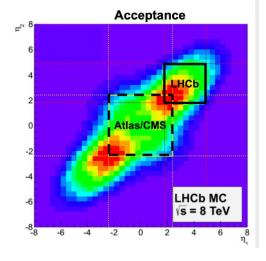
Based on the work done by Khrystyna Trofimiuk (intern from Taras Shevchenko Univ 15/01/2025 – 15/03/2025) and still on-going

FCNC transitions are an ideal place to search for New Physics $b \rightarrow s\ell\ell$ are reasonably well known and studied $b \rightarrow d\ell\ell$ are much more rare (factor 1/20) \rightarrow less well known

Powerful modes : B ightarrow Vector $\ell\ell$ but B ightarrow ho^0 $\ell\ell$ challenging

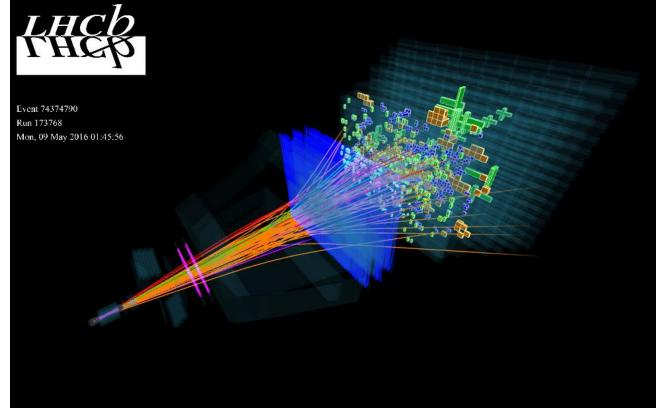

Focus on $\ell=\mu$ (at LHCb)

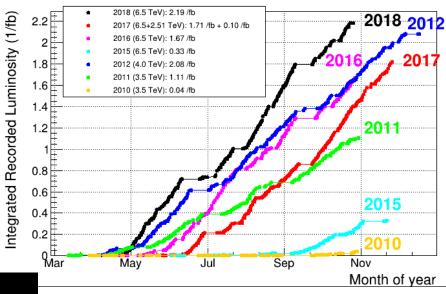

$$\Rightarrow B_c \rightarrow D^* (\rightarrow D^0 \pi) \ell \ell$$


but : production of B_c with respect to $B_{u/d} = (7.26 \pm 0.08) \times 10^{-3}$

The LHCb detector

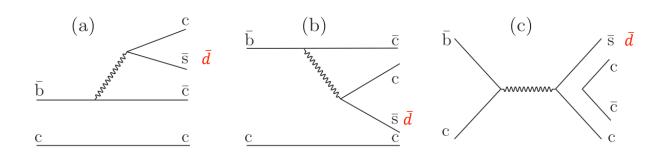
40% of the heavy quark production cross-section in 4% of the solid angle All type of b-hadrons produced



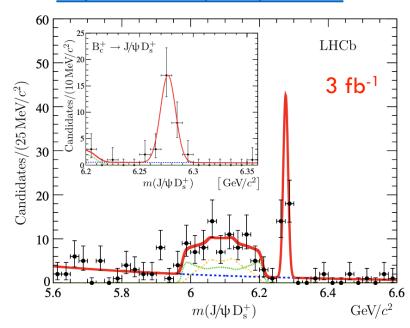

Data used for this analysis:

Run 1 (2011 – 2012 at 7 and 8 TeV): \sim 3 fb⁻¹

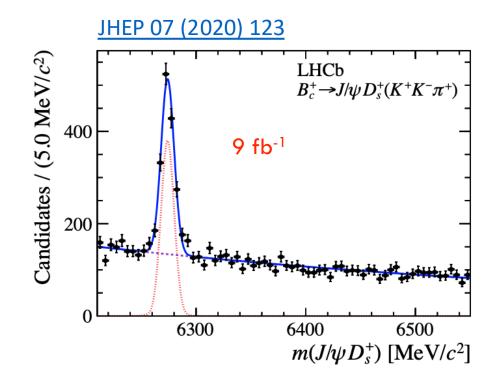
Run 2 (2015 – 2018 at 13 TeV): \sim 6 fb⁻¹



LHCb Integrated Recorded Luminosity in pp, 2010-2018


Let's focus first on $B_c \rightarrow D^* J/\psi (\rightarrow \ell \ell)$

Different diagrams, same final state



$B_c \rightarrow D_s^{(*)} J/\psi (\rightarrow \ell \ell)$ has been observed

Phys. Rev. D87 (2013) 112012

$$\frac{\mathcal{B}(B_c^+ \to J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ \to J/\psi D_s^+)} = 2.37 \pm 0.56 \pm 0.10$$

For now we will search for:

- $B_c \rightarrow D^* J/\psi (\rightarrow \mu \mu) \propto |V_{cd}|^2$ with $D^* \rightarrow D^0 \pi$ and $D^0 \rightarrow K\pi$ or $K3\pi$ never seen
- $B_c \rightarrow D_s J/\psi (\rightarrow \mu\mu) \propto |V_{cs}|^2$ with $D_s \rightarrow KK \pi$ for normalisation

$$BR(B_c \to D^*J/\psi) = BR(B_c \to D_sJ/\psi) \times \frac{N_{D^*J/\psi}}{D_sJ/\psi} \times \frac{N_{D^*J/\psi}}{N_{D_sJ/\psi}} \times \frac{\epsilon_{D_sJ/\psi}}{\epsilon_{D^*J/\psi}}$$

Selection (in brief)

Preselection

μ^\pm	isMuon $p_T > 500\mathrm{MeV}$ $3\mathrm{GeV} < \mathrm{p} < 200\mathrm{GeV}$
J/ψ	$ m-m_{PDG} < 25\mathrm{MeV} \ \chi^2_{Vertex} < 9$
D^0/D_s^+ daughters	$\chi^2_{\mathit{Track}} < 3 \ P_{\mathit{Ghost}} < 0.4 \ p_{\mathit{T}} > 200 \mathrm{MeV} \ Prob NN_h > 0.1$
D^0/D_s^+	$ m-m_{PDG} < 25\mathrm{MeV}$ $p_T > 1.5\mathrm{GeV} \ / \ p_T > 1.0\mathrm{GeV}$ $\chi^2_{Vertex} < 16$ $\mathrm{BPVDLS} > 3$ $\sum_h \chi^2_{IP} > 9 \ (\mathrm{not \ for \ } D^0 \to K\pi)$ $c au_{J/\psi,D^0\ DTF} > 0$
D*+	$\Delta m \in [141, 150] \mathrm{MeV} \ p_T > 2000 \mathrm{MeV} \ \chi^2_{Vertex} < 9$
\mathcal{B}_c^+	$\chi^2_{Vertex} < 9$ $\chi^2_{IP} < 25$ DIRA > 0.99

BDT (different ones for D⁰ \rightarrow K π , K3 π and D_s \rightarrow KK π)

$$D^0/D_s^+$$
: $\chi^2_{IP}(h^\pm)$, $\sum_h \chi^2_{IP}(h^\pm)$, $min(h^\pm p_T)$, $D_{(s)}$ flight distance μ^\pm : $min(\mu^\pm p_T)$ B_c^+ candidate: B_c^+ DIRA, B_c^+ flight distance, $\chi^2_{\rm DTF \, fit}$

Selection (in brief)

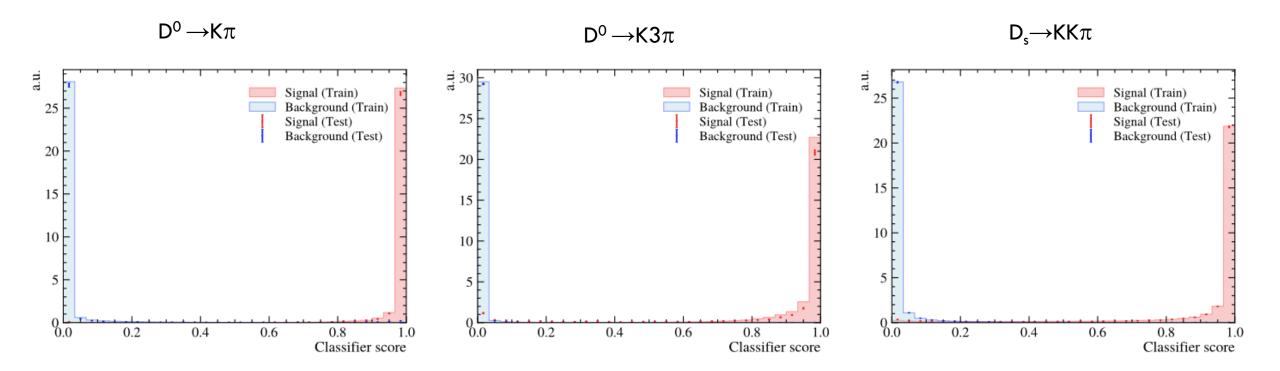
Preselection

isMuon $p_T > 500\mathrm{MeV}$ $3\mathrm{GeV} < \mathrm{p} < 200\mathrm{GeV}$
$ m-m_{PDG} < 25\mathrm{MeV} \ \chi^2_{Vertex} < 9$
$\chi^2_{Track} < 3 \ P_{Ghost} < 0.4 \ p_T > 200 \mathrm{MeV} \ Prob NN_h > 0.1$
$ m-m_{PDG} < 25\mathrm{MeV}$ $p_T > 1.5\mathrm{GeV} \ / \ p_T > 1.0\mathrm{GeV}$ $\chi^2_{Vertex} < 16$ $\mathrm{BPVDLS} > 3$ $\sum_h \chi^2_{IP} > 9 \ (\mathrm{not \ for \ } D^0 \to K\pi)$ $c au_{J/\psi,D^0\ DTF} > 0$
$egin{aligned} \Delta m \in [141, 150] \mathrm{MeV} \ p_T &> 2000 \mathrm{MeV} \ \chi^2_{Vertex} &< 9 \end{aligned}$
$\chi^2_{Vertex} < 9$ $\chi^2_{IP} < 25$ DIRA > 0.99

BDT

(different ones for $D^0 \rightarrow K\pi$, $K3\pi$ and $D_s \rightarrow KK\pi$)

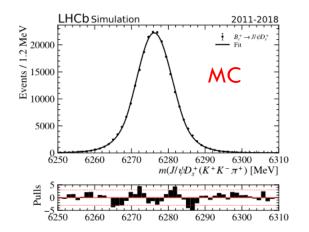
Training samples:

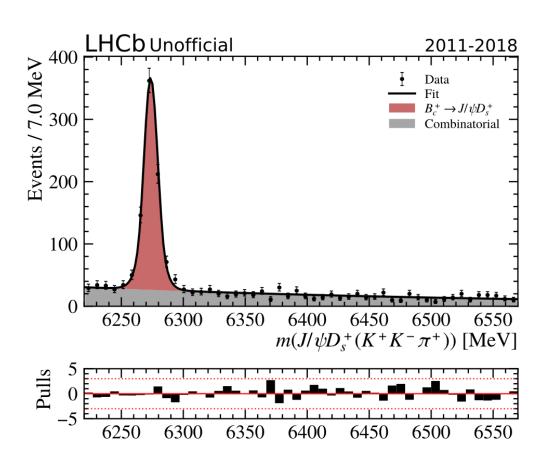

Signal is MC

Background is B_c upper mass sideband (6400 – 7000) MeV

Use of k(=4)-folding technique

Training features are identical for all classifiers:


$$D^0/D_s^+$$
: $\chi_{IP}^2(h^\pm)$, $\sum_h \chi_{IP}^2(h^\pm)$, $min(h^\pm p_T)$, $D_{(s)}$ flight distance μ^\pm : $min(\mu^\pm p_T)$ B_c^+ candidate: B_c^+ DIRA, B_c^+ flight distance, $\chi_{\rm DTF\,fit}^2$


Clear difference between Signal and Background

$B_c \rightarrow D_s (\rightarrow KK\pi) J/\psi(\rightarrow \mu\mu)$

Choose the optimal BDT cut by optimizing $S/\sqrt{(S+B)}$

 $Ns = 847 \pm 50$

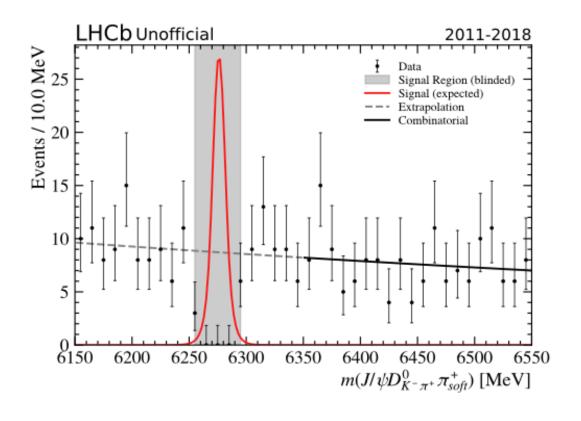
$$B_c \rightarrow D^* (\rightarrow D^0 (\rightarrow K\pi \text{ or } K3\pi) \pi_{soft}) J/\psi(\rightarrow \mu\mu)$$

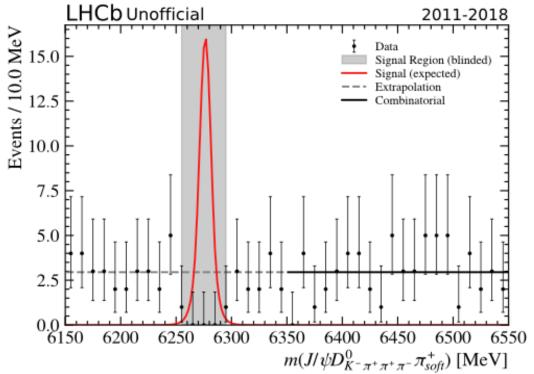
Expected yields:

$$rac{\mathcal{B}(B_c^+ o J/\psi D^{*+})}{\mathcal{B}(B_c^+ o J/\psi D^+)} = rac{\mathcal{B}(B_c^+ o J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ o J/\psi D_s^+)} = 1.91 \pm 0.20 \pm 0.07$$
 [JHEP 02 (2024) 032]

$$\to N_{exp}^f = N_{D_s^+} \frac{\mathcal{B}(B_c^+ \to J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ \to J/\psi D_s^+)} \frac{|V_{cd}|^2}{|V_{cs}|^2} \frac{\mathcal{B}(D^{*+} \to D^0 \pi^+) \mathcal{B}(D^0 \to f)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\varepsilon_f}{\varepsilon_{D_s^+}}$$

 $f = K\pi$ or $K3\pi$

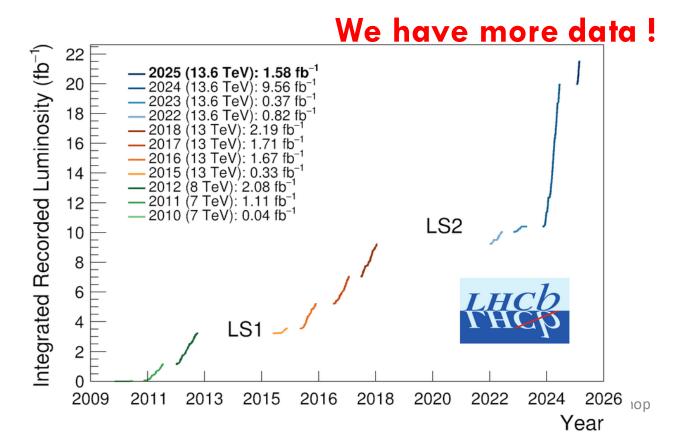

$$ightarrow N_{exp}^{K\pi} = 47 \pm 6 \ N_{exp}^{K3\pi} = 36 \pm 5$$
 before the BDT


assumption

Choose the optimal BDT cuts by optimizing the $S/\sqrt{(S+B)}$ FoM : S is obtained as previously explained and B is from upper mass sidebands

Preferred working points : $\epsilon_{BDT}^{K\pi}=75$ % (FoM ~ 5) and $\epsilon_{BDT}^{K3\pi}=56$ % (FoM ~ 4)

How it could look like:



Conclusion

First search for the decay $B_c \rightarrow D^*$ ($\rightarrow D^0$ ($\rightarrow K\pi$ or $K3\pi$) π_{soft}) $J/\psi(\rightarrow \mu\mu)$

The analysis strategy is in place and the first signal estimate is promising

It will contribute to the better knowledge of the B_c meson

Thank you for your attention