

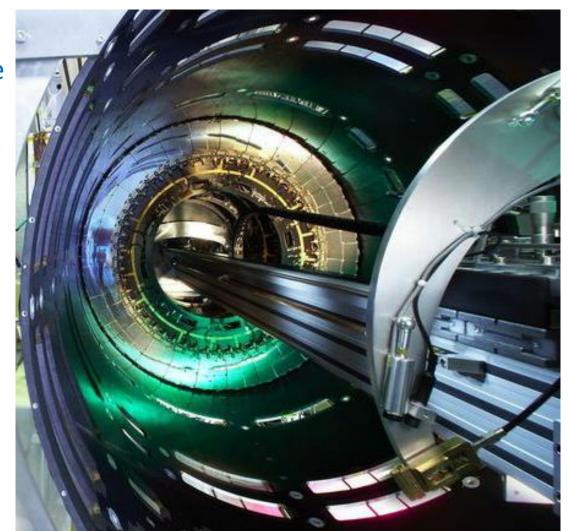
French-Ukrainian W O R K S H O P

Instrumentation developments for high energy physics

June 10-12, 2025

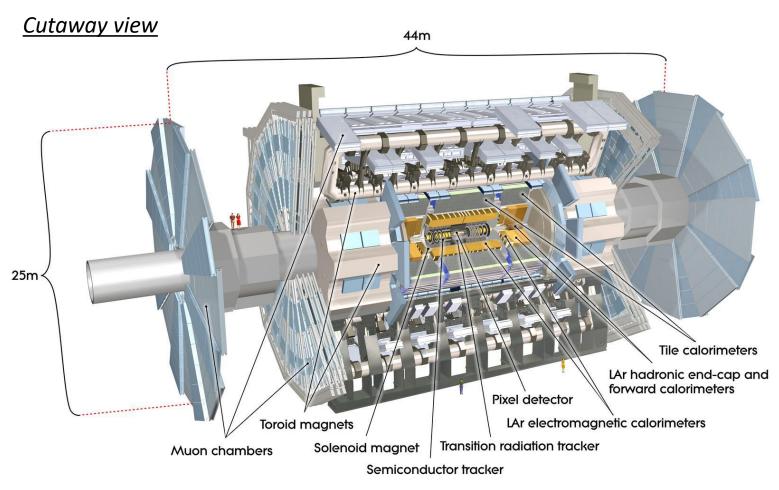
IJCLab, Orsay - France

Silicon pixel detectors and module production for the ATLAS Inner Tracker (ITk)



Dmytro Hohov on behalf of the IJCLab-ITk team

<u> IJCLab, Orsay – French-Ukrainian Workshop 2025 – June 10-12</u>



- > ATLAS Detector and motivation for the ITk upgrade
- Silicon pixel detector technologies
- > Towards ITk construction
- ➤ Module Assembly
- ➤ Module Testing
- > Summary

ATLAS (A Toroidal LHC ApparatuS) Detector

ATLAS multipurpose detector is 46m length, 25m diameter and 7000 tons, 100m below ground.

Sub-Detectors:

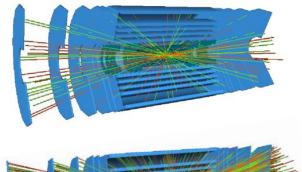
- Inner Detector (records tracks, measures momentum, vertices reconstruction)
- Electromagnetic calorimeter (LAr) (measures electrons and photons energy)
- Hadronic calorimeter (TileCal) (hadrons energy)
- Muon spectrometer (measures muon trajectories)

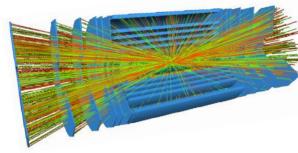
Upgrades for HL-LHC:

- **❖** New muon chambers at the innermost part
 - Trigger efficiency and momentum resolution improvements
- High Granularity Timing Detector (HGTD)
 - Improved pileup suppression at the forward region
- Upgrades on calorimeter and muon chambers off-detector electronics and Trigger
- ❖ New Inner tracker (ITk)

Motivation for the tracker upgrade

 \Box Increased instantaneous luminosity up to $7.5 \times 10^{34} \ cm^{-2} s^{-1}$


integrated luminosity will reach 4000fb⁻¹

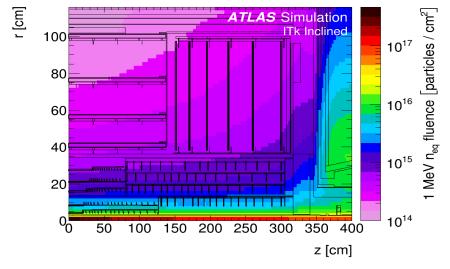


approx. 200 simultaneous inelastic p p collisions per bunch crossing ,
 increase of overlap of events.

High detector occupancy

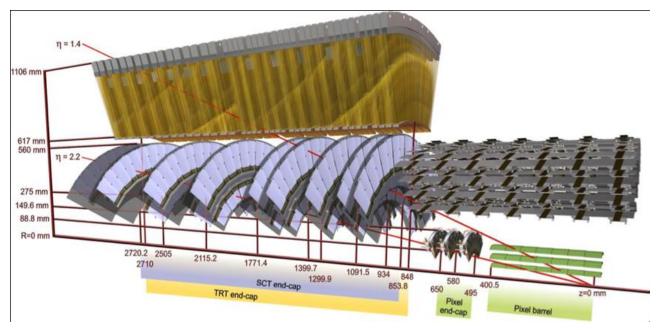
13,4 – (2015) 25,1 – (2016) 37,8 – (2017) 36,1 – (2018) 50-60 – (2022-2024) ~200 – (2030)

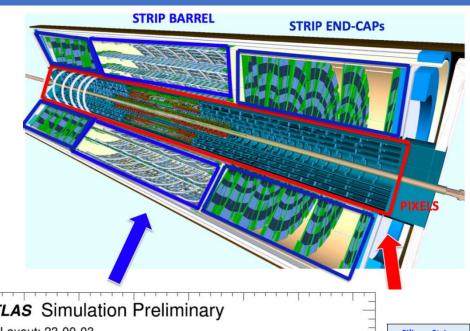
High particle densities and rate

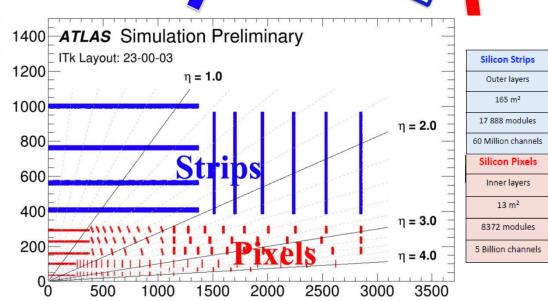

Radiation dose 2x10¹⁶ n_{eq}/cm²

Keep the same or better tracking performance

The **ID** will be replaced by **all-silicon tracker** Inner Tracker **ITk**.

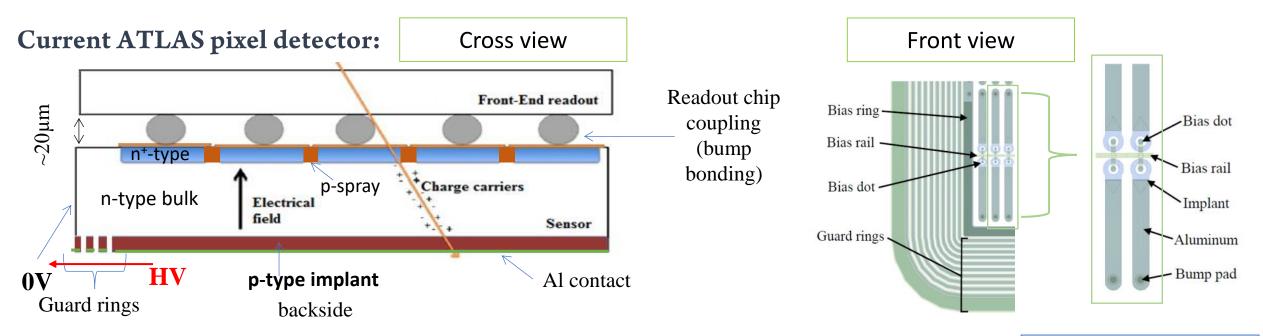



ATLAS Inner Detector -> Inner Tracker


ID is an innermost detector, 6.2 m long and 1.2 in radius. Composed of TRT, SCT and Pixel Detector

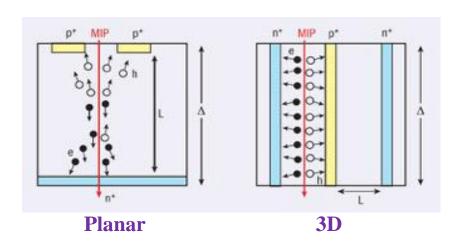
Pixel Detector:

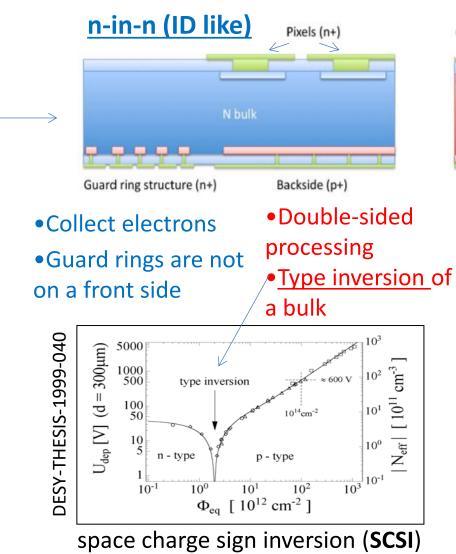
composed of 4 barrel Layers (IBL, B-Layer, L1, L2) 3 disks in two end caps 2m² of active area, 92 millions of pixels

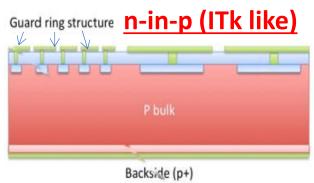


z [mm]

Silicon pixel detector technologies


- Segmented pixel surface -> precise two dimensional spatial information
- > p-spray for inter-pixel insulation and to compensate the accumulating electrons
- Guard ring structure to smoothly drop the potential at the edge of the sensor
- > Reverse biasing is applied to deplete the sensor (Full charge collection)
 - Depletion starts from the backside (p-n junction): depleted region = sensitive region
- A particle creates **electron-hole pairs** which drift to the electrodes


- ✓ Fast: O(few ns)
- ✓ Precise: O(~10um)
- ✓ Compact



Silicon pixel detector technologies

- □ Planar sensors: highly doped implant on top of low-doped Si bulk **n-in-n** (ID), **n-in-p** (ITk)
 - ✓ less costly than 3D
- **□** 3D sensors: highly doped Si columns through low-doped Si bulk (ITk L₀)
 - ✓ high radiation hardness
 - ✓ low yield

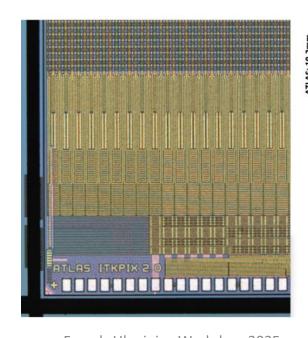
- •Collect electrons (3 x faster than holes)
- No type inversion
- Can be operated partially depleted
- Single-sided processing
- •Guard rings are on a frontend side

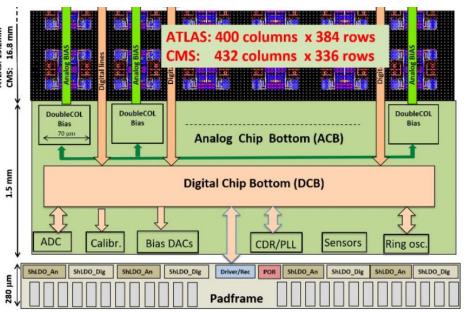
French-Ukrainian Workshop 2025 12/06/2025

ATLAS Silicon pixel detector technologies

Improvement FE-I4 chip -> RD53B chip

	FE-I4 chip	RD53B chip
Technology	CMOS 130 nm	CMOS 65 nm
Size	20.2x19.0 mm ²	21.0x20.0 mm ²
Pixel size	50x250 μm²	50x50 μm²
Pixel array	80x336	400x384
	<500 fF (700	
Pixel capacitance	edge)	<100 fF (200 edge)
Hit rate	400 MHz cm ⁻²	3 GHz cm ⁻²
Trigger rate	200 kHz	1 MHz
Trigger latency	6.4µs	12.8µs
Current		
consumption	20 μA/pixel	8 μA/pixel
Radiation tolerance	300 Mrad	1 Grad
Min stable threshold	1500 e	600 e
Readout data rate	160 Mb/s	1.28 Gb/s

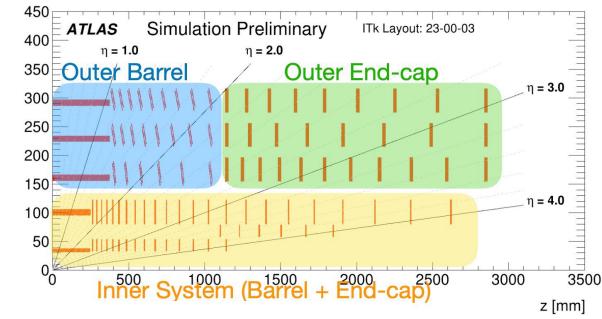

Designed by RD53 collaboration


https://rd53.web.cern.ch/

R&D over 10 years

- **High Granularity**
- Radiation tolerance
- Power dissipation
- High readout data rate

Pixel detector technologies in ITk

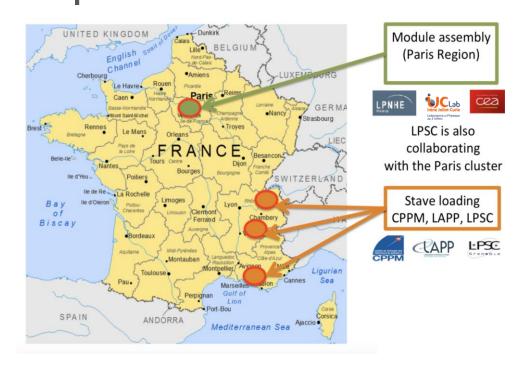

• ITk-Pixel detector composed by 3 parts:

Outer barrel: 3 barrel layers, 2x23 inclined disks

→ CERN, France, Germany, Japan, Switzerland

Outer endcap: 2x28 outer disks

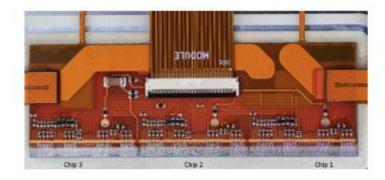
→ UK, Italy, Japan

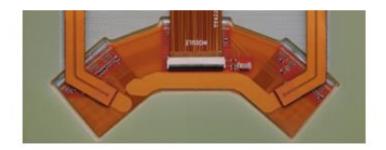

Inner system: 2 barrel layers and 2x44 disks

→ USA, Germany

Sensors

- L2, L3 and L4 planar sensors, 150 μm thick
- L1 planar sensors, 100 μm thick
- L0 3D sensors, 250 μm thick


- Outer barrel is the largest system of ITkPixel detector
- ~4.5k modules, more than half of total ITkPixel
- French activities are organised in two clusters
 - Paris cluster for module assembly and testing: IJCLab, IRFU, LPNHE
 - Alpaca cluster for loading and integration: CPPM, LAPP, LPSC



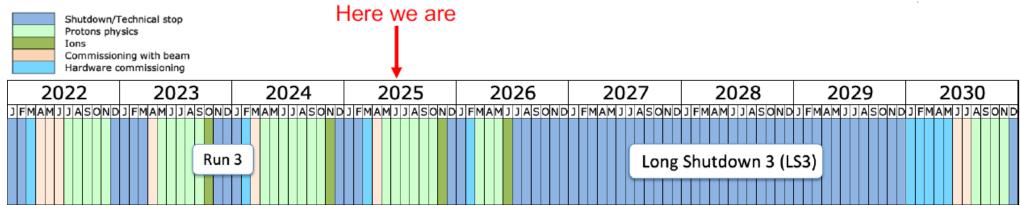
>> Two types of modules:

- Quad modules: 4 FEs bump bonded to one sensor
- **Triplet** modules 3 single FE bare modules connected to the same flex

a) 3D triplet for the Inner System barrel stave

b) 3D triplet for the Inner System endcap ring

c) Inner System and Outer Endcaps quad module with data and power pigtails connected

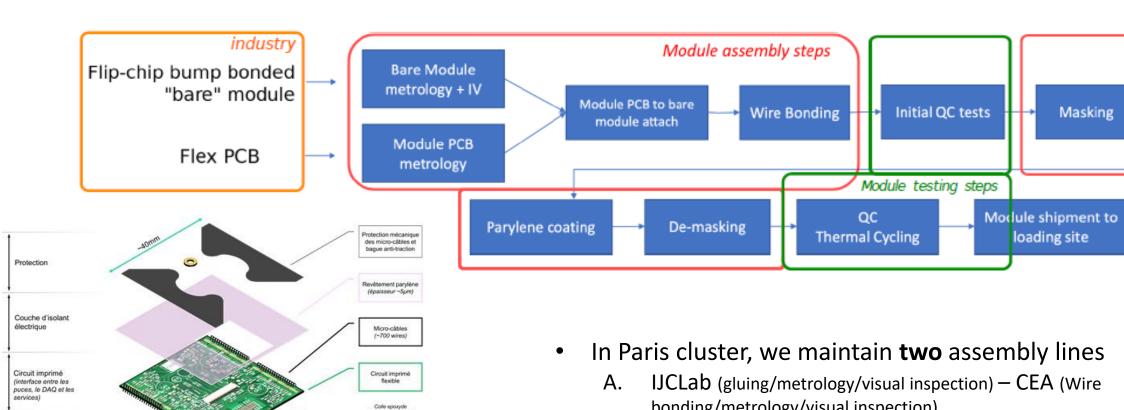


d) Outer Barrel quad module with carbon fibre wire bond protection

French-Ukrainian Workshop 2025 10 12/06/2025

Towards ITk construction

Milestones:


- 2021-2022: production of about 160 prototype modules
- 2023-2024: site qualifications (Lab infrastructure, Database, Parylene coating, Assembly, Testing setups, Full QC)
- 2023-2024: pre-production of about 800 modules
- 2024: beginning of module production (~ 12,000 modules)
- 2026-2027: module production complete

Huge assembly load, shared among **14** assembly institutes (USA, UK, France, Germany, Italy, CERN, Japan) \Rightarrow important effort in ATLAS to **develop common procedures** as much as possible

Assemblage de plusieurs puces de micro-électronique

Module Production Chain (Paris Cluster)

Puce sensible aux (~0.6M pixels)

Bump bonding (bille en indium)

- bonding/metrology/visual inspection)
- LPNHE (all assembly steps).
- And **three** testing lines

80 weeks to build 2100 modules Need to be producing 27 modules / week!

Module Assembly

Clean room ISO-7, 70 m². Semi-automatic probe station, High precision numerical microscope, confocal profilometer, 3D automated measuring system

Pixel sensor electrical tests infrastructure

- probe station Signatone
- vortex cooling system up to -40°C (irradiated sensor)
- Keithley provides comprehensive device-level characterization IV -CV
- up to 3kV of biasing voltage
 - allows creating the map for automatic measurements of periodically repeating structures on the test wafer

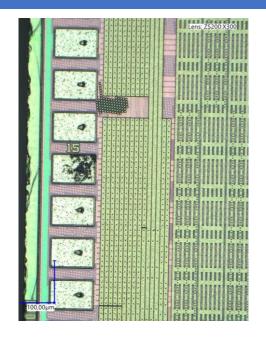
French-Ukrainian Workshop 2025 14 12/06/2025

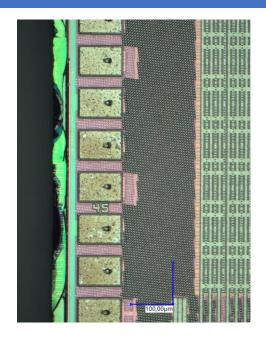
ATLAS TITK Visual Inspection and Metrology

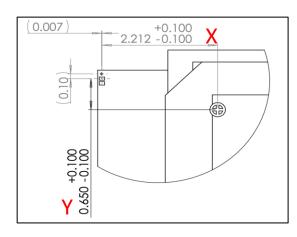
>> Prior to assembly

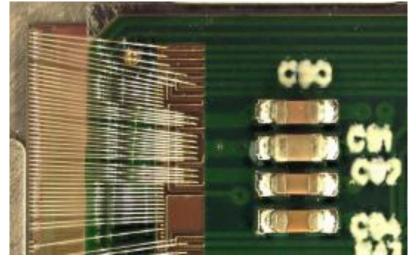
Bare module

- Bare module IV
- Visual inspection
- Mass/metrology

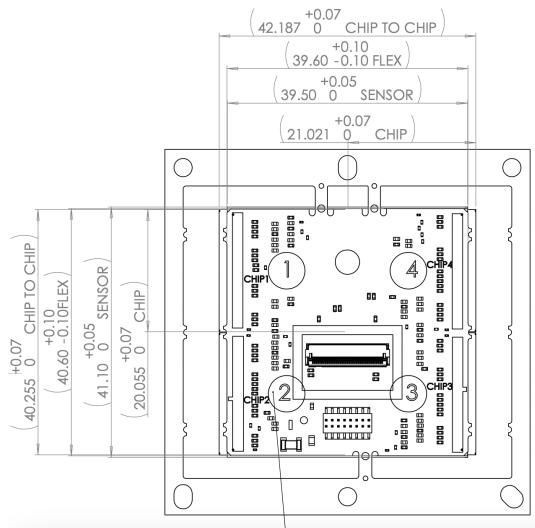

Flex PCB

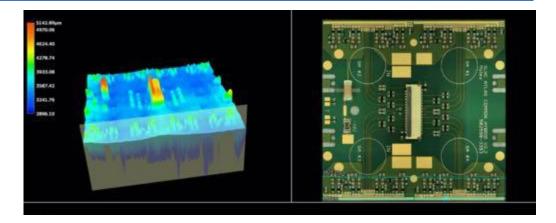

- Visual inspection
- Mass/metrology


>> After assembly

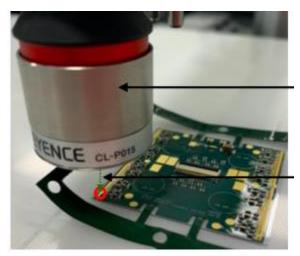

Module

- Thickness and mass
- Flex to bare module alignment





ATLAS ITK Visual Inspection and Metrology

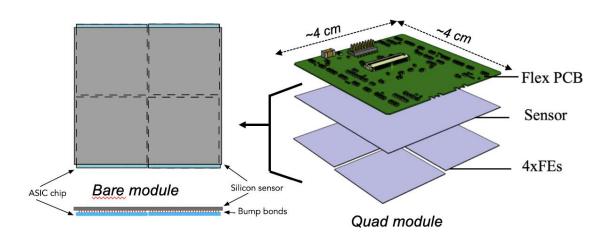


Chip thickness:

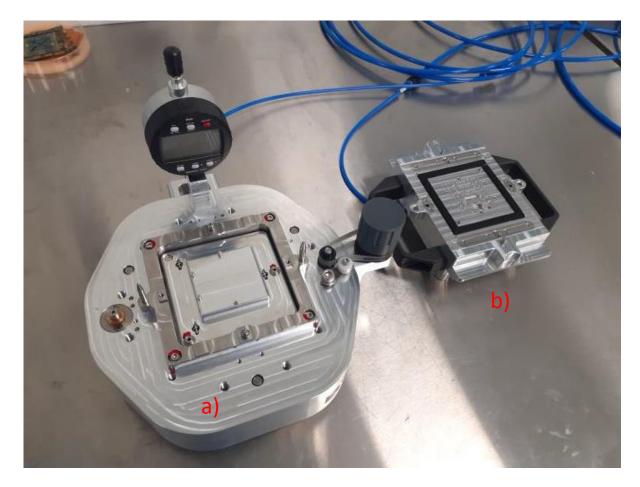
0.150 +0.025 -0.010 mm

Bare module thickness:

0.325 +0.090 -0.040 mm

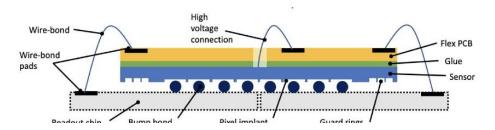

Laser head

Laser beam

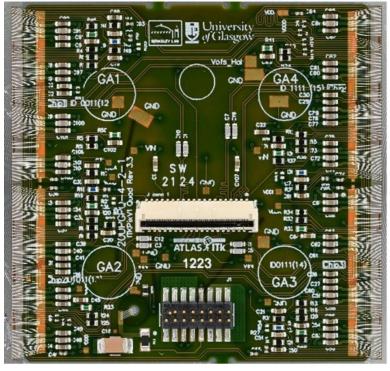

Flex

French-Ukrainian Workshop 2025 16 12/06/2025

ATLAS ITK Gluing



- Glue mixing method : Two components of Araldite;
- Temperature 22°C, humidity 45%;
- Two jigs: a) for the bare module; b) for the flex PCB;
- Components maintained in position with vacuum;
- The glue is deposited through a stencil and spread manually with a spatula;
- Aligned by dowel pins;
- The two jigs are then screwed on top of each other and left this way during the curing time of the glue (8 hours).



>> Pixel quad module

- Delicate operation depending a lot on cleanness of the bondable surfaces
- 700 wire bonds per quad module
- When/If everything works smoothly, this is about 1-2 hours for a fully automated WB machine

French-Ukrainian Workshop 2025 18 12/06/2025

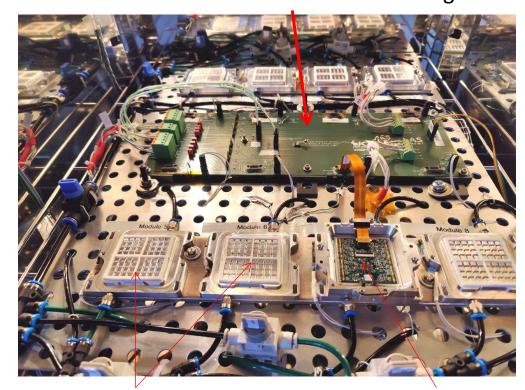
Module Testing

>> >> Thermal cycles aimed at selecting modules that survive this kind of stress tests

we use a Climate Chamber (CC) Weisstechnik LabEvent L T/150/70/3

Features of the system:

- CC from 70° C to + 180° C
- Test space of 500 x 490 x 610 mm³
- Max rate cooling (heating) 4 K/min (3,5 K/min)
- Dry air
- Pump and vacuum regulator
- DCS: Arduino Mega + LabRemote + Grafana


10 cycles - 45° C -> + 40° C

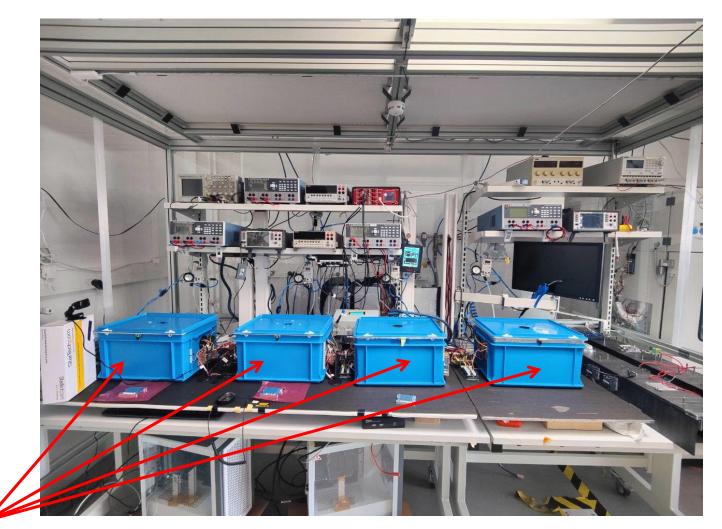
- 55° C -> + 60° C 1 extreme cycle

The operating temperature of the ITk will be -35°C, but variations can be expected during the detector lifetime.

Multimodule PCB for NTC reading

Vacuum chucks

Module


View inside the CC

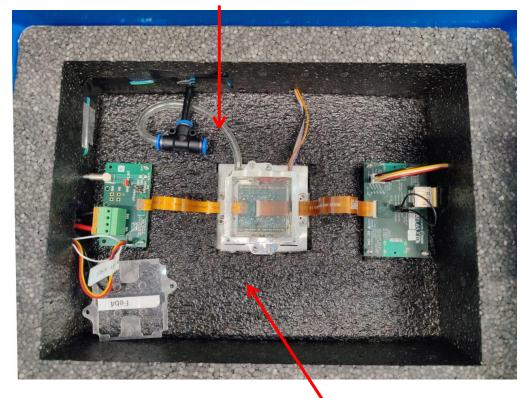
French-Ukrainian Workshop 2025 20 12/06/2025

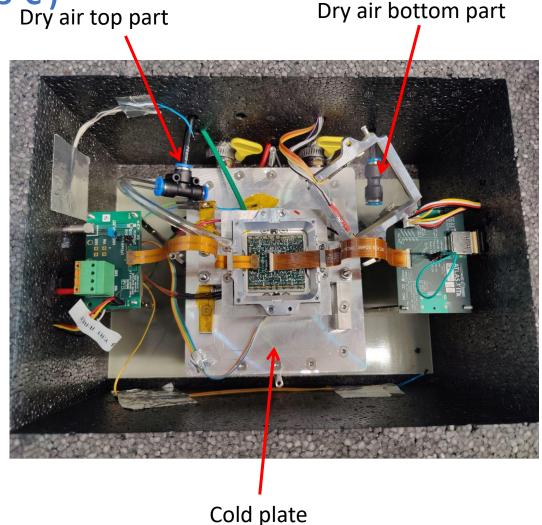
ATLAS TITK Temperature controlled setup

- → Temperature controlled by chiller (Huber) and Peltier.
- Dry air flow
- → Vacuum regulators
- → LV and HV power supplies
- → 6 ½ digit multimeters
- → Monitoring by Grafana of environmental sensors (Temperature, humidity, air-flow, pressure, dew point) and HV, LV, +Currents
- → Software interlock
- → Hardware interlock

Cold boxes

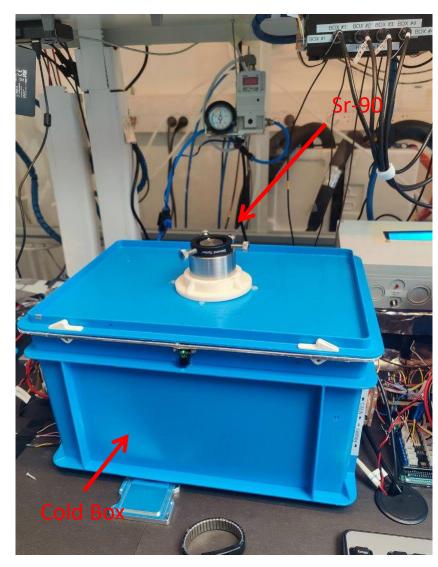
Picture of the module testing setups (IJCLab)


French-Ukrainian Workshop 2025 21 12/06/2025


ATLAS Temperature controlled setup

>> The setup allows testing the quads at cold (-15°C)

Dry air inside testing lid

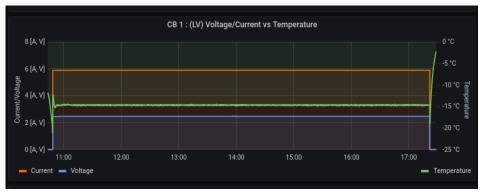


Foam plate to split the box space on top and bottom part. It covers cooling unit, it allows changing modules without heating up the chiller.

ATLAS TITK Temperature controlled setup

>> The source test setup needed for bump bonds checks is based on the temperature controlled setup

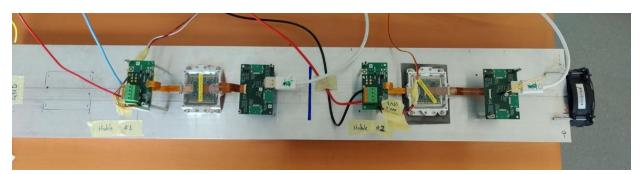
General info about the source setup:

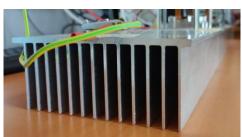

- ➤ Radioactive source Sr-90 (37Mbq) (~ 10 y.o.) [one single source for the testing]
- Minimum distance between source and module carrier ~ 10 cm
 - Opening in the lid (plastic lid), foam 1 cm and the Mylar thin lid on top of the testing carrier.

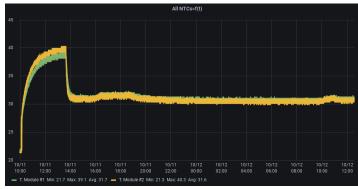
French-Ukrainian Workshop 2025 23 12/06/2025

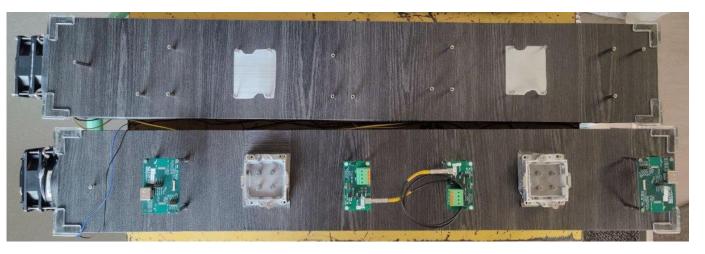
DCS system. Monitoring Software interlock.

LV Current LV Voltage Module NTC Plots showing LV, current and module NTC vs., time.




Plots showing the stability of the Vacuum (set to -500mbar) and the module NTC vs .time

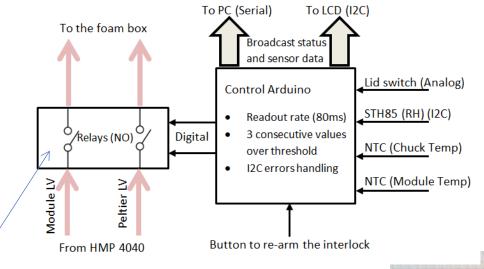

Vacuum



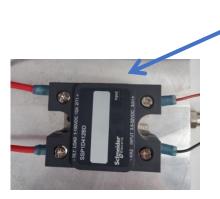
>> The ITk pixel modules are tested at room temperature for stability

Pictures of the heatsinks prepared for the final production setup. But this kind of test has been removed.

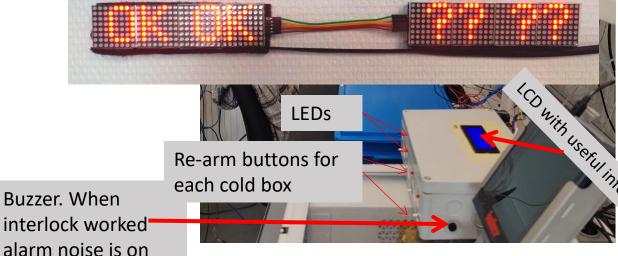
- The modules are powered and with HV on during the stability test duration.
- It is also required continuous readout by DAQ and HV current monitoring
- Test duration: from 36h to 48h
- Quad temperature range set point: from 25°C to 45°C


French-Ukrainian Workshop 2025 12/06/2025

Hardware interlock


Conditions:

- Lid is open;
- ➤ Module NTC Temperature:
 - \circ T_{NTC} < 45 °C
 - \circ T_{NTC} < 60 °C
- Dew point >= T_{chuck}


Peltier relay and HV – Reed relay

Module relay – **solid state relay**

LED matrix with

control PC

status of each cold

box visible from the

Initial module characterisation	Initial module characterisation	Parylene masking	Parylene coating	Parylene unmasking	Wirebond protection			Thermal cycling	Bum-in	Module	completed
Initial Warm	Initial Cold	Parylene Masking	Parylene Coating	Parylene Unmasking (alt.)	Wirebond protection (alt)	Post Parylene Warm	Post Parylene Cold	Thermal cycles (at which T?)	Long term Stability Test	Final warm	Final cold
INITIAL_WARM	INITIAL_COLD	PARYLENE_ MASKING	PARYLENE_ COATING	PARYLENE_ UNMASKING	WIREBOND_ PROTECTION			THERMAL_C YCLES	LONG_TERM _STABILITY_ TEST		FINAL_COLD
20 C	-15/-25 C (quads/triplets)			20 C	20 C	20 C	-15/-25 C (quads/triplets)	20 C		20 C	-15/-25 C (quads/triplets)
sensor IV	sensor IV			sensor IV *	sensor IV "	sensor IV	sensor IV	sensor IV ^A	sensor IV ^A	sensor IV	sensor IV
ADC Calibration	ADC Calibration					ADC Calibration	ADC Calibration			ADC Calibration	ADC Calibration
Analog readback SLDO VI	Analog readback SLDO VI					Analog readback SLDO VI	Analog readback SLDO VI			Analog readback SLDO VI	Analog readback SLDO VI
Vcal calibration	Vcal calibration					Vcal calibration	Vcal calibration			Vcal calibration	Vcal calibration
Injection capacitance LP mode Data Transmission	Injection capacitance LP mode Data Transmission					Injection capacitance LP mode Data Transmission	Injection capacitance LP mode Data Transmission			Injection capacitance LP mode Data Transmission	Injection capacitance Data Transmission
Min. health test	Min. health test			Min. health test		Min. health test	Min. health test	Min. health test	Min. health test	Min. health test	Min. health test
Tuning	Tuning			Tuning *	Tuning "	Tuning	Tuning	Tuning	Tuning	Tuning	Tuning
Pixel Failure Ana	Pixel Failure Ana			Pixel Failure Ana *	Pixel Failure Ana "	Pixel Failure Ana	Pixel Failure Ana	Pixel Failure Ana	Pixel Failure Ana	Pixel Failure Ana	Pixel Failure Ana (including source scan)

French-Ukrainian Workshop 2025 27 12/06/2025

Electrical QC stages

Initial module characterisation	Initial module characterisation	Parylene masking	Parylene coating	Parylene unmasking	Wirebond protection			Thermal cycling	Bum-in	Module o	completed
Initial Warm	Initial Cold	Parylene Masking	Parylene Coating	Parylene Unmasking (alt.)	Wirebond protection (alt)	Post Parylene W arm	Post Parylene Cold	Thermal cycles (at which T?)	Long term Stability Test	Final warm	Final cold
INITIAL_WARM	INITIAL_COLD	PARYLENE_ MASKING	PARYLENE_ COATING	PARYLENE_ UNMASKING	WIREBOND_ PROTECTION			THERMAL_C YCLES	LONG_TERM _STABILITY_ TEST	FINAL_WARM	FINAL_COLD
20 C								1		20 C	-15/-25 C

sensor IV

ADC Calibration

Analog readback

SLDO VI

Vcal calibration

Injection capacitance LP mode Data Fransmission |

Min. health test

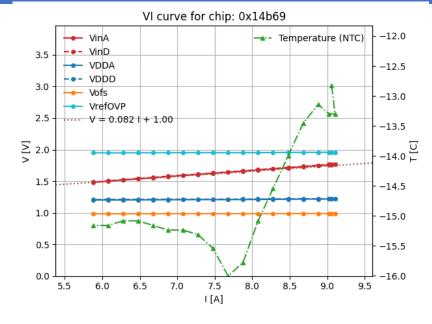
Tuning

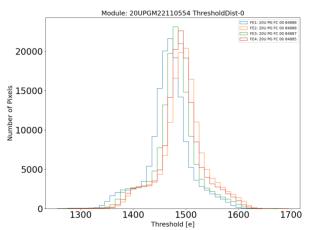
Pixel Failure Ana

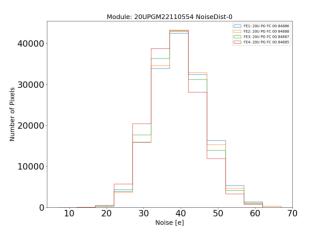
After Production Advance review make decision on further testing reduction:

- based on data
- incorporate understanding on inputs needed for grading
- evaluate risks

(quads/triplets) sensor IV ADC Calibration ADC Calibration Analog readback SLDO VI SLDO VI Vcal calibration Vcal calibration Injection Injection capacitance capacitance LP mode Data Data Transmission Min. health test Min. health test Tuning Tuning Pixel Failure Ana Pixel Failure (including source scan)


French-Ukrainian Workshop 2025


12/06/2025

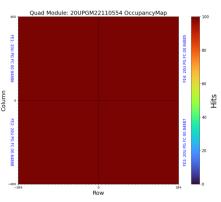


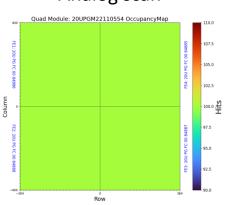
Module QC status and Results

Key	Data			
MODULE_TEMPERATURE	20			
ANALYSIS_VERSION	locald	lb-tool	s v2.2	.39-rc7
QUAD-MODULE_ADC_CALIBRATION	1	2	3	4
QUAD-MODULE_SLDO	1	2	3	4
QUAD-MODULE_VCAL_CALIBRATION	1	2	3	4
QUAD-MODULE_ANALOG_READBACK	1	2	3	4
QUAD-MODULE_LP_MODE	1	2	3	4
QUAD-MODULE_OVERVOLTAGE_PROTECTION	1	2	3	4
QUAD-MODULE_INJECTION_CAPACITANCE	1	2	3	4
QUAD-MODULE_MIN_HEALTH_TEST	1	2	3	4
QUAD-MODULE_TUNING	1	2	3	4
QUAD-MODULE_PIXEL_FAILURE_ANALYSIS	1	2	3	4
MODULE_BAD_PIXEL_NUMBER	503			
MODULE_ELECTRICALLY_BAD_PIXEL_NUMBER	499			
MODULE_DISCONNECTED_PIXEL_NUMBER	4			
MODULE_HIGHEST_NUMBER_BAD_PIXELS_CLUSTER	N/A			
QUAD-MODULE_UNDERSHUNT_PROTECTION	1	2	3	4
QUAD-MODULE_DATA_TRANSMISSION	1	2	3	4

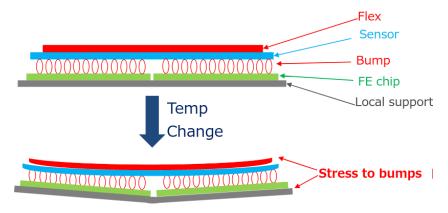
Threshold

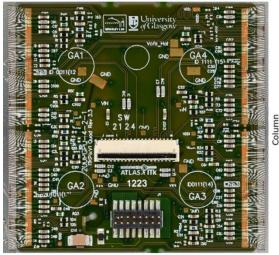
Noise

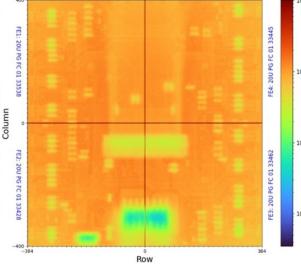

French-Ukrainian Workshop 2025

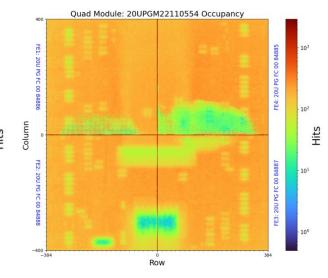

Module QC status and Results

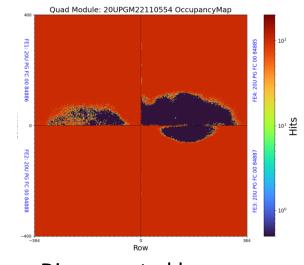
>> Pixel Failure Analysis

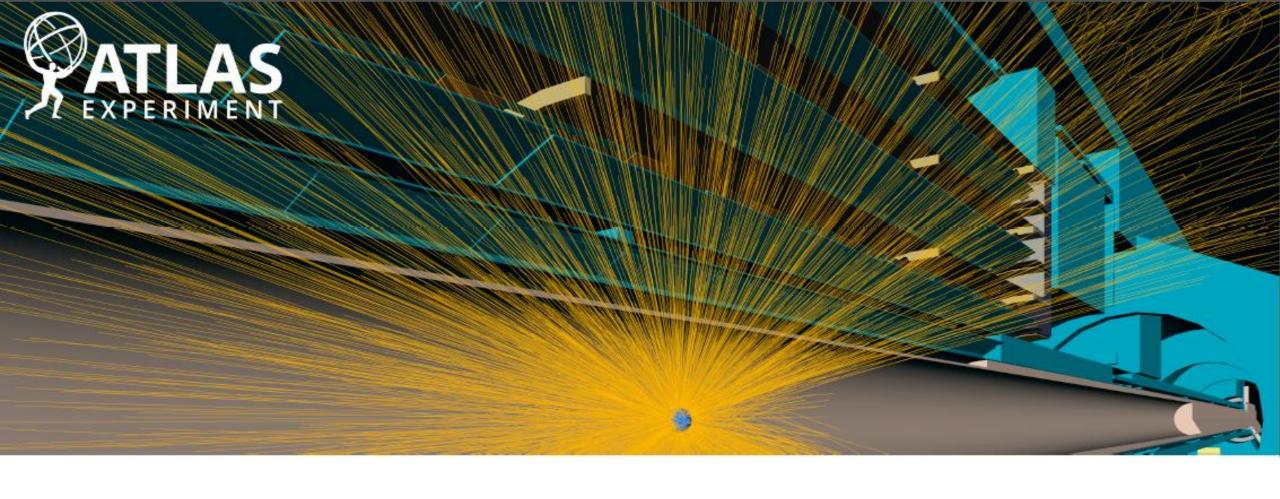

Digital scan




Analog scan


The deformations of a module under thermal stress




Ouad Module: 20UPGM23210491 Occupancy

Disconnected bumps

Source scan

Thank you for your attention!!!