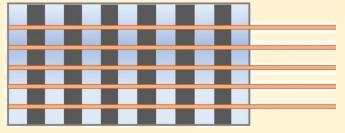


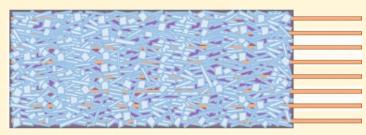
GRAINITA calorimeter project

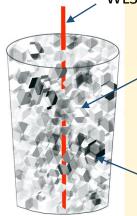


S.Barsuk¹, O.Beschyko⁴, D.Breton¹, A.Boyarintsev², I.Boyarintseva^{1,2}, H.Chanal³, A.Dubovik², B.Geoffroy¹, C.D.Goncalves¹, Y.Hou³, G.Hull¹, M.Imre¹, D.Klekots⁴, A.Kotenko⁴, J.Lefrançois¹, J.Maalmi¹, M.Magne³, B.Mathon¹, S.Monteil³, S.Olmo¹, D.Picard³, M.-H.Schune¹, N.Semkiv⁴, I.Tupitsyna², M.Yeresko³

- ¹ Université Paris-Saclay, CNRS-IN2P3, IJCLab, Orsay, France
- ² Institute for Scintillation Materials of NASU, Kharkiv, Ukraine
- ³ Université Blaise Pascal, CNRS-IN2P3, LP-Clermont, Aubiere, France
- ⁴ Kyiv National Taras Shevchenko University, Kyiv, Ukraine

GRAINITA concept


Shashlyk-type calorimeter



GRAINITA

$$\frac{\sigma_E}{E} \sim \frac{1\% \div 2\%}{\sqrt{E}}$$
 is expected

high-density transparent liquid (LST Fastfloat, ρ=2,8 g/cm³, n=1.548)

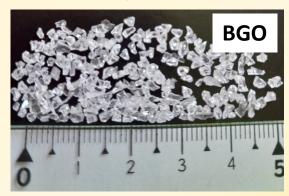
- to optimize the overall density and compactness of the calorimeter
- to provide a better optical matching with the scintillator grains

scintillation grains with high density and Z_{eff}

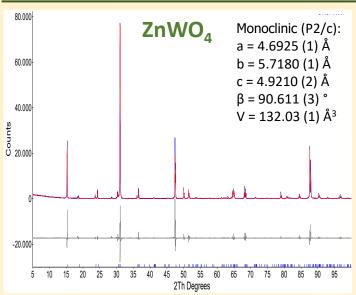
Scintillation grains

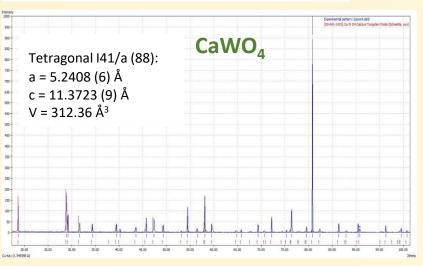
	N _{phe} , phe/MeV γ, ¹³⁷ Cs	Z _{eff}	ρ, g/cm³	refractive index	decay time, μs	λem	Possibility of the grains obtaining by the flux method
ZnWO ₄ SC	≈1 720	61	7.87	2.2-2.3	20*	490	Yes ☺
CaWO ₄ SC	≈ 4 400	62	6.06	1.94	10*	430	Yes ☺
Bi ₄ Ge ₃ O ₁₂ (BGO) SC	≈1 370	74	7.13	2.1	0.3	480	No ⊜

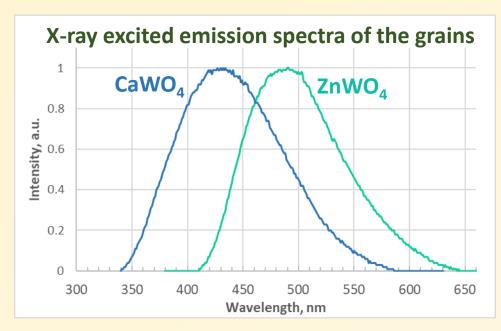
^{*}The rather long decay time constant of ZnWO4 (20 μ s) is not an issue in the context of FCC e⁺e⁻ due to the Z_0 production rate (50 kHz) and the low occupancy of the detector


Scintillation grains provided by ISMA (Kharkiv, Ukraine)

1380 g (October 2022)

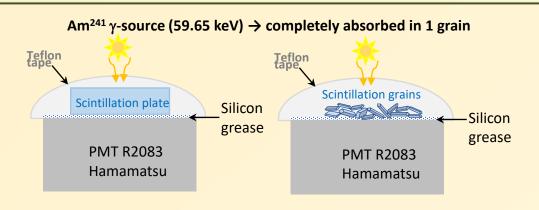

≈250 g (May 2023)

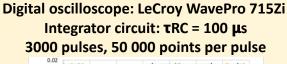


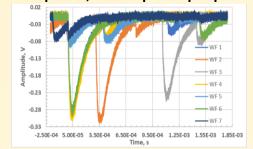

≈350 g (May 2023)

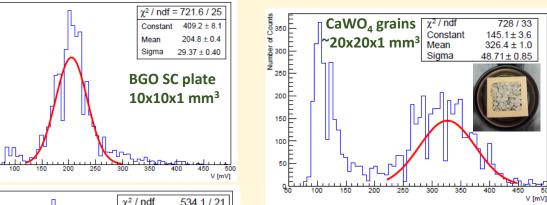
mechanical crushing of the single crystal (SC)

Structural and luminescence characterization of ZnWO₄ and CaWO₄ grains

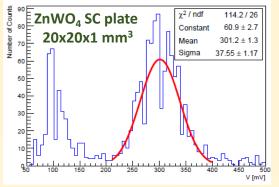


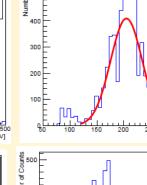


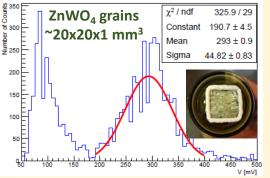


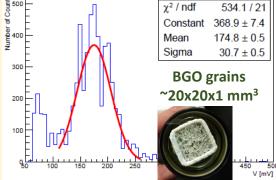

ZnWO₄ and CaWO₄ grains show the same crystallographic structures and luminescence properties as single crystals

Scintillation performance of the grains

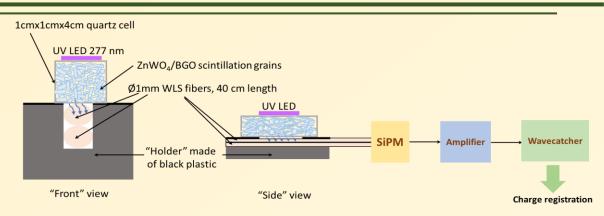


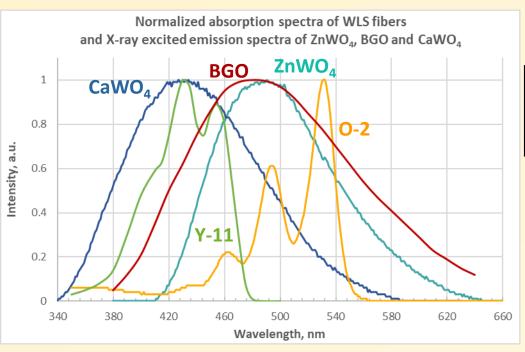






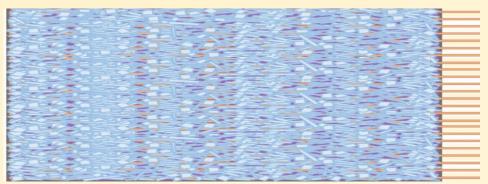
	Sample	Mean, mV	Sigma, mV	
	ZnWO ₄ grains	293.0	44.8	
	ZnWO ₄ SC plate	301.2	37.5	
	BGO grains	174.8	30.7	
I	BGO SC plate	204.7	29.3	
	CaWO ₄ grains	326.4	48.7	





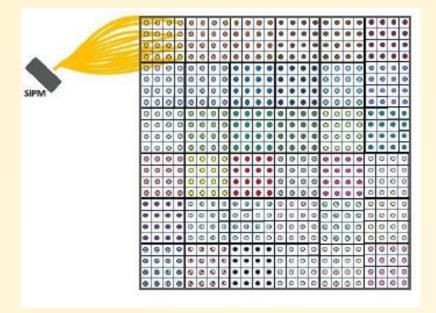
Selection of the WLS fiber (Kuraray) for registration of the scintillation light from the grains

(!) Emission spectra
of ZnWO₄, CaWO₄, and BGO
are similar under excitation by UV
or ionizing radiation/particles



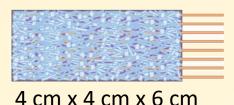
WLS fiber	Relative efficiency, %					
wts liber	ZnWO ₄ grains	BGO grains	CaWO ₄ grains			
Kuraray O-2(300)	100	100	100			
Kuraray O-2(200)	<mark>103</mark>	<mark>100</mark>	103			
Kuraray Y-11(200)	30	83	<mark>227</mark>			

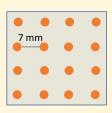
O2(200) is a good candidate for $ZnWO_4$ as well as for BGO $CaWO_4$ requires using of Y-11


Future full-size GRAiNITA demonstrator and small-size prototype

Full-size demonstrator

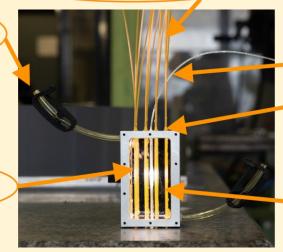
17 cm x 17 cm x 40 cm


These dimensions correspond to 25 X_0 , i.e. the detector should entirely contain a photon shower of at least 25 GeV.



576 WLS fibers, placed 7 mm apart from each other (36 x 16 fibers bundle) coupled to 36 large-area SiPMs

Small-size prototype

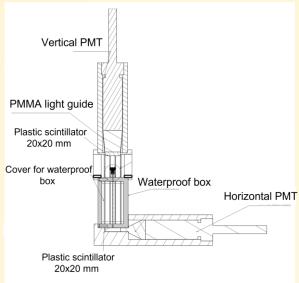


16 WLS fibers, coupled to 16 SiPMs

Small-size-prototype for cosmic rays and beam tests: TROLL

16 WLS fibers placed in square geometry, 7 mm apart to each other

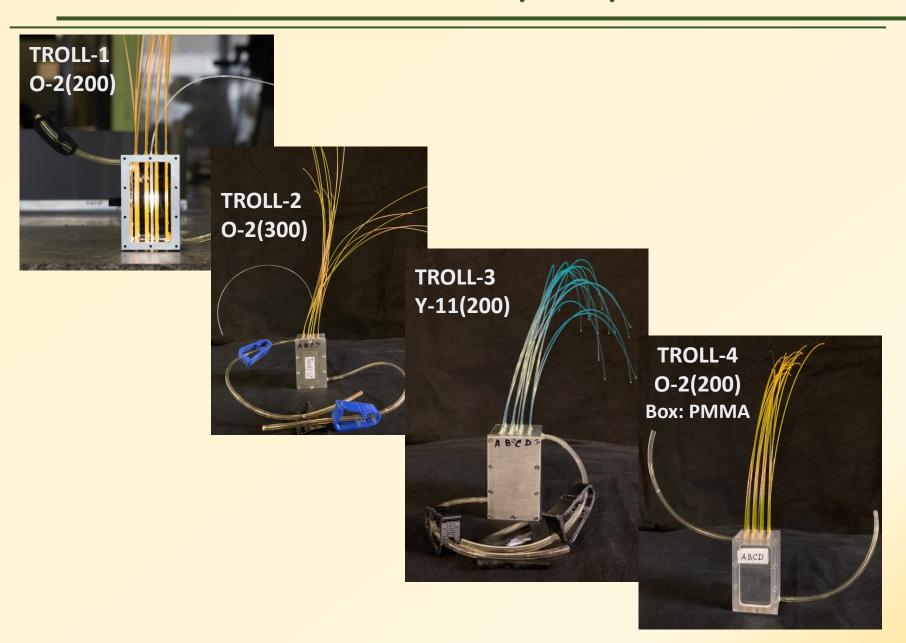
Two pipes to insert the liquid in the volume


1 clear fiber upolished for 1cm of length and connected to a green LED for the light injection

Fibers glued to the container

Volume sealed after the grain insertions

All the internal surfaces of the volume are covered with highly-reflective material (VM2000)



Two 2 cmx2 cm plastic scintillators connected to PMT's → double coincidence for cosmic rays triggering

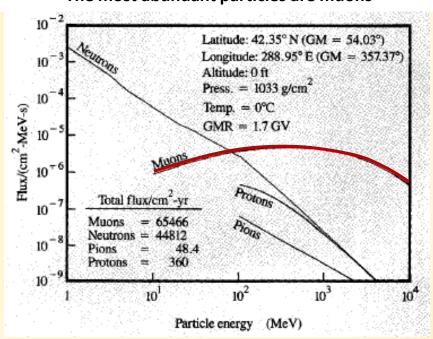
TROLLs' dynasty

GRAINITA small-size-prototype: tests with cosmic ray muons

What would we like to know?

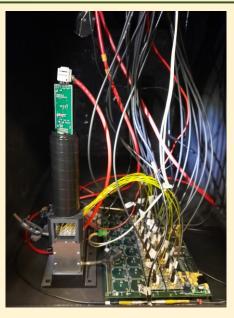
- Check the feasibility of GRAINITA detector concept
- Number of photo-electrons by MeV

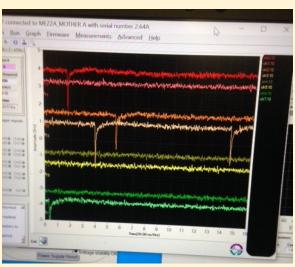
Muons:


accelerator beam

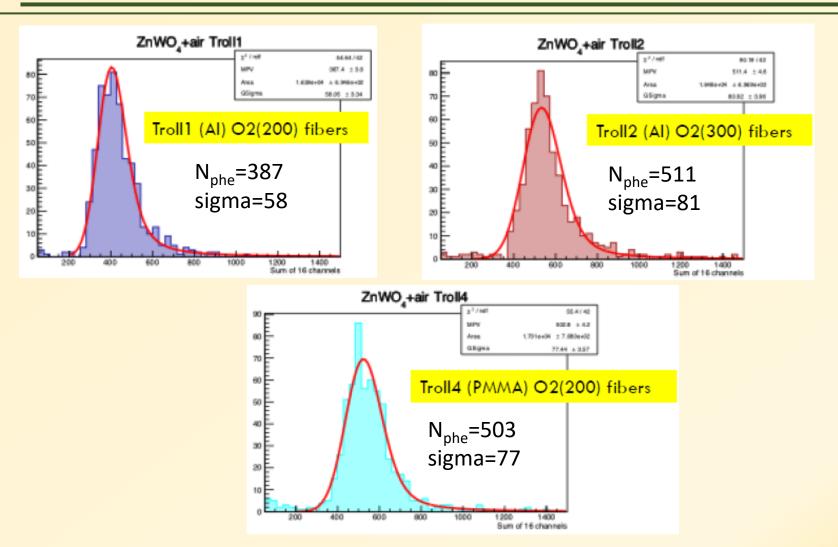
✓ beamtime should be reserved in early advance, not available for routine tests ☺

cosmic rays


- ✓ free of charge ©
- ✓ available 24/7 everywhere ©
- ✓ 1 event for 10-12 min (in the case of the double coincidence we have) ⊗

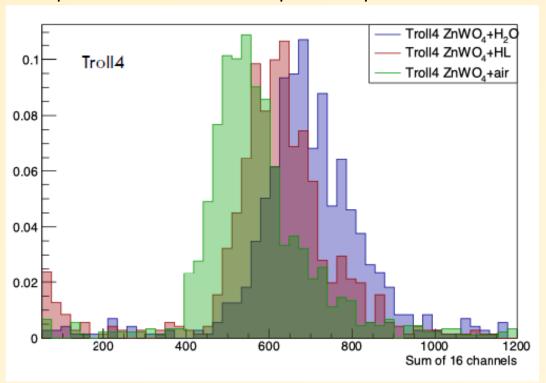

Theoretical calculation of the flux of cosmic ray particles. The most abundant particles are muons

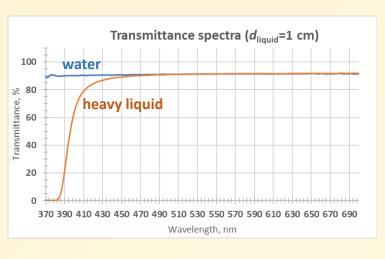
J.F. Ziegler, IBM J. Res. Develop., 40(3) (1996) 19-39


GRAINITA cosmic rays tests - acquisition system

- there are 16 WLS fibers read by 16 SiPMs coupled to 16 amplifiers on a card. The amplified pulse shape depends on the output inductance, for small values, only the fast part of the pulse is kept;
- 16 acquisition channels are connected to 16 channel wavecatcher (with an external trigger: the signal from the two PMTs R7899 => NIM discriminator => coincidence circuit);
- since $ZnWO_4$ and $CaWO_4$ have long decay times (20 µs and 10 µs), a special program has been implemented allowing to count the number of the single photoelectron pulse (N_{phe}) on a longer time scale 25 µs ($ZnWO_4$) or 12.5 µs ($CaWO_4$);
- using fast pulse shaping and counting the number of pulses in an interval of time;
- for tests of BGO grains with fast (300 ns) decay constant, the inductance on each 16 amplifiers were replaced by 50Ω resistance; the pulses for each SiPM were integrated over 440 ns; the N_{phe} per SiPM was calculated via dividing the registered charge by the experimentally estimated charge of the single photoelectron.

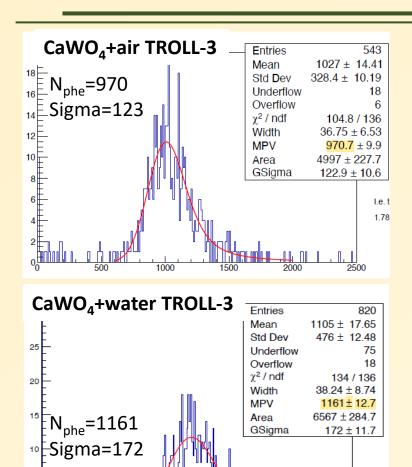
Cosmic rays tests: ZnWO₄ grains in different Trolls

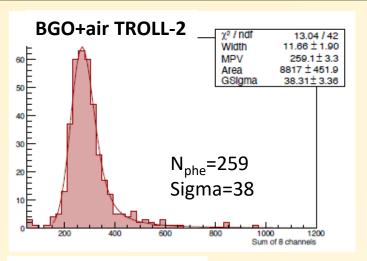


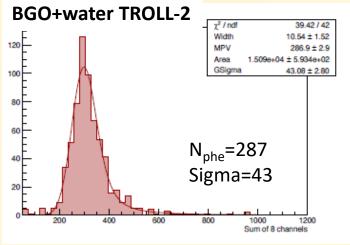

Estimated light yield is ≥400 phe per 40 MeV deposited by the muons in the test device, i.e. ≥10000/GeV => statistical constant ≈ 1% for 1 GeV high energy photon

Cosmic rays tests: ZnWO4 grains with different liquids

Using of liquids (water, Heavy Liquid) serves to:

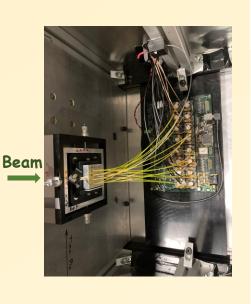

- ✓ provide a better optical matching with the scintillator grains
- ✓ optimize the overall density and compactness of the calorimeter

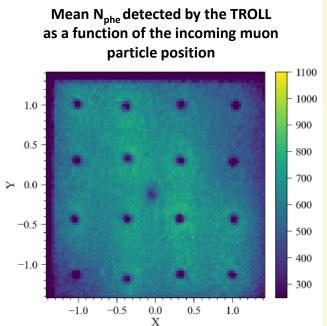


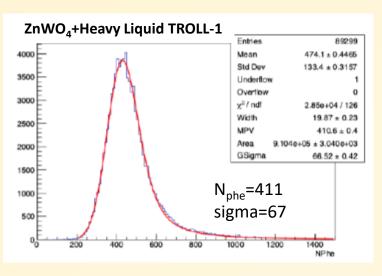


- ✓ Adding of water as an optical medium increases the light amount by about 24% compare to air;
- ✓ With Heavy Liquid the gain in the light amount is slightly lower, about 16% with respect to air (can be explained by the absorption of the heavy liquid in the blue spectral range).

Cosmic rays tests: CaWO₄ and BGO grains

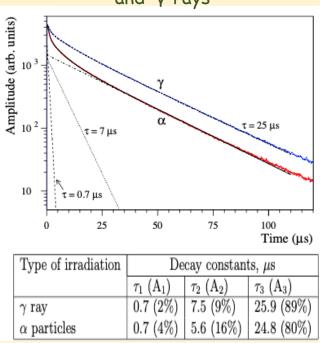



- \checkmark The "light yield" for CaWO₄ grains is about 1.8 times higher compare to ZnWO₄ grains
- ✓ For BGO grains the N_{phe} is about 2 times lower in comparison with ZnWO₄ grains
- ✓ Adding of water as an optical medium increases the light amount


ZnWO4 grains: muon beam tests

H1 area of the SPS, CERN, June 2024

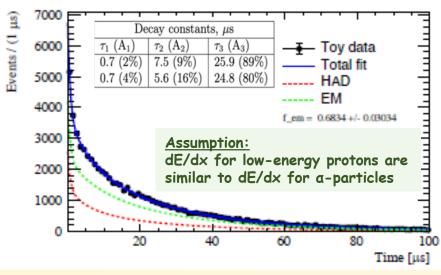
~ 0.2 million of high-quality muons passing through TROLL

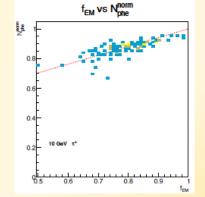


- ✓ The light confinement is confirmed
- \checkmark The obtained light yield is \approx 10 000 phe/GeV in a good agreement with previous studies
- The preliminary results are quite encouraging and indicate that the statistical contribution to the energy resolution of the order of 1-2%/ \sqrt{E} is achievable
- ✓ Obtained non-uniformity maps were inputted into a GEANT-4 simulations of the calorimeter concept. The constant term from non-uniformity < 1% can be expected (limitations due to the prototype size). The full-size prototype tests are needed for precise values

GRAINITA as an dual redout calorimeter: is it possible?

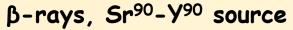
Idea: using of the Pulse Shape Discrimination (PSD) technique to separate the electromagnetic part from the hadronic part of the shower

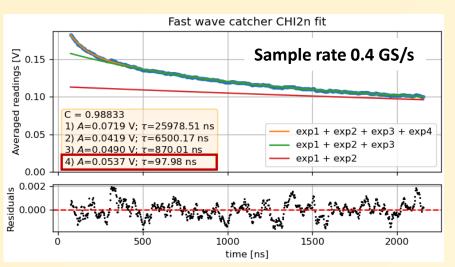

Clear discrimination between a-particles and y-rays

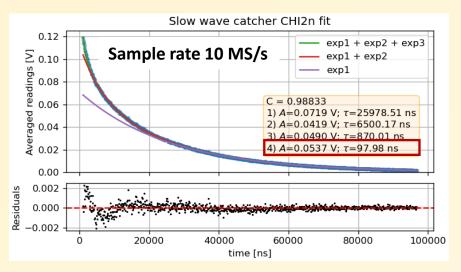

F.A. Danevich et al., NIM A 544 (2005) 553-564

Simulation

N_{phe} induced by an incident 10 GeV charged pion as a function of their detection time




Distribution of the N_{phe} (normalized) as a function of the fitted fraction of electromagnetic energy



MISSING: actual scintillation times for the particles with different dE/dx

Search for experimental proofs for PSD possibility

Preliminary results:

3 decay constants+additional "fast" one (not reported in the literature) have been found

~20 MeV and ~10 MeV protons, ALTO proton beam

First measurements performed on May 26, 2025 © => data processing is ongoing...

Summary

- ✓ The feasibility of the GRAiNITA detector concept has been proved: for ZnWO₄ grains N_{phe} ~ 10 000/GeV; statistical fluctuation of 1-2%/ \sqrt{E} is at reach; estimated constant term from non-uniformity is < 1%
- ✓ The idea of using the PDS technique for dual redout calorimeter seems to be perspective and should be checked
- ✓ CaWO₄ grains can be regarded as the 2nd candidate for the future detector, the studies are ongoing

To be continued @...

Thank you for attention! Дякую за увагу! Merci pour votre attention!

