

DeLLight

(Deflection of Light by Light in vacuum) with LASERIX @ IJCLab

Slowing down the light in vacuum with intense laser pulses

Slow down the speed of light in vacuum

> Classical electrodynamics: Maxwell's equations are « linear » in vacuum

$$\begin{cases}
\mathbf{D} = \varepsilon_0 \mathbf{E} \\
\mathbf{B} = \mu_0 \mathbf{H}
\end{cases} \quad c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \quad \longrightarrow \quad \mathbf{c}, \ \varepsilon_0 \text{ and } \mu_0 \text{ are universal constants}$$

- **Quantum Electrodynamics : vacuum is filled of virtual e+/e- pairs**
 - Nonlinear interaction between the electromagnetic fields, through the e+/e- pairs
 - ⇒ Nonlinear optical polarization and magnetisation of the vacuum

$$\begin{cases}
\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}(\mathbf{E}^2, \mathbf{B}^2) = \varepsilon (\mathbf{E}^2, \mathbf{B}^2).\mathbf{E} \\
\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}(\mathbf{E}^2, \mathbf{B}^2) = \mu (\mathbf{E}, \mathbf{B}).\mathbf{H}
\end{cases}$$

Heisenberg and Euler, Z. Phys. 98, 714 (1936)

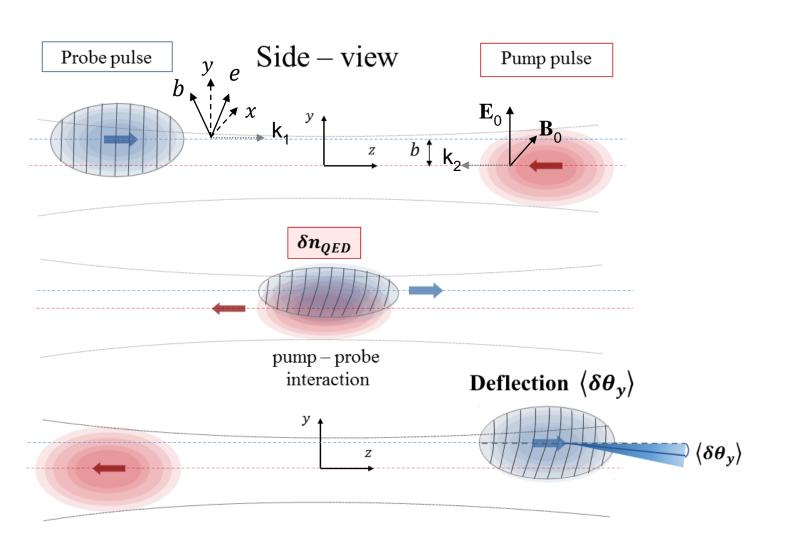
J. Schwinger, Phys. Rev. 82, 664 (1951)]

with
$$\begin{cases} \mathbf{P} = \xi \varepsilon_0^2 [(E^2 - c^2 B^2) \mathbf{E} + 7c^2 (\mathbf{E} \cdot \mathbf{B}) \mathbf{B}] \\ \mathbf{M} = -\xi \varepsilon_0^2 c^2 [(E^2 - c^2 B^2) \mathbf{B} - 7(\mathbf{E} \cdot \mathbf{B}) \mathbf{E}] \end{cases} \qquad \xi^{-1} = \frac{45m_e^4 c^5}{2\alpha^2 \hbar^3} \approx 3 \cdot 10^{29} \text{ J/m}^3$$

⇒ Vacuum optical index and speed of light depend on external fields E,B

Slow down the speed of light in vacuum

- The vacuum should behave as a nonlinear optical medium: **The speed of light in vacuum should be** reduced at macroscopic scale, in the classical (optical) sense, when vacuum is stressed by intense e.m. fields
- It has never been observed
- So far, search for vacuum birefringence using standard magnetic field (few Tesla) Sensitivity limited by the intensity of the field
- The advent of ultra-intense laser pulses, delivering ultra-intense electromagnetic fields in laboratory, opens a new promising window to observe the optical non linearity of vacuum: this is the goal of the DeLLight project


DeLLight with intense laser field produced by LASERIX

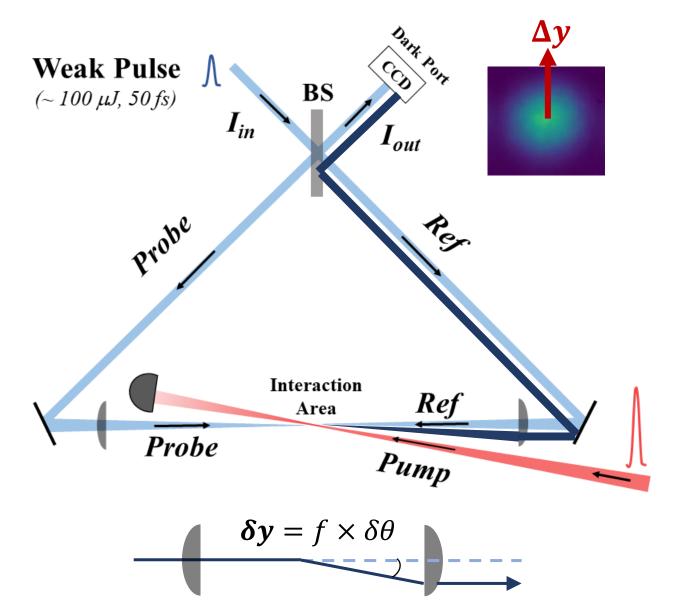
2.5 J, 30 fs,
$$w_0 = 5 \mu \text{m} \Rightarrow \text{I} \sim 2 \times 10^{20} \text{ W/cm}^2$$

$$\Rightarrow E \sim 3 \times 10^{13} V/m, B \sim 10^5 T$$

DeLLight with intense laser fields @LASERIX

Use highly focused laser pulses to achieve strong fields

Pump specifications (*LASERIX*)


- ✓ Energy \approx 2.5 Joules
- ✓ Duration ≈ 50 fs
- ✓ Waist @ focus ≈ 5 µm

$$\Rightarrow I_{pump} \sim 2 \times 10^{20} \text{ W/cm}^2$$

$$\Rightarrow B \sim 10^5 \,\mathrm{T}$$

$$\Rightarrow E \sim 3 \times 10^{13} \text{V/m}$$

Refraction measured with a Sagnac Interferometer

> Extinction factor in the dark output

$$\Rightarrow \mathcal{F} = \frac{I_{out}}{I_{in}}$$

- \triangleright δy = Direct vertical shift of the probe inside the Sagnac
- $ightharpoonup \Delta y$ = Vertical shift of the interference intensity profile is **amplified** in the dark output (*Weak Value Amplification*)

$$\Rightarrow \Delta y = \mathcal{A} \times \delta y$$

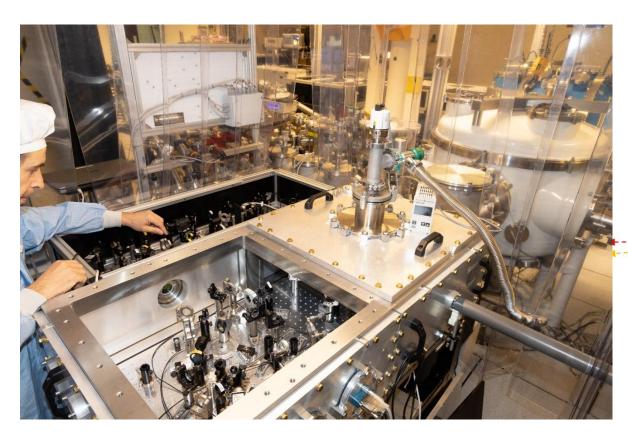
- ightharpoonup Amplification factor $\mathcal{A} = \pm \frac{1}{2\sqrt{\mathcal{F}}}$
- \triangleright « ON OFF » measurements @ 5 Hz

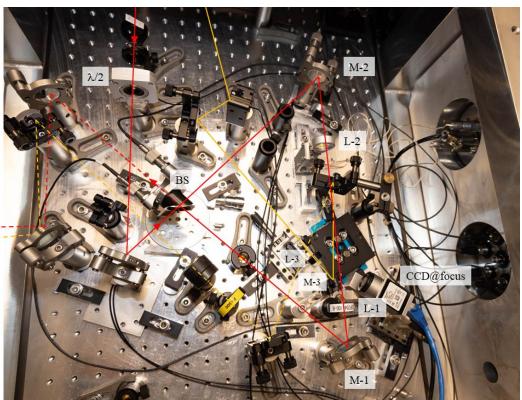
Expected signal and sensitivity

$$\Delta y = 2.7 \text{ nm} \times \frac{E(Joule) \times f(m)}{(w_0^2 + W_0^2 (\mu m))^{3/2} \times \sqrt{\mathcal{F}/10^{-5}}}$$
 (with $\theta_{tilt} \sim 15^\circ$)

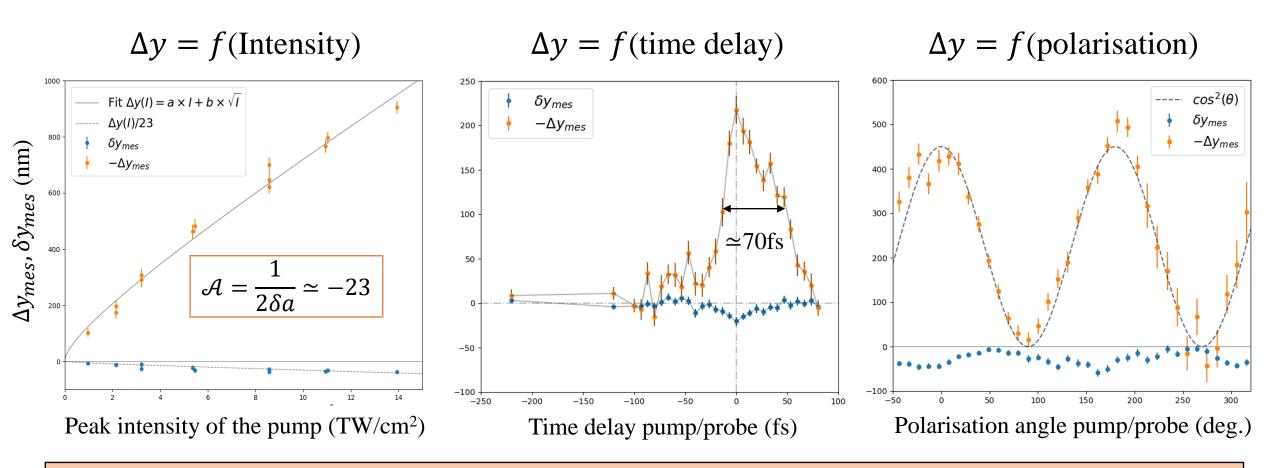
- ✓ Energy E = 2.5 J @ LASERIX (10 Hz repetition)
- ✓ Extinction $\mathcal{F} = 4 \times 10^{-6}$ ($\mathcal{A} = 250$) (best extinction measured)
- ✓ Waist at focus $w_0 = W_0 = 5 \mu \text{m}$ (typical achievable value)
- ✓ **Spatial resolution** $\sigma_y = 10 \text{ nm}$ (CCD shot noise resolution)

ON-OFF measurements @ 5 Hz


Statistical sensitivity (without bias): 1 sigma sensitivity within ~ 4 days with LASERIX

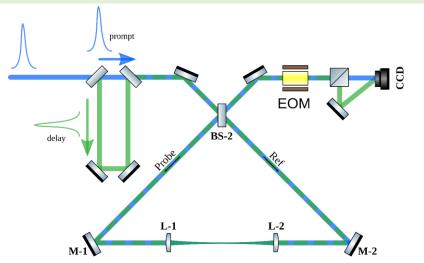

 $\Delta y \sim 15 \text{ pm}$

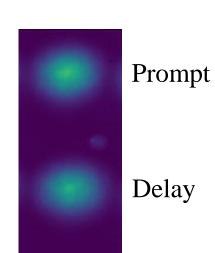
The DeLLight pilot experiment

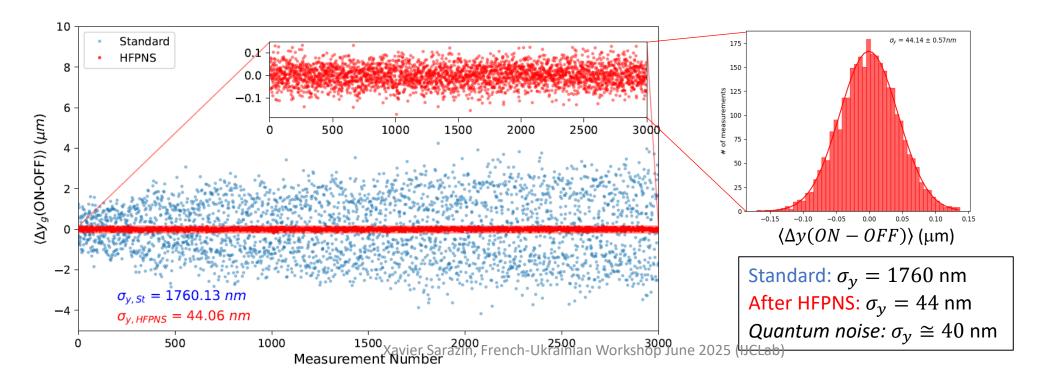

Pilot experiment in vacuum chamber Sagnac interferometer with focus of the probe and pump beams

→ DeLLight deflection measured in air with a low pump energy

Measurement of the DeLLight signal in air




Validation of the DeLLight experimental method based on interferometric amplification!


More details in A. Kraych et al, Physical Review A 109.5 (2024)

Spatial resolution: the quantum noise limit

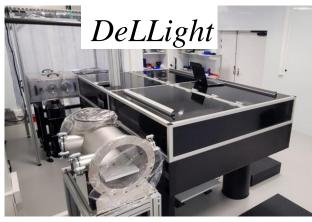
- Measurement and supression of the vibrationinduced interferometric phase noise using a delayed (High Frequency) pulse
- The ultimate quantum noise-limited special resolution has been achieved (Ali Aras's thesis)

What next

- ➤ Installation of the DeLLight Phase-1 (High energy LASERIX pulses in vacuum) currently in progress in a new dedicated experimental room
- First measurements in vacuum with intense fields expected end of 2026
- ➤ DeLLight Phase-2 using new generation intense lasers with high repetition rate

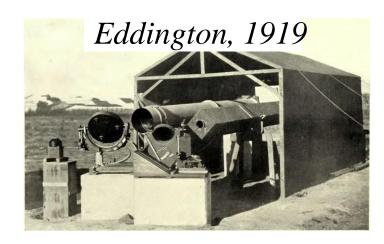
 LAPLACE-HC@LOA (1-5 J, 100Hz)

 KALDERA@DESY (5J, 1kHz)
 - \Rightarrow 3 σ sensitivity in few hours!



Conclusions

A positive measurement would demonstrate that the speed of light in vacuum can be reduced, in the classical sense on a macroscopic scale, in the presence of external e.m. fields.


Electromagnetic Lensing

Gravitational Lensing

