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Book chapter

Statistical Aspects of 
X-ray Spectral Analysis

Johannes Buchner & Peter Boorman

Freely available at:
https://arxiv.org/abs/2309.05705 

Includes hands-on exercises for both 
Sherpa & Xspec
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An interesting astrophysical source
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Focus X-ray photons onto detector with mirrors
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Detector current converts energy into channels

- Detect current proportional to energy 
of  incoming photon

- Diagonal would be a perfect detector

- Secondary effect from incoming photon 
ionising part of  the detector
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A single photon at 6.4 keV converted to counts

Energy / keV
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Added complications from background

“on” region (source + background) & “off” region (background only)

Buchner & Boorman 23

8



Example: eROSITA background

o Diffuse emission
– Local hot bubble
– Galactic disk
– Galactic halo

o Cosmic background
– Unresolved AGN

o High-energy 
particle background

wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background 

0.5

10–2

10–3

Energy / keV

counts s –1 keV
–1

10–4

10–5

1 2 5

Particle background

X-ray background

Total background

9



(Semi-)physical background models

5

10–2

10–3

Energy / keV

counts s –1 keV
–1

10–4
10 20 50 100

“off” region

“on” region

Particle background
Cosmic background
Instrumental background
…
Location & time-dependent
→ especially important for
     extended sources

NuSTAR nuskybgd (Wik+14)

github.com/achronal/nuskybgd-py
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Empirical parametric background models

Energy / keV
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Chandra
Buchner+14

Pros
- Can contain physical knowledge & 

smoothness
- Small uncertainties
- 0 bin counts ok
Cons
- Need to specify model
- Fit can be poor

“off” region

“on” region
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Empirical non-parametric background models (PCA)
Automated shape finding
Simmonds, Buchner et al., (2017)
Includes XMM/PN, XMM/MOS, Chandra/ACIS, 
NuSTAR, Suzaku, RXTE, Swift/XRT
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Implemented in BXA (tutorial Exercise 1.6)



We detect a Poisson realisation of  the count spectrum
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Poisson distribution
- Detected counts k, integer
- Expected counts λ, real
- Asymmetric
- Non-negative

Likelihood is a probability 
distribution of the data0
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X-ray spectral fitting with forward folding

Detected
count rate Response Effective area Astrophysics background

15

Guess F(E) Predict N(c)
Compare to actual 

with Likelihood



Likelihood shapes (fit statistic = –2 logℒ)

0

–5

–10

–15

–20
10–3 0.01 0.1 1 10 100 103

Expected counts

lo
g 

Lik
eli

ho
od

Poisson

Gaussian

16

Detected 1 count

Poisson low end more permissive

Gaussian high end more permissive
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Likelihood shapes (fit statistic = –2 logℒ)
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Likelihood shapes (fit statistic = –2 logℒ)
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Likelihood shapes (fit statistic = –2 logℒ)
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Chi-squared and modified C-stat (W-stat)
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Chi-squared is biased at low and high counts (e.g., Humphrey+09)
Note W-stat typically requires grouping to avoid biases!

(See also Mighell 99)

Buchner & Boorman 23

Chi-squared vs. C-stat W-stat vs. grouping



X-ray spectral fitting with forward folding

Detected
count rate Response Effective area Astrophysics background
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Guess F(E) Predict N(c)
Compare to actual 

with Likelihood



Assume priors
Derive 

posteriors

Model 
checking

Model 
comparison

Vary assumptions, 
check robustness on 

simulated data

Get data

Assume 
model

E.g., Buchner+14, 
Boorman+25a
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Bayesian
workflow
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E.g., Buchner+14, 
Boorman+25a



Assume priors
Derive 

posteriors

Model 
checking

Model 
comparison

Vary assumptions, 
check robustness on 

simulated data

Write paper

Predict 
observations

Get data

Assume 
model

Bayesian
experiment design
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An example NuSTAR spectrum

Model 1 = powerlaw

Model 2 = zTBabs * powerlaw

Model 3 = zTBabs * powerlaw + zGauss
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10–1

10–2

Energy / keV

All exercises available through tutorial: peterboorman.com/tutorial_bxa
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Prior predictive checks (see tutorial Exercise 1.1)

Model 1 Model 2 Model 3
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Constrain parameter priors with information prior to the observation
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Deriving posteriors (see tutorial Exercises 1.3 & 2.1)

Model 1 Model 2 Model 3
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Using Monte Carlo sampling to learn from the data
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Corner plots

Useful for visualization the posterior

Does not provide a goodness-of-fit, nor 
proof  that the sampling algorithm has worked
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Deriving posteriors (see tutorial Exercises 1.3 & 2.1)

Model 1 Model 2 Model 3
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Using Monte Carlo sampling to learn from the data
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Quantile-Quantile plots (see tutorial Exercise 2.2)

Model 1 Model 2 Model 3

A way to search for missing components from entirely ungrouped spectra
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Model checking (see tutorial Exercise 2.3)
Posterior predictive checks quantify the goodness-of-fit and can be 
useful in the search for missing model components

28

Posterior 
sample

Load model 
parameters

Simulate 
spectrum

Compare to 
data

Many

Many



Quantile-Quantile difference (see tutorial Exercise 2.2)

Model 1 Model 2 Model 3
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Reproject Quantile-Quantile plots vs. channel energy (Buchner & Boorman 23)
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Posterior predictive checks (see tutorial Exercise 2.3)

Model 1 Model 2 Model 3

10 20 40 603 6 10 20 40 603 6 10 20 40 603 6

Energy / keV

Useful to quantify the goodness-of-fit and search for missing model components
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Profiling the Likelihood (see tutorial Exercise 2.3)

Model 1 Model 2 Model 3
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log Likelihood
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Comparing best-fit to best-fits of  many generated data as a goodness-of-fit test
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31See also Xspec “goodness” command



Johannes Buchner
http://astrost.at/istics/

 Traversing the space
of parameter space
           in the space

Lumiere, 15.01.2025
Johannes Buchner

with Peter Boorman, David Homan, 
and the BXA community

s             
 sciences

Model comparison
Nested Sampling
UltraNest/MLFriends
BXA

http://astrost.at/istics/


marginal posteriors:
    informative 
      
uninformative 

Gaussian and non-Gaussian shapes: 
                       Contours
                       Tails

Complex 
degeneracies



Model 
comparison



Model comparison
● Empirical models

– Information content

– Prediction quality

● Component presence

– Regions of practical 
equivalence

● Physical effects

– Bayesian model 
comparison

– Priors often well-justified

https://arxiv.org/abs/1506.02273
Betancourt (2015)

Buchner+14

https://arxiv.org/abs/1506.02273


Information criteria
● Akaike information criterion
● Is more complex worth storing?

AIC = 2 * d – 2 * L
max

AIC = 2 * d + CStat

Akaike (1973)

Advantages: 
  - rooted in information theory
  - independent of prior

Disadvantages:
  - No uncertainties, thresholds 
unclear
  - …



  

Bayesian model comparison



  

Punishing prediction diversity

Flexible model Inflexible model Data

L high, V tiny L medium, V medium

(not number of 
parameters)

ML training?



  

Posterior 
odds ratio

Prior
odds ratio

Bayes
factor



  

Buchner+14



  

Calibrating model decisions

● Model probabilities → decisions
● False decision rate 

(false positives/negatives)

– Monte Carlo simulations 
(parametric bootstrap) Buchner+14



  

Calibrating model decisions
Buchner+14

False negatives 
Non-decisions

wabs input

powerlaw 
input

wabs input

powerlaw 
input

Advantages:
- Get rid of parameter prior dependences
- Have frequentist properties of Bayesian 

method
- Completely Bayesian treatment + decisions

Disadvantages:
- Can be computationally expensive



  

Model comparison
Test model in isolation?

PPC
Parametric bootstrap

Compare physical models or
empirical descriptions?

yes

no, 
relative

Information content (AIC)
Prediction quality (Cross validation)

empirical

physical 
effects

Additive component
Parameter estimation
Region of equivalence

Bayesian model comparison

yes

no

Bayesian model comparison



How to 
compute the 

Bayesian 
evidence Z

aka marginal likelihood



Nested 
Sampling



Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

?

Convergence proof of Z and posterior : 
e.g. Evans (2007), Chopin&Robert (2010)

Riemann integration
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Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Convergence proof of Z and posterior : 
e.g. Evans (2007), Chopin&Robert (2010)

Riemann integration Lebesgue integration
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Convergence proof of Z and posterior : 
e.g. Evans (2007), Chopin&Robert (2010)

Systematic literature review “Nested Sampling 
Methods” Buchner (2023) in “statistical surveys”

>100 papers
● Theory
● Estimators
● Termination
● Diagnostics (U-test, relative jump distance)
● variations: 

– Soft constraint
– Variable number of live points
– Parallelisation

● Likelihood-restricted prior sampling (LRPS)



Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Convergence proof of Z and posterior : 
e.g. Evans (2007), Chopin&Robert (2010)

Riemann integration Lebesgue integration
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Convergence proof of Z and posterior : 
e.g. Evans (2007), Chopin&Robert (2010)

Systematic literature review “Nested Sampling 
Methods” Buchner (2023) in “statistical surveys”

>100 papers

?

● Theory
● Estimators
● Termination
● Diagnostics (U-test, relative jump distance)
● variations: 

– Soft constraint
– Variable number of live points
– Parallelisation

● Likelihood-restricted prior sampling (LRPS)



● Step samplers?



Likelihood-restricted prior sampling (LRPS)
true unknown contour Region-based methods:

Insight: Live points already traces 
out neighbourhood bounded by 
true unknown contour
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true unknown contour Region-based methods:

Insight: Live points already traces 
out neighbourhood bounded by 
true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)

 → enlarge by a fudge factor

Sample and reject

Likelihood-restricted prior sampling (LRPS)



true unknown contour Region-based methods:

Insight: Live points already traces 
out neighbourhood bounded by 
true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)
→ enlarge by a fudge factor

Sample and reject 

Other shapes: Clustering K-means: Shaw+07, Theisen+13
X-means: Feroz+08, Feroz+09 (MultiNest), splitting criteria 
variations
MLFriends: Buchner14,17 (UltraNest)
HDBScan? → unclear how to sample with fuzzy clusters

Likelihood-restricted prior sampling (LRPS)



true unknown contour

Bootstrapping: robust self-calibration

Sample with replacement
→ training sample
Left out points:
→ validation sample



true unknown contour
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Left out points:
→ validation sample

Find enclosing ellipsoid
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contained
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true unknown contour
Sample with replacement
→ training sample
Left out points:
→ validation sample

Find enclosing ellipsoid

Enlarge until validation sample 
contained
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Repeat a few times, retain largest enlargement factor

→ enlargement to apply to the full live point set

Bootstrapping: robust self-calibration



true unknown contour
Sample with replacement
→ training sample
Left out points:
→ validation sample

Find enclosing ellipsoid

Enlarge until validation sample 
contained
→ enlargement factor

Repeat a few times, retain largest enlargement factor

→ enlargement to apply to the full live point set

→ emulates other realisations of the nested sampling run

→ general, conservative approach, with safety guarantees 
(Buchner14, Buchner17)

Bootstrapping: robust self-calibration



s
(MaxEnt23)

MLFriends:  Ellipsoid for each live point

default algorithm in the UltraNest Python package

Live points Constructed sampling region

Complex shapes
Buchner (2014,2019)

Buchner (2021) JOSS

 Adapting to complex contours

Demo:
https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,banana 

https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,banana


Analysing the bootstrap

 is ~66%

sample with replacement → 2/3 in training sample, 1/3 in validation sample

Never in validation sample in m rounds:



Analysing region construction

● Homogeneous Poisson Point Process

● within contour “Intensity” λ = K / Vi

● Sphere around live point with radius r

no other live point nearby:

   Number of live points / Current prior volume

with unit n-sphere volume:

Buchner (in prep)
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Analysing region construction

● Homogeneous Poisson Point Process

● within contour “Intensity” λ = K / Vi

● Sphere around live point with radius r

no other live point nearby:

   Number of live points / Current prior volume

with unit n-sphere volume:

Buchner (in prep)

Radius from m 
bootstrap rounds 
with K live points

Convergence proof
– at each iteration, a uniform live 

point distribution is maintained 
– By induction, nested sampling 

with MLFriends converges to 
posterior & evidence

– With implementable, finite 
compute

– Usual flag-pole caveat for all 
Monte Carlo algorithms (V/K 
resolution)



So what is BXA?

sophisticated, robust

inference engine

based on nested sampling
BXA

fully-fledged 

fitting 
environment

sherpa
pyxspec
(threeml)
(spex)

MultiNest
UltraNest

community models

data formats

parallelisation, 
resuming

+ background models
+ some visualisation tools

319,565 X-ray sources 
processed (Webb+23)

XMM2Athena

Idea: make
physical parameter inference &
model comparison 
easy & practical



Extra slides
● Landscape of X-ray spectral 
fitting

● Rules of thumb for UltraNest
● Parameter distributions 
    from many data sets



An evolving software landscape

● xspec,  sherpa,   spex    3ML
maintainance is institutional effort

Xspec models a community focal point

● 2014: BXA: xspec/sherpa plug-in for 
modern inference algorithms

● 2022: Model emulators
● 2024+: Diff PPL: e.g. jaxspec

– Require re-implementing models!

● Missing? 
– partially diff XSF? → fastXSF
– Spectral component emulators + BXA?

Kerzendorf+22
Matzeu+22

Buchner+14

Dupourqué+24
Barret+24

Great to see activity!

IACHEC statistics



Some nested sampling papers

stuck step samplers diagnostic

Systematic literature review

Performance comparison of 
step sampler proposals

BXA software paper

UltraNest software paper

MLFriends algorithm 
(affine invariant form)

MultiNest biases
RadFriends algorithm



Rules of thumb for UltraNest

● Do inference correct once is 
faster than quick & dirty 
heuristics that need many 
verification simulations

● Read the documentation :)
● Number of live points O(1000)
● If d>20, use a step sampler

– RJD diagnostic

● Priors do not have to be 
uniform – smooth edges may 
be useful to avoid rerunning

● Define your question well



Peter Boorman
boorman@mpe.mpg.de

peterboorman.com

Johannes Buchner
jbuchner@mpe.mpg.de

astrost.at/istics

Merci de votre attention! Avez-vous des questions?



peterboorman.com/tutorial_bxa


