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An interesting astrophysical source
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Focus X-ray photons onto detector with mirrors
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Detector current converts energy into channels

- Detect current proportional to energy
of incoming photon

- Diagonal would be a pertect detector

- Secondary effect from incoming photon
jonising part of the detector
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A single photon at 6.4 keV converted to counts

> Convolved

with response
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Added complications from background

Buchner & Boorman 23

NuSTAR/FPMA Swift/XRT" -
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*on” region (source + background) & “oft” region (background only



Example: eROSITA background

wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background

- Diffuse emission
— Local hot bubble

— (alactic disk
— (alactic halo

- Cosmic background
— Unresolved AGN

- High-energy
particle background
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(Semi-)physical background models
github.com/achronal/nuskybgd-py
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Location & time-dependent
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extended sources
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Empirical parametric backg
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Pros

- (an contain physical knowledge &
smoothness

- Small uncertainties

- 0 bin counts ok

Cons

- Need to specify model

- Fit can be poor
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Empirical non-parametric background models (PCA)
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Automated shape finding

Simmonds, Buchner et al., (2017)

Includes XMM/PN, XMM/MOQOS, Chandra/ACIS,
NuSTAR, Suzaku, RXTE, Swift/XRT
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Probability density

We detect a Poisson realisation of the count spectrum
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Poisson distribution

- Detected counts k, integer
- Expected counts A, real

- Asymmetric

- Non-negative

Likelihood is a probability
distribution of the data



log flux density
[ph/s/cm2/keV]

Channel

Source model:

F(E) = NXE'F \

> Parameters 0
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Response matrix, R(E, i)
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X-ray spectral fitting with forward folding

Detected
count rate Effective area  Astrophysics  background
N(c) = Z x A(E)x F(E)dE + b(c)

/\
| Compare to actual
Guess F(E) | — | PredictN(c) " | vith Likelihood
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log Likelihood

Likelihood shapes (fit statistic = —2 logL)

Detected 1 count
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log Likelihood

Likelihood shapes (fit statistic = —2 logL)

Detected 5 counts
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log Likelihood

Likelihood shapes (fit statistic = —2 logL)

Detected 10 counts
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log Likelihood

Likelihood shapes (fit statistic = —2 logL)

Detected 20 counts
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log Likelihood

Likelihood shapes (fit statistic = —2 logL)
Detected 100 counts
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Chi—squared and modified C-stat (W-stat) Buchner & Boorman 23

Chi-squared is biased at low and high counts (c.g., Humphrey+09)
Note W-stat typically requires grouping to avoid biases!

Chi-squared vs. C-stat W-stat vs. grouping
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X-ray spectral fitting with forward folding

Detected
count rate Effective area  Astrophysics  background
N(c) = Z x A(E)x F(E)dE + b(c)

/\
| Compare to actual
Guess F(E) | — | PredictN(c) " | vith Likelihood

18
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E.g., Buchner+14,
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counts s 1 kel

An example NuSTAR s

All exercises available throug
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Model 1 = powerlaw

Model 2 = zTBabs * powerlaw

Model 3 = zTBabs * powerlaw + zGauss
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counts s~ keV!

Prior predictive checks (see tutorial Exercise 1.1)

Constrain parameter priors with information prior to the observation

Model 1 Model 2 Model 3
1072
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10 10

Energy / keV 53



counts s~ keV!

Deriving posteriors (see tutorial Exercises 1.3 & 2.1)
Using Monte Carlo sampling to learn from the data

Model 1 Model 2 Model 3
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Energy / keV
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Corner plots

Useful for visualization the posterior

Does not provide a goodness-of-fit, nor
proof that the sampling algorithm has worked

Model1 | 7Y Model 2

Iog(N) Pholndex

Pholndex Iog(N) Iog(NH) Pholndex Iog(N)
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Sigma  LineE

IOg(NIine)

Model 3

Marginal and conditional posterior distributions
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counts s~ keV!

Deriving posteriors (see tutorial Exercises 1.3 & 2.1)
Using Monte Carlo sampling to learn from the data

Model 1 Model 2 Model 3
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Quantile-Quantile plots (see tutorial Exercise 2.2)
A way to search for missing components from entirely ungrouped spectra

Cumulative data counts (Qgs:,)
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Model checking (see tutorial bExercise 2.3)

Posterior predictive checks quantify the goodness-of-fit and can be
useful in the search for missing model components

Many

-\ / A
Postenor Load model S|mulate Compare to
sample parameters spectrum data

Many\/

28



Quantile-Quantile difference (see tutorial Exercise 2.2)
Reproject Quantile-Quantile plots vs. channel energy (Buchner & Boorman 23)
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Posterior predictive checks (see tutorial Exercise 2.3)
Usetul to quantify the goodness-of-fit and search for missing model components

Model 1

Model 2

Model 3
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Profiling the Likelihood (see tutorial Exercise 2.3)
Comparing best-fit to best-fits of many generated data as a goodness-of-fit test

Model 1 Model 2 Model 3

—650 —700 — 750 —550 —600 —650 —550 —600 —650
See also Xspec “goodness” command  log Likelihood 11



Traversing the space
of parameter spaces
IN the space sciences

Johannes Buchner .-

http://astrost.at/istics/

Model comparison
Nested Sampling
UltraNest/MLFriends

Lumiere, 15 01.2025 BXA
Johsmnes Buchner



http://astrost.at/istics/
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Model comparison

 Empirical models

Buchner+14

- Information content

- Prediction quality

« Component presence

_ _ https://arxiv.org/ab;/1506.02273
- Regions of practical Betancourt (2015)

equivalence

* Physical effects

- Bayesian model
comparison

- Priors often well-justified


https://arxiv.org/abs/1506.02273

Information criteria

Akaike (1973)

 Akalke information criterion
* [s more complex worth storing?

AIC=2*d-2*L

max

AIC =2 *d + CStat

Advantages:
- rooted in information theory
- independent of prior

Disadvantages:
- No uncertainties, thresholds
unclear



Bayesian model comparison
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Punishing prediction diversity
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e /1,72

What to do with Z

p(M1|D)  Z1-p(M1)

p(M2|D)  Z2-p(M?2)

%[_/ ~

Posterior Bayes Prior
odds ratio factor odds ratio




e /1,72

Buchner+14

What to do with Z

p(M1|D)  Z1-p(M1)

p(M2|D)  Z2-p(M?2)
p(M,|D) Zy - p(M;)

S p(M;|D) — Y Zi - p(M;)

e model priors: leave to reader or motivated by theory

® Discard higl
p(M1

hly improbable model or marginalise
D)

[ ]
Does (M2

the cases?

D) =3 / 1 mean M2 is correct in a quarter of



Calibrating model decisions

* Model probabilities - decisions
* False decision rate

(false positives/negatives)

- Monte Carlo simulations
(parametric bootstrap) Buchner+14



Calibrating model decisions

100%

PR 750 Buchner+14
: 0 ot - —] - -
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Advantages:

- Get rid of parameter prior dependences

- Have frequentist properties of Bayesian
method

- Completely Bayesian treatment + decisions

Disadvantages:
- Can be computationally expensive



Model comparison

yes
.. . PPC
? .
Test model in isolation # Parametric bootstrap
.
relative
empirical

Compare physical models or » Information content (AIC)
empirical descriptions? Prediction quality (Cross validation)

‘ physical
effects
Parameter estimation

Additive component » Region of equivalence
Bayesian model comparison
I

Bayesian model comparison

yes



How to
compute the
Bayesian
evidence Z

aka marginal likelihood



Nested
Sampling



Z =) L(01,02)A0,A0>

Riemann integration

Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Figure 1 | Illustrations of NS algorithm. 15



Z =) L(01,02)A0,A0>

0y

Riemann integration

61

Lebesgue integration

Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Figure 1 | Illustrations of NS algorithm. 16



Z =) L(01,02)A0,A0>

Riemann integration

Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Uniformly distributed live points

61

Lebesgue integration

Figure 1 | Illustrations of NS algorithm.
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Z =) L(01,02)A0,A0>

Riemann integration

Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Uniformly distributed live points

6 —%

%—8W— % 1

Remove worst

Lebesgue integration

Figure 1 | Illustrations of NS algorithm.

18



Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Z =) L(01,02)A0,A0>

Uniformly distributed live points

—% %8B — W% 1

Remove worst

6, — .Nm————u .

Riemann integration  Lebesgue integration

Draw replacement

— % % n.— o |

Figure 1 | Illustrations of NS algorithm. 19



Z =) L(01,02)A0,A0>

Riemann integration

61

Lebesgue integration

Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Uniformly distributed live points
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Remove worst
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— % % n.— o |

Compression, f ~ ﬁ(”live* 1)

e
—%—%—8NB— 9 .

0.0 0.5 1.0

c | Compression in one iterate of NS.

Figure 1 | Illustrations of NS algorithm. 20



Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Z =) L(01,02)A0,A0>

Uniformly distributed live points

—% %8B — W% 1

Remove worst

6, — .Nm————u .

Riemann integration  Lebesgue integration

Draw replacement

Accumulate evidence
S — % ———- .

Compression, f ~ ﬁ(”live’ 1)

e
—%—8%—8NB— 9 .

0.0 0.5 1.0

c | Compression in one iterate of NS.

Figure 1 | Illustrations of NS algorithm. 21



Z =) L(01,02)A0,A0>

61

Riemann integration  Lebesgue integration

Accumulate evidence

Y}: LAX

Convergence proof of Z and posterior :

Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Uniformly distributed live points

—% %8B — W% 1

Remove worst

Draw replacement

— % % n.— o |

Compression, f ~ ﬁ(”live’ 1)

e
—%—8%—8NB— 9 .

0.0 0.5 1.0

c | Compression in one iterate of NS.

e.g. Evans (2007), Chopin&Robert (2010) Figure 1 | Illustrations of NS algorithm. 22



Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Z =} L(01,02)A0:A6; Z=Y LIX)AX Uniformly distributed live points
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Systematic literature review “Nested Sampling
Methods” Buchner (2023) in “statistical survey%; . *e .
> papers
Riemann intd °© Theory
* Estimators
* Termination Draw replacement
 Diagnostics (U-test, relative jump distance)
« variations: : e — !
- Soft constraint
- Variable number of live points
53 - Parallelisation

Compression, f ~ (e, 1)

* Likelihood-restricted prior sampling (LRPS)
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c | Compression in one iterate of NS.

Convergence proof of Z and posterior : , . .
e.g. Evans (2007), Chopin&Robert (2010) Figure 1 | Illustrations of NS algorithm.



Ashton, Buchner, et al. 2022, Nature Reviews Methods Primers

Z =} L(01,02)A0:A6; Z=Y LIX)AX Uniformly distributed live points

-----
””””

_____ 5 %N - .
S
Remove worst
Systematic literature review “Nested Sampling
Methods” Buchner (2023) in “statistical survey%; . *e .
> papers
Riemann intd °© Theory
* Estimators
* Termination ? Draw replacement
 Diagnostics (U-test, relative jump distance)
« variations: : e — !
- Soft constraint
- Variable number of live points
53 - Parallelisation

Compression, f ~ (e, 1)

* Likelihood-restricted prior sampling (LRPS)
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0.0 0.5 1.0

c | Compression in one iterate of NS.

Convergence proof of Z and posterior : , . .
e.g. Evans (2007), Chopin&Robert (2010) Figure 1 | Illustrations of NS algorithm.



» Step samplers?



Likelihood-restricted prior sampling (LRPS)

Region-based methods:

Insight: Live points already traces
out neighbourhood bounded by
true unknown contour



Likelihood-restricted prior sampling (LRPS)

@

Region-based methods:

Insight: Live points already traces
out neighbourhood bounded by
true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)



Likelihood-restricted prior sampling (LRPS)

@

Region-based methods:

Insight: Live points already traces
out neighbourhood bounded by
true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)
— enlarge by a fudge factor

Sample and reject



Likelihood-restricted prior sampling (LRPS)

Region-based methods:

Insight: Live points already traces
o ® O out neighbourhood bounded by
® O ® true unknown contour

O
® O Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)
e - enlarge by a fudge factor

Sample and reject

Other shapes: Clustering k_means: Shaw+07, Theisen+13
X-means: Feroz+08, Feroz+09 (MultiNest), splitting criteria
variations
. MLFriends: Buchnerl4,17 (UltraNest)
. -_=.;;E_-_:,%?_“HDBScan? - unclear how to sample with fuzzy clusters

a1 S




Bootstrapping: robust self-calibration

Sample with replacement
- training sample
O ® ® Left out points:
P — validation sample



Bootstrapping: robust self-calibration
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Sample with replacement
- training sample

Left out points:

— validation sample

Find enclosing ellipsoid



Bootstrapping: robust self-calibration

®

Sample with replacement
- training sample

Left out points:

— validation sample

Find enclosing ellipsoid
Enlarge until validation sample

contained
- enlargement factor



Bootstrapping: robust self-calibration

Sample with replacement
- training sample

O ® ® Left out points:
— validation sample

®

Find enclosing ellipsoid

o Enlarge until validation sample

contained
- enlargement factor

Repeat a few times, retain largest enlargement factor

- enlargement to apply to the full live point set



Bootstrapping: robust self-calibration

Sample with replacement
- training sample

O ® ® Left out points:
— validation sample

®

Find enclosing ellipsoid
o Enlarge until validation sample

contained
- enlargement factor

Repeat a few times, retain largest enlargement factor

- enlargement to apply to the full live point set

— emulates other realisations of the nested sampling run
) _ (Buchnerl4, Buchnerl7
- general, conservative approach, with safety guarantees



®

Complex shapes -

MLFriends: Ellipsoid for each live point e o
Buchner (2014,2019)

@

default algorithm in the UltraNest Python package

Buchner (2021) JOSS

Adapting to complex contours

a

Live points

Constructed sampling region

Demo:
https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,banana


https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,banana

Analysing the bootstrap

sample with replacement -~ 2/3 in training sample, 1/3 in validation sample
s (K E) K
(37) ; (k)——ﬁ,h_. (K —h)
7 which combines the number of unique partitions of size k (Sz, Stirling number of the second
o ® o kind) with the number of permutations (selecting k out of K). The expectation of k is
®
®
®
®

Never in validation sample in m rounds:
Pm < (1_p1)m X K
Pm = 107% K =1000 — m = 45



Analysing region construction

« Homogeneous Poisson Point Process
« within contour “Intensity” A = K/ V,

Number of live points / Current prior volume
 Sphere around live point with radius r e

no other live point nearby: p(<r)=1- {}XI}(_M,;I.,.&) ° °
o © -

Buchner (in prep)



Analysing region construction

« Homogeneous Poisson Point Process

« within contour “Intensity” A = K/ V,
Number of live points / Current prior volume

 Sphere around live point with radius r e
— o
no other live point nearby: p(< r)=1- exp (~AvVar?) ® o
) @
@ ® °
. ©
Radius from m 9y
bootstrap rounds 4 In (Ehm) y £
with K live points ' max % K Vo

Buchner (in prep)



Analysing region construction

« Homogeneous Poisson Point Process

« within contour “Intensity” A = K/ V,
Number of live points / Current prior volume

 Sphere around live point with radius r 6
= ®
no other live point nearby: p(< r)=1- exp (~AvVar?) ® o
® @
@ ® °
. ©
Radius from m 9 -
bootstrap rounds ,; ln (if‘ ’”*) Vi
with K live points "max ~ T 1 7
3

3
1o ka R 2 1
!-_:.mlhh{,r] exp ( }“‘Iffrffm:{) — (:_;ir“'a. -;-;-F,)

Pm = 1078 K = 1000 — pmissed

Buchner (in prep)



Analysing region construction

 Homogeneous Poisson Point Process

y Convergence proof

. - at each iteration, a uniform live
point distribution is maintained

By induction, nested sampling
with MLFriends converges to
posterior & evidence

With implementable, finite
compute

— (%Hm.) ’

Buchner (in prep)




So what 1s BXA?

ldea: make
physical parameter inference &
model comparison XMM2Athena
easy & practical ISR 319,565 X-ray sources
\ processed (Webb+23)
N
parallelisation, =
resuming R community models
sophisticated, robust _.ﬂl._ el ﬂedgeud y
ully-
. . I data formats
inference engine | ntting
BXA environment
based on nested sampling sherpa
| pyxspec
MultiNest
UltraNest

+ background models
+ some visualisation tools



Extra slides

* Landscape of X-ray spectral
fitting
* Rules of thumb for UltraNest

e Parameter distributions
from many data sets



An evolving software landscape

A Ahdn
Xspee Clcrpa %f?; 3ML

maintainance is institutional effort

Xspec models a community focal point

2014: BXA: xspec/sherpa plug-in for
modern inference algorithms

2022: Model emulators
2024+ Diff PPL: e.q. jaxspec

— Require re-implementing models!

* Missing?
— partially diff XSF? - fastXSF Great to see activity!
— Spectral component emulators + BXA? IACHEC statistics



20165&C....26..3838 2016/01  cited: 159
A statistical test for Nested Sampling algorithms
Buchner, Johannes

2019PASP..131)80058 201910  cited: 209

Buchner, Johannes

2021J055...6.3001B 2021/04  cited: 413

UliraNest - a robust, general purpose Bayesian inference engine

Buchner, Johannes

2021J055...6.30458 2021/05 cited: 6
Bayesian X-ray Analysis (BXA) v4.0
Buchner, Johannes

2022PSFor..5..468 202212  cited: 4
Comparison of Step Samplers for Nested Sampling

Buchner, Johannes
20235t5ur..17..1698 2023 cited: 107
MNested Sampling Methods

Buchner, Johannes
2024arXiv2402119368 2024402 cited: 3

Relative Jump Distance: a diagnostic for Nested Sampling
Buchner, Johannes

Collaborative Nested Sampling: Big Data versus Complex Physical Models

Some nested sampling papers

MultiNest biases
RadFriends algorithm

MLFriends algorithm
(affine invariant form)

UltraNest software paper

BXA software paper

Performance comparison of
step sampler proposals

Systematic literature review

stuck step samplers diagnostic



Rules of thumb for UltraNest

Do inference correct once is
faster than quick & dirty
heuristics that need many
verification simulations

Read the documentation :)
Number of live points O(1000)
If d>20, use a step sampler

— RJD diagnostic

Priors do not have to be
uniform - smooth edges may
be useful to avoid rerunning

Define your question well



Merci de votre attention! Avez-vous des questions?

Johannes Buchner Peter Boorman

jpuchner@mpe.mpg.de
] L8] astrost.at/istics

823 boorman@mpe.mpg.de

®] peterboorman.com




peterboorman.com/tutorial_bxa



