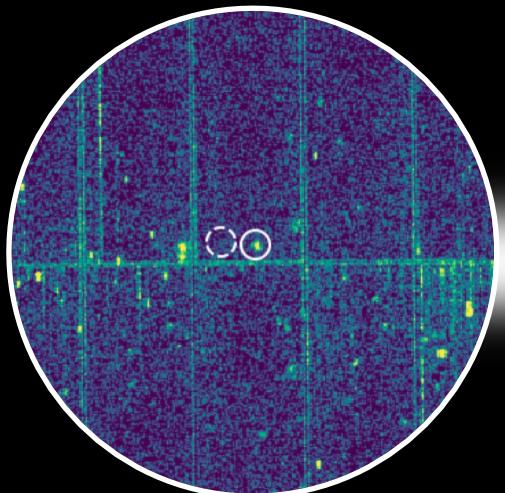
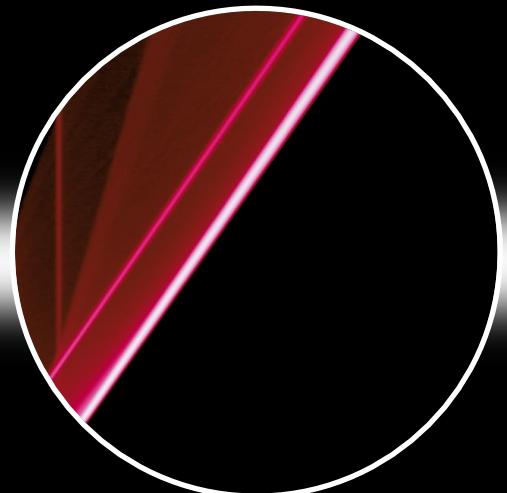
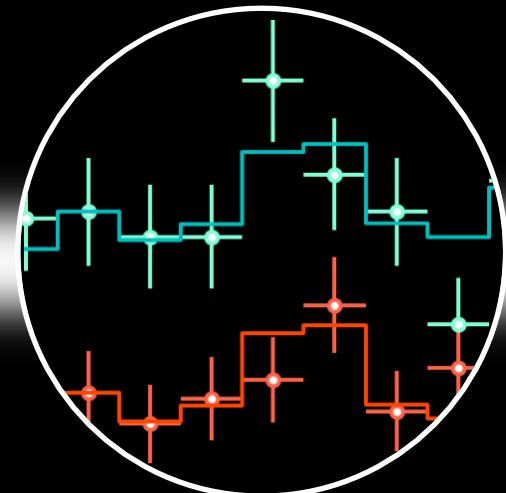
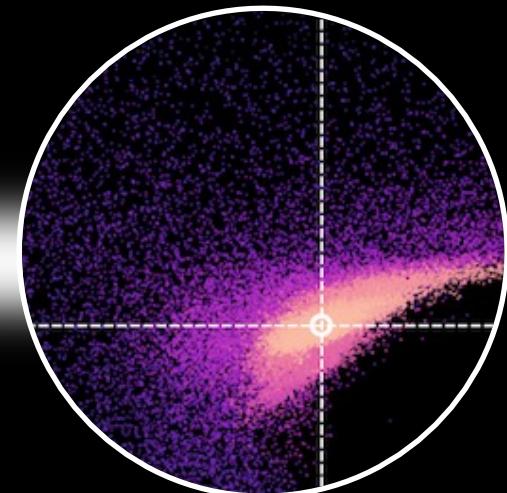


Statistical Aspects of X-ray Spectral Analysis



Johannes Buchner

jbuchner@mpe.mpg.de

astrost.at/istics

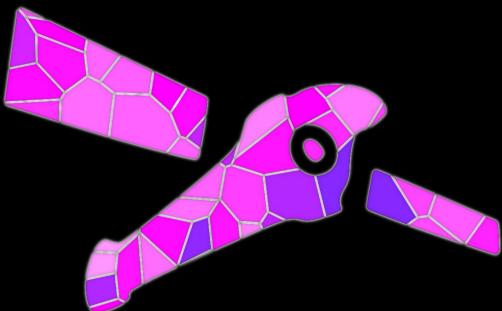
Peter Boorman

boorman@mpe.mpg.de

peterboorman.com

X-ray spectral fitting workshops

MPE 2019, lectures by JB,
J. Michael Burgess, Joern Wilms



Chandra Data Science, online
2021, lectures by JB, PB

Online school, 2021
Lectures by JB

XSF workshop, Prague 2022, PB, JB

Workshop 2023, by PB

SILESIAN
UNIVERSITY
IN OPAVA

Workshop 2021,
Lectures by PB

Book chapter

Statistical Aspects of X-ray Spectral Analysis

Johannes Buchner & Peter Boorman

Freely available at:

<https://arxiv.org/abs/2309.05705>

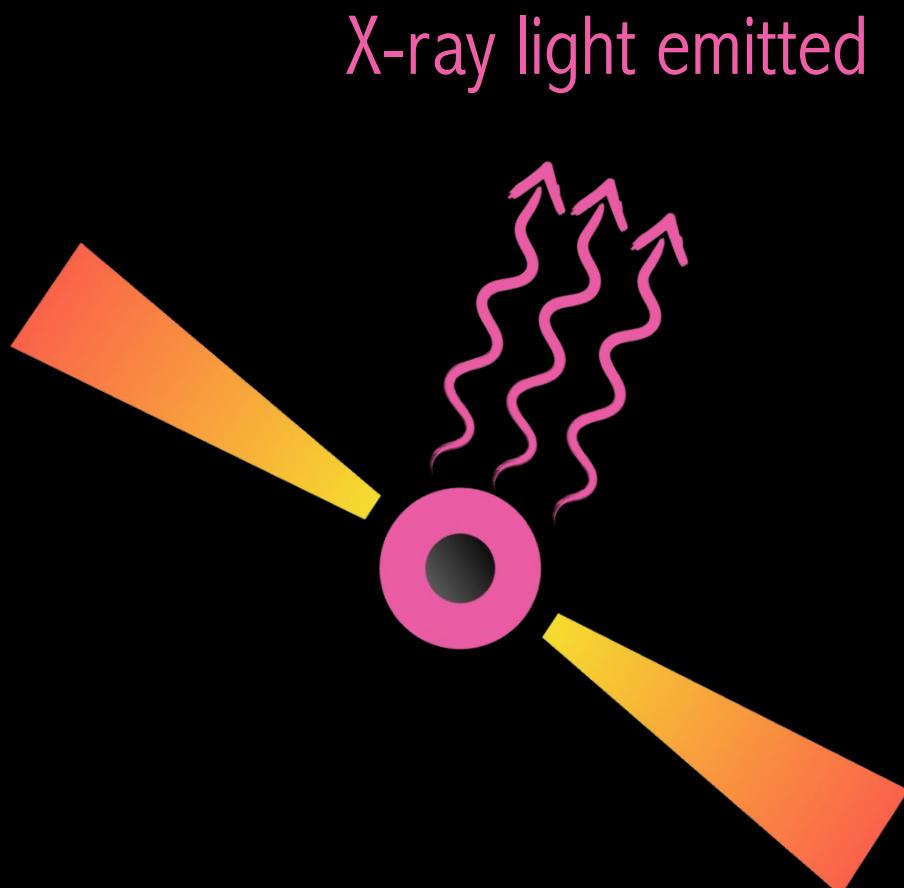
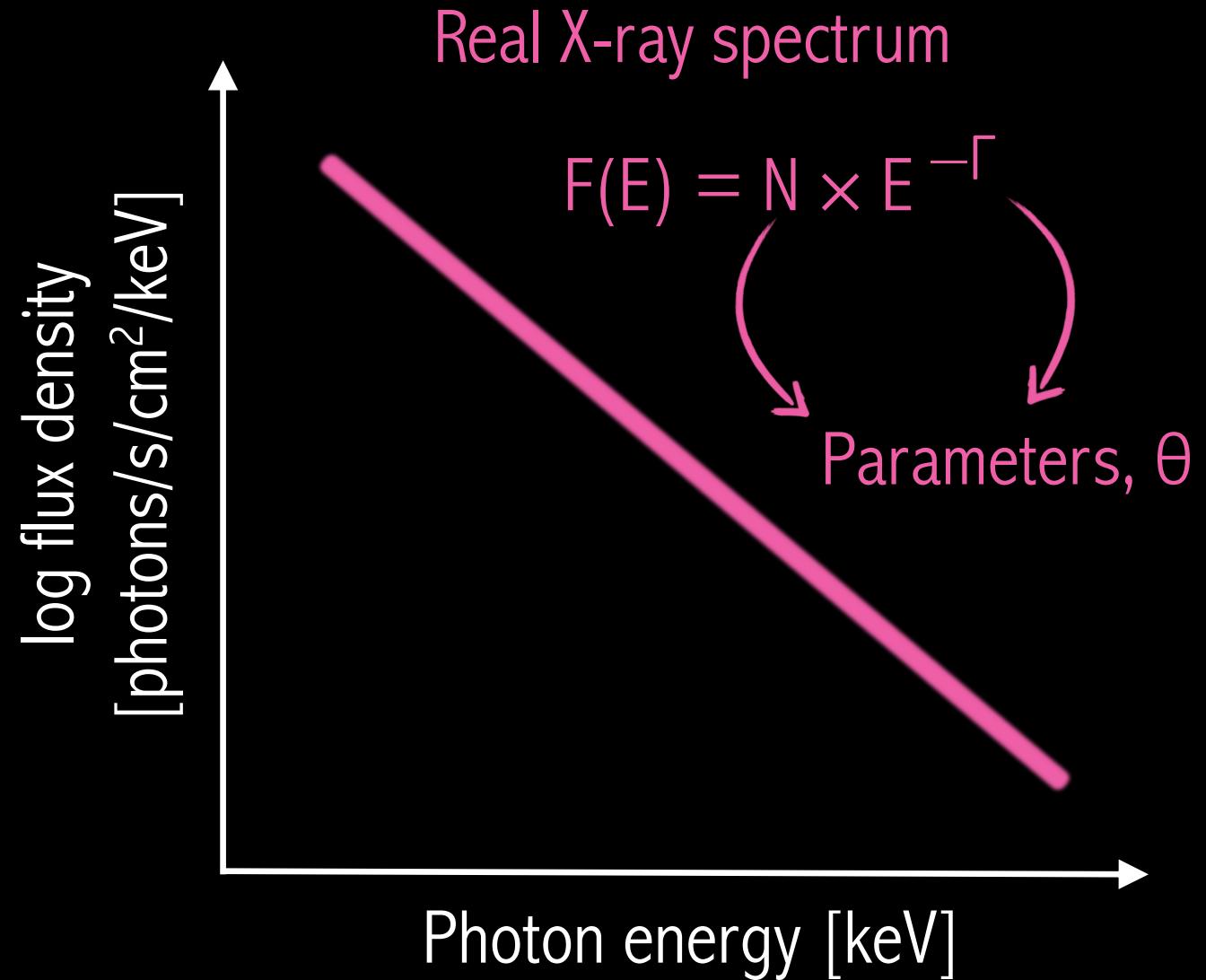
Includes hands-on exercises for both
Sherpa & Xspec

Cosimo Bambi
Andrea Santangelo
Editors

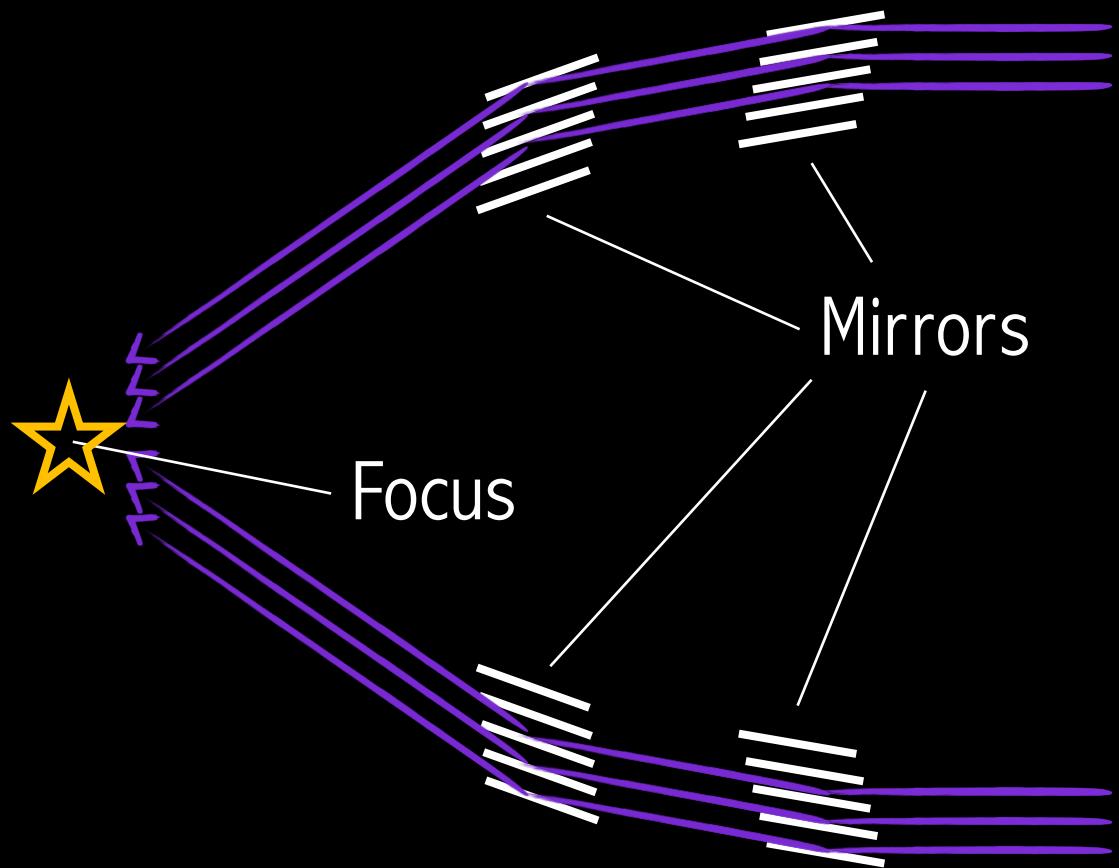
Handbook of X-ray and Gamma-ray Astrophysics

 Springer

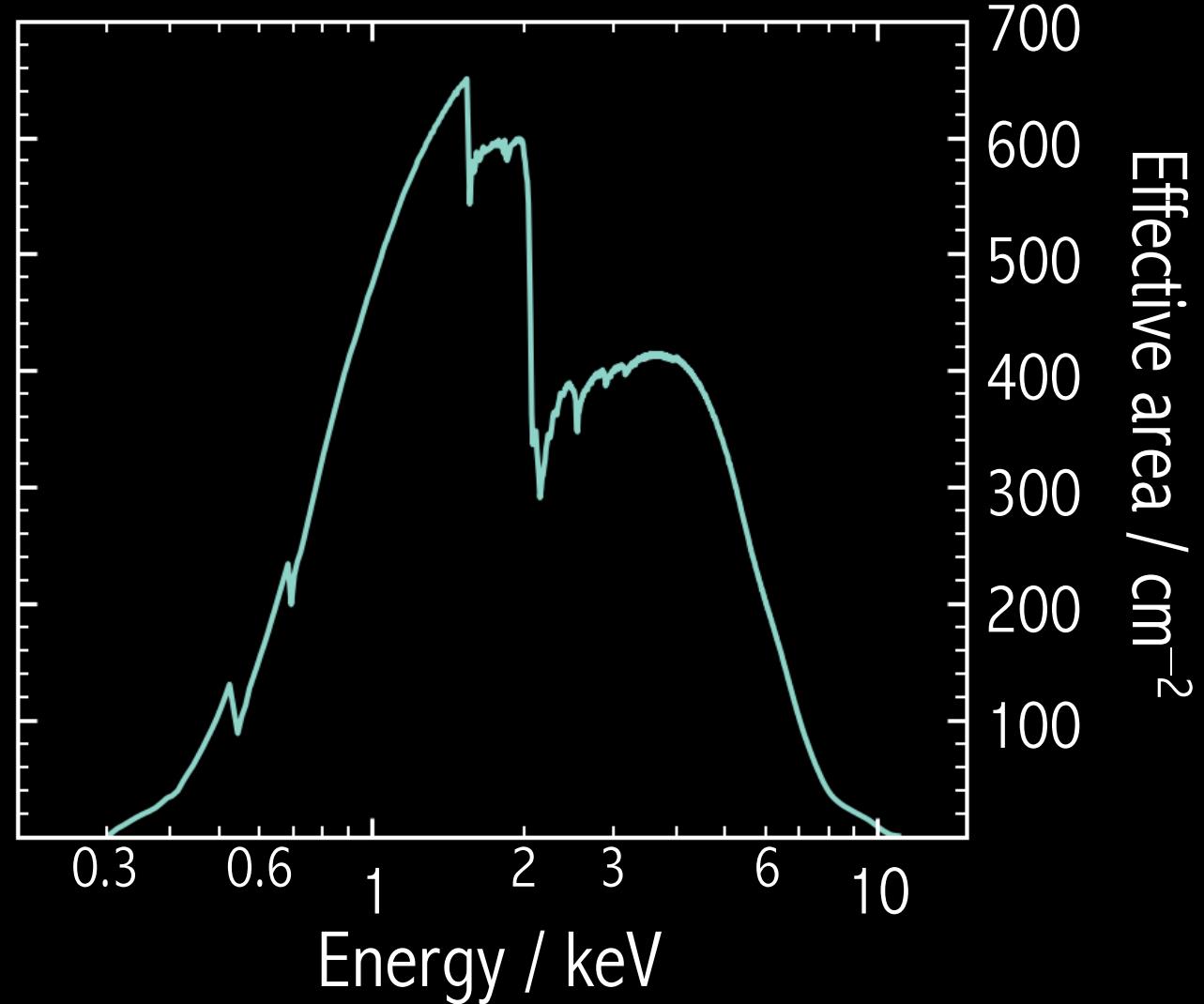
An interesting astrophysical source



Focus X-ray photons onto detector with mirrors

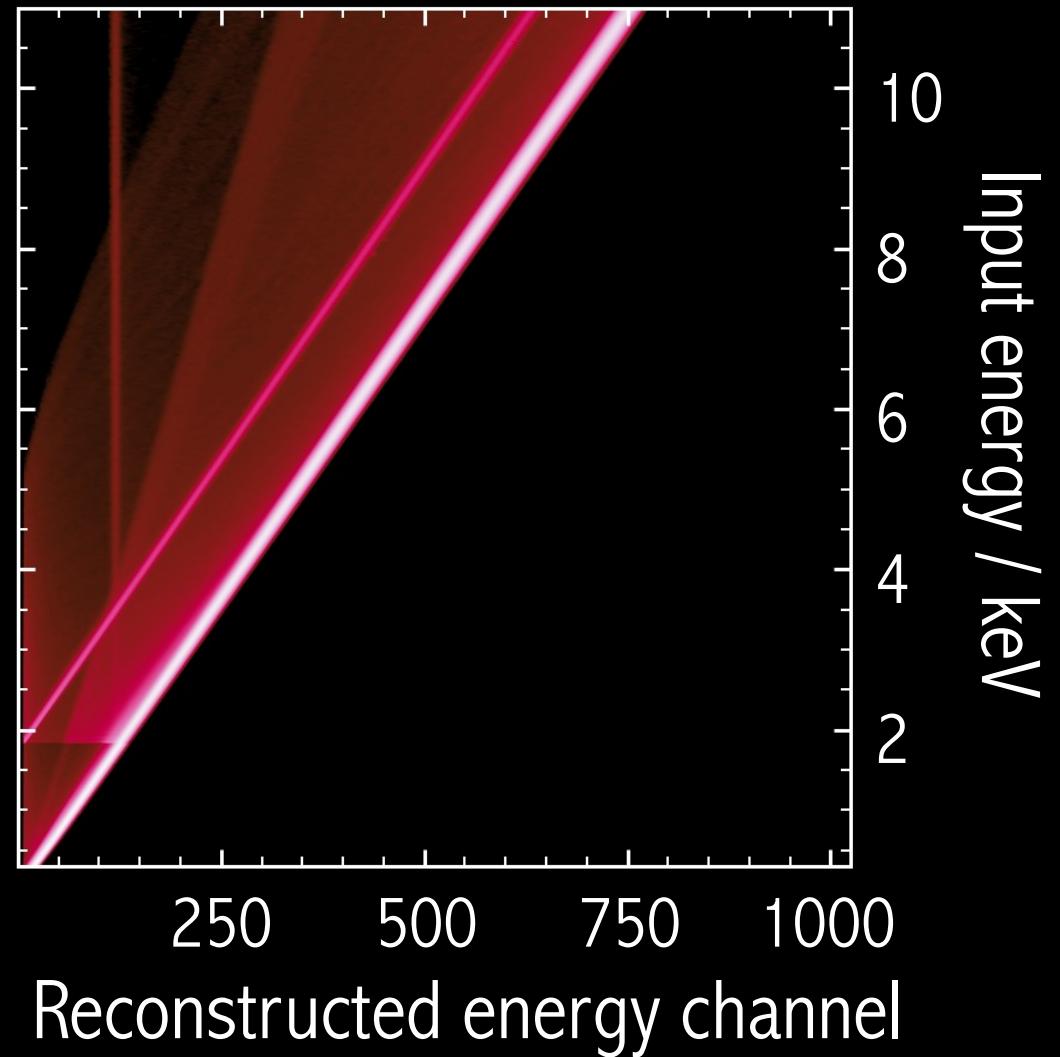


Paraboloid + hyperboloid
Wolter+52

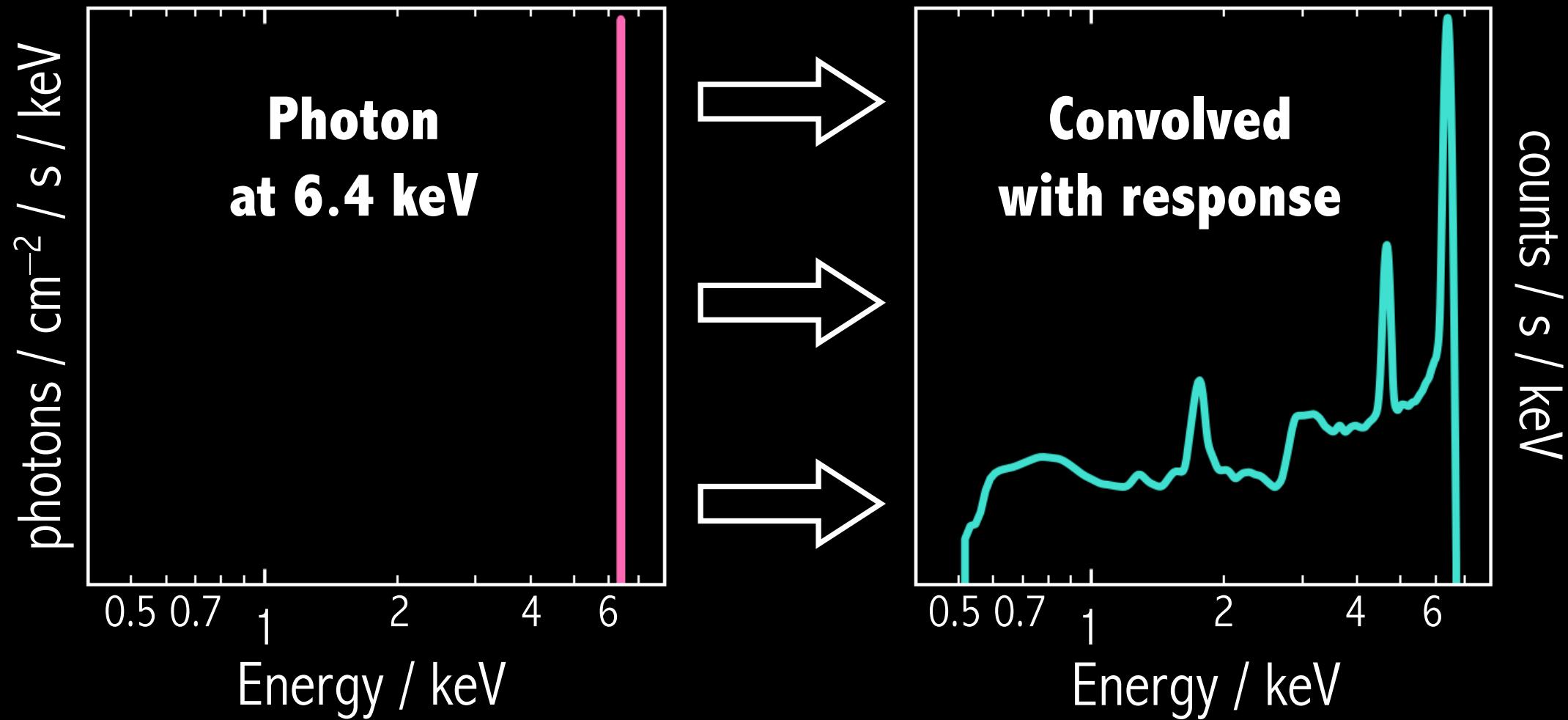


Detector current converts energy into channels

- Detect current proportional to energy of incoming photon
- Diagonal would be a perfect detector
- Secondary effect from incoming photon ionising part of the detector



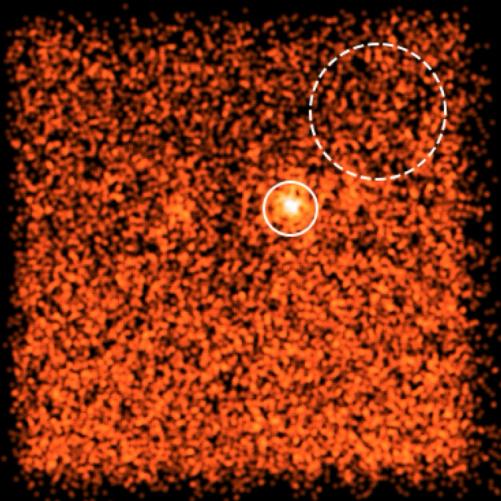
A single photon at 6.4 keV converted to counts



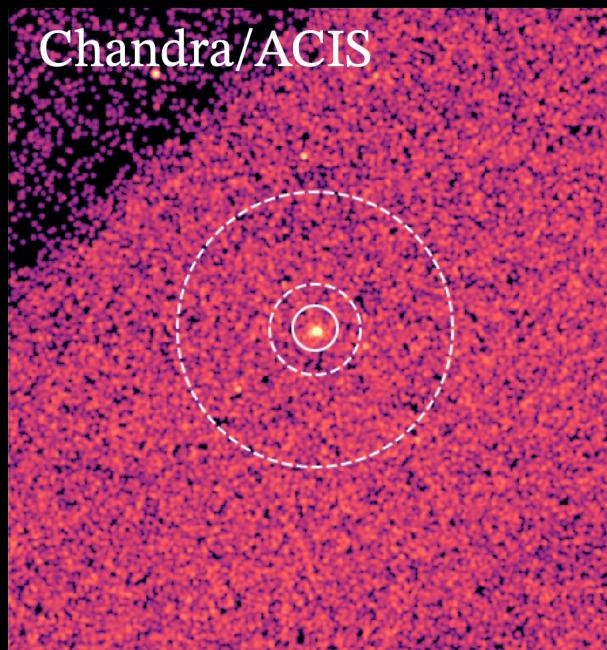
Added complications from background

Buchner & Boorman 23

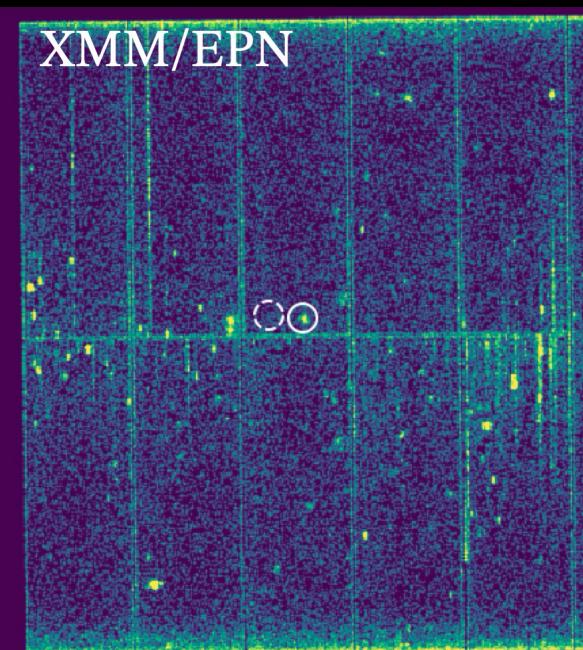
NuSTAR/FPMA



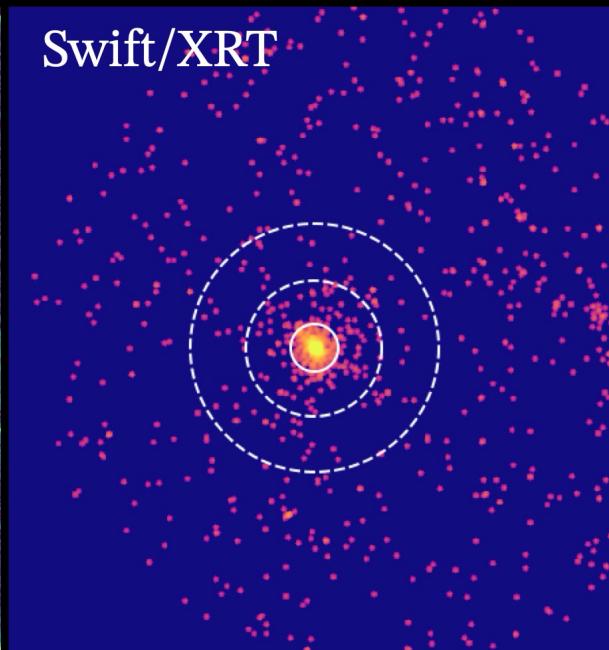
Chandra/ACIS



XMM/EPN



Swift/XRT

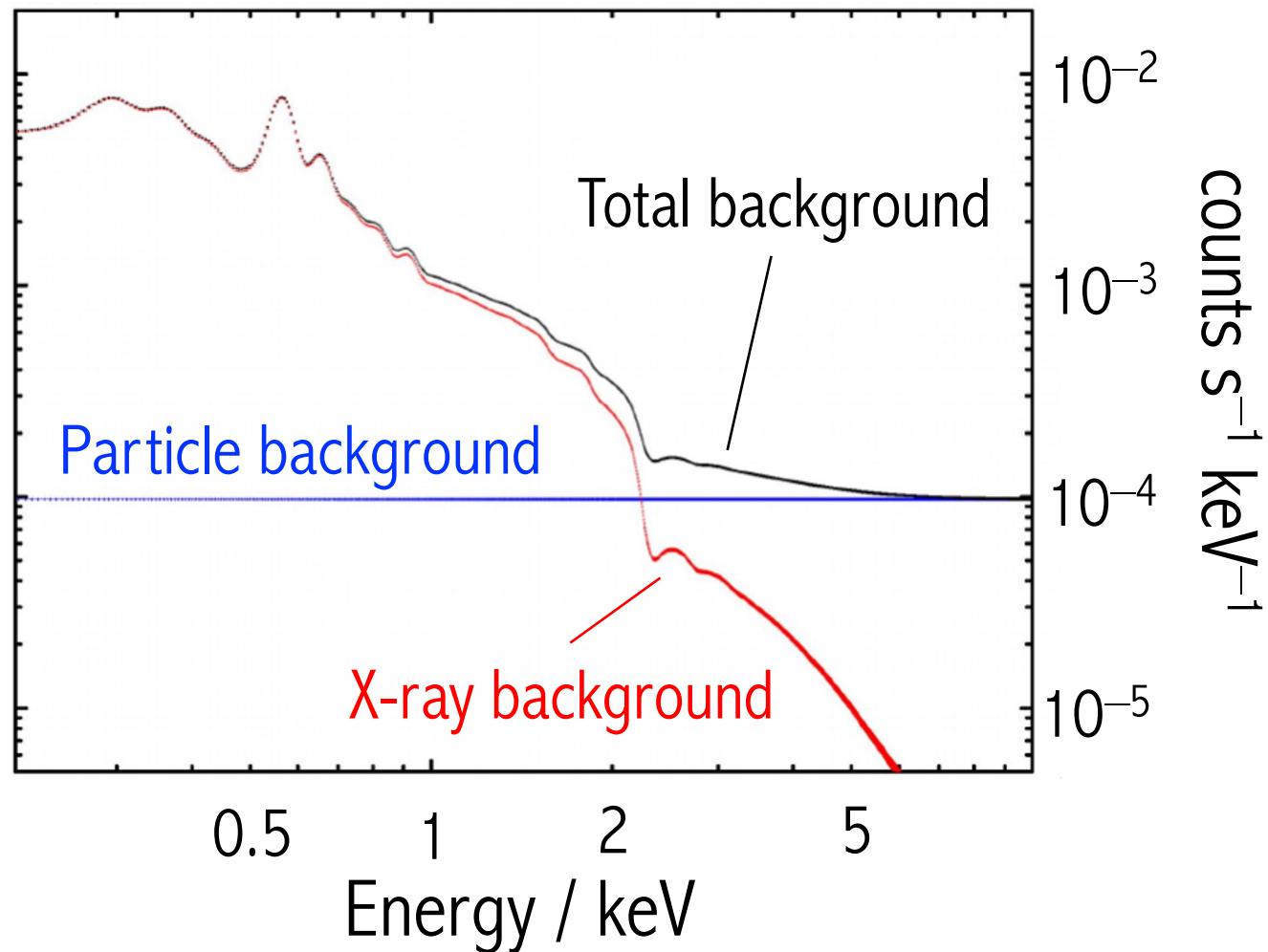


“on” region (source + background) & “off” region (background only)

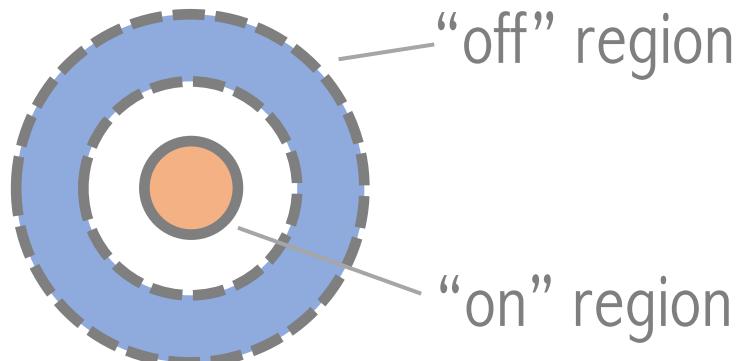
Example: eROSITA background

- **Diffuse emission**
 - Local hot bubble
 - Galactic disk
 - Galactic halo
- **Cosmic background**
 - Unresolved AGN
- **High-energy particle background**

wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background



(Semi-)physical background models



Particle background

Cosmic background

Instrumental background

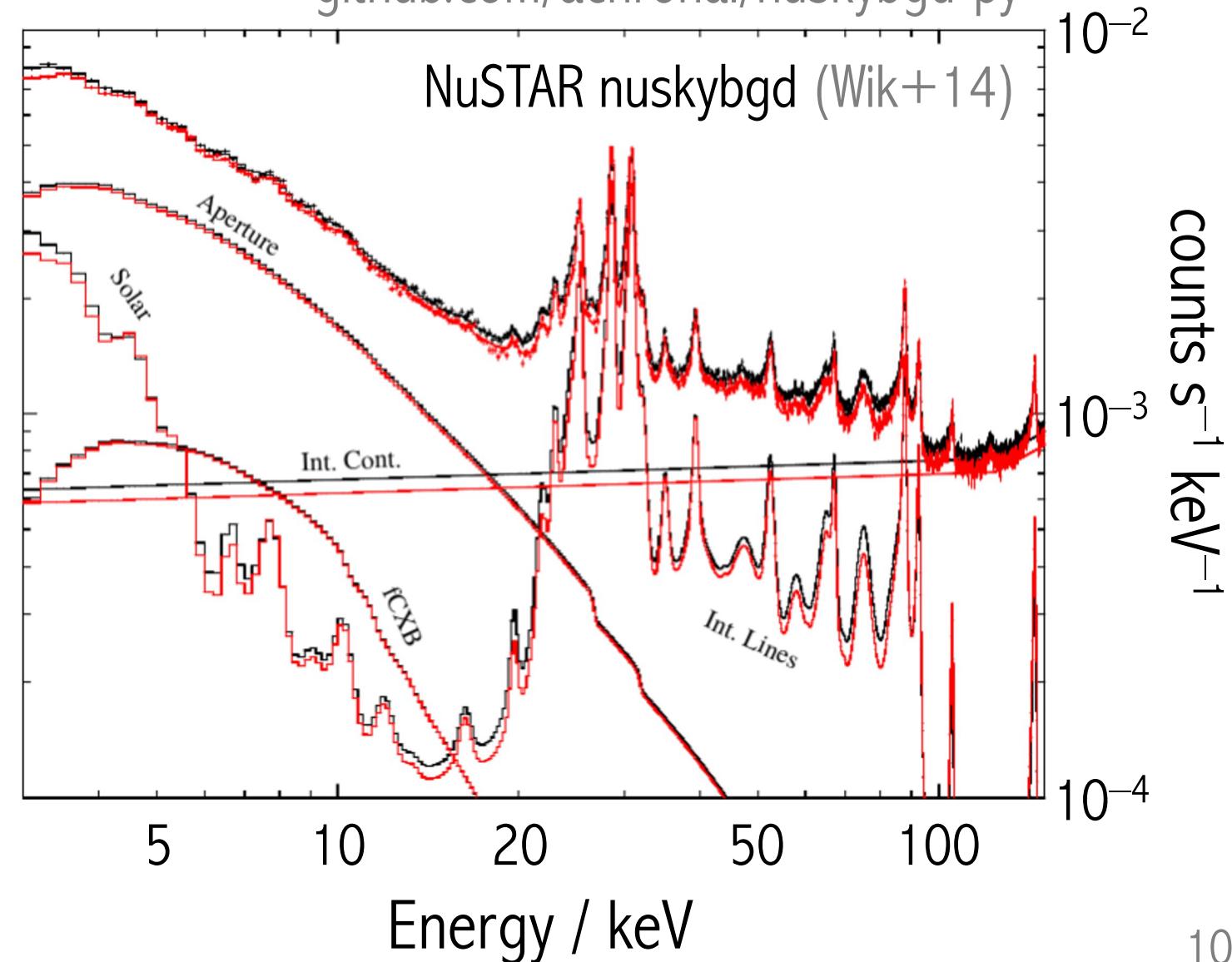
...

Location & time-dependent

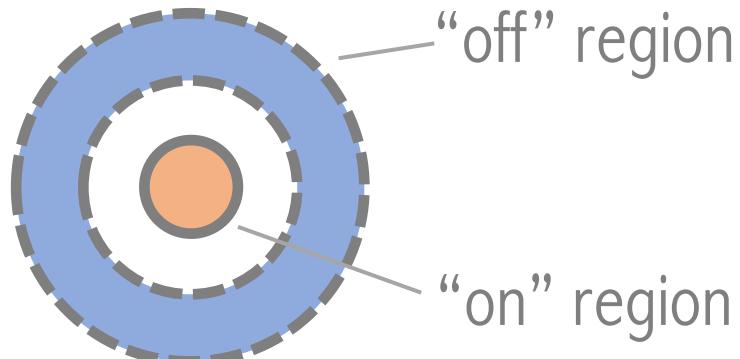
→ especially important for
extended sources

github.com/achronal/nuskybgd-py

NuSTAR nuskybgd (Wik+14)



Empirical parametric background models

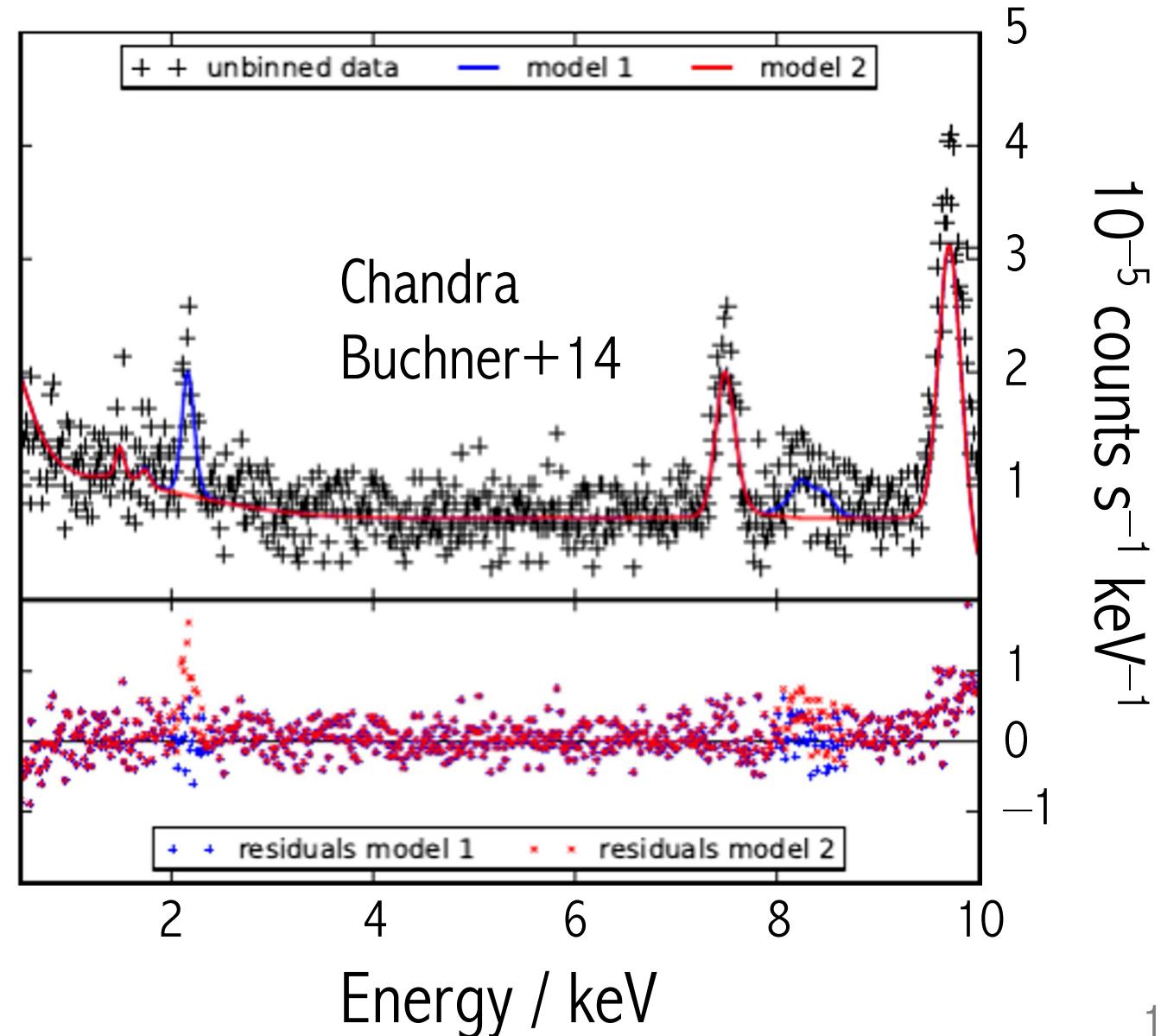


Pros

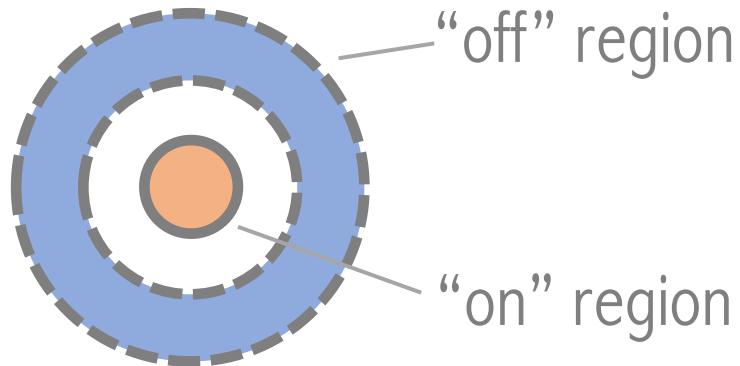
- Can contain physical knowledge & smoothness
- Small uncertainties
- 0 bin counts ok

Cons

- Need to specify model
- Fit can be poor



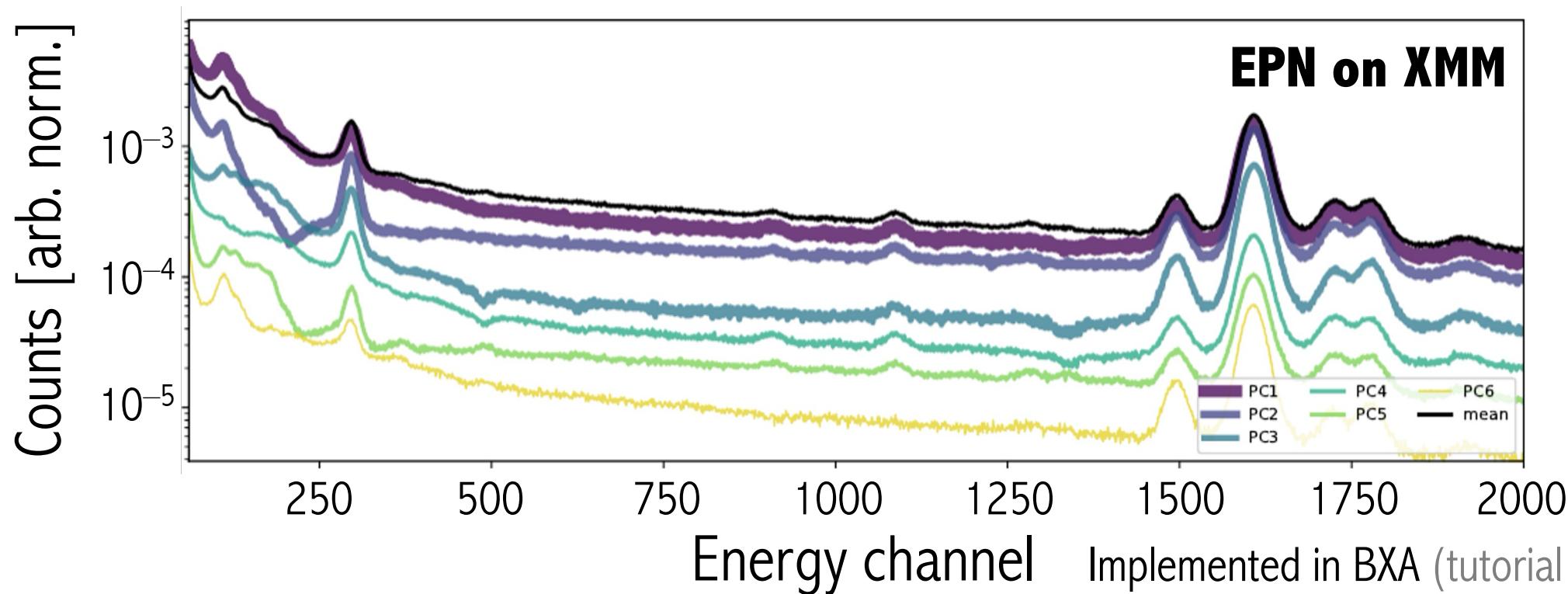
Empirical non-parametric background models (PCA)



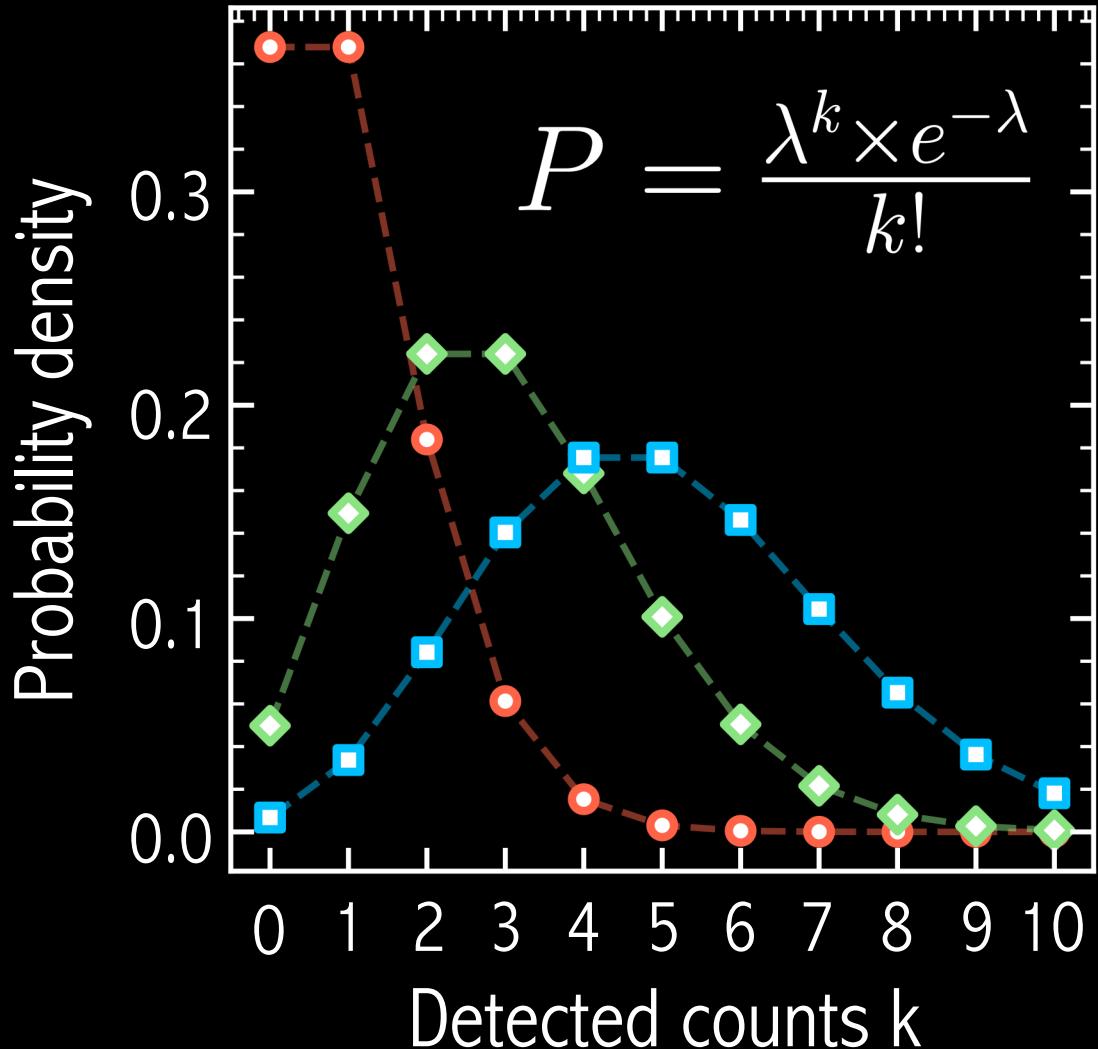
Automated shape finding

Simmonds, Buchner et al., (2017)

Includes XMM/PN, XMM/MOS, Chandra/ACIS,
NuSTAR, Suzaku, RXTE, Swift/XRT



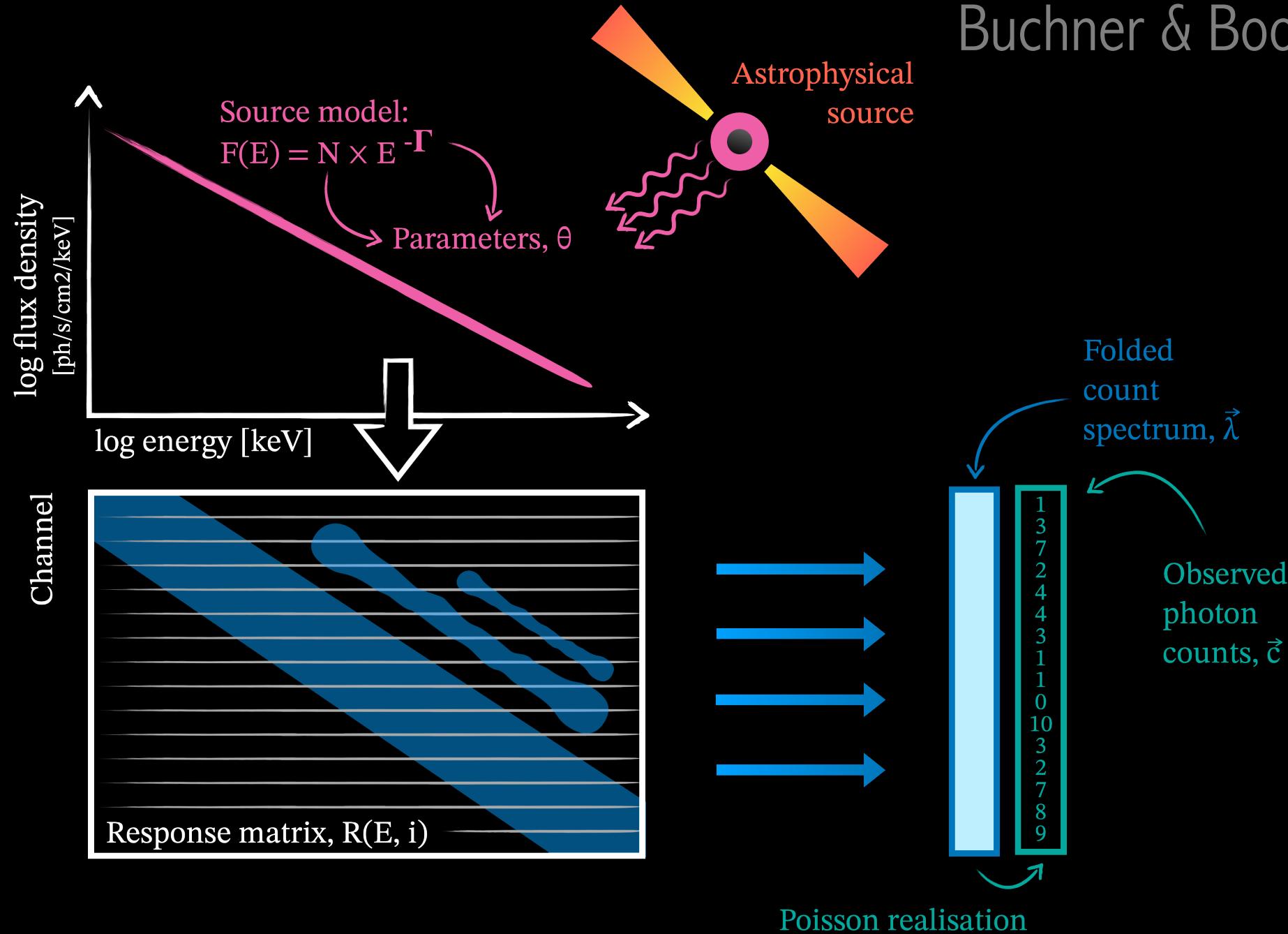
We detect a Poisson realisation of the count spectrum



Poisson distribution

- Detected counts k , integer
- Expected counts λ , real
- Asymmetric
- Non-negative

Likelihood is a probability distribution of the data



X-ray spectral fitting with forward folding

Detected
count rate

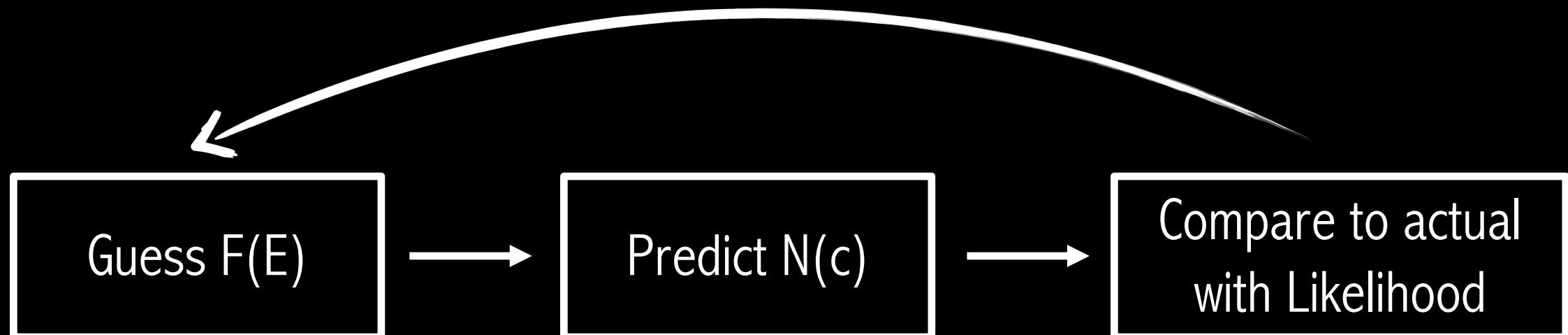
Response

Effective area

Astrophysics

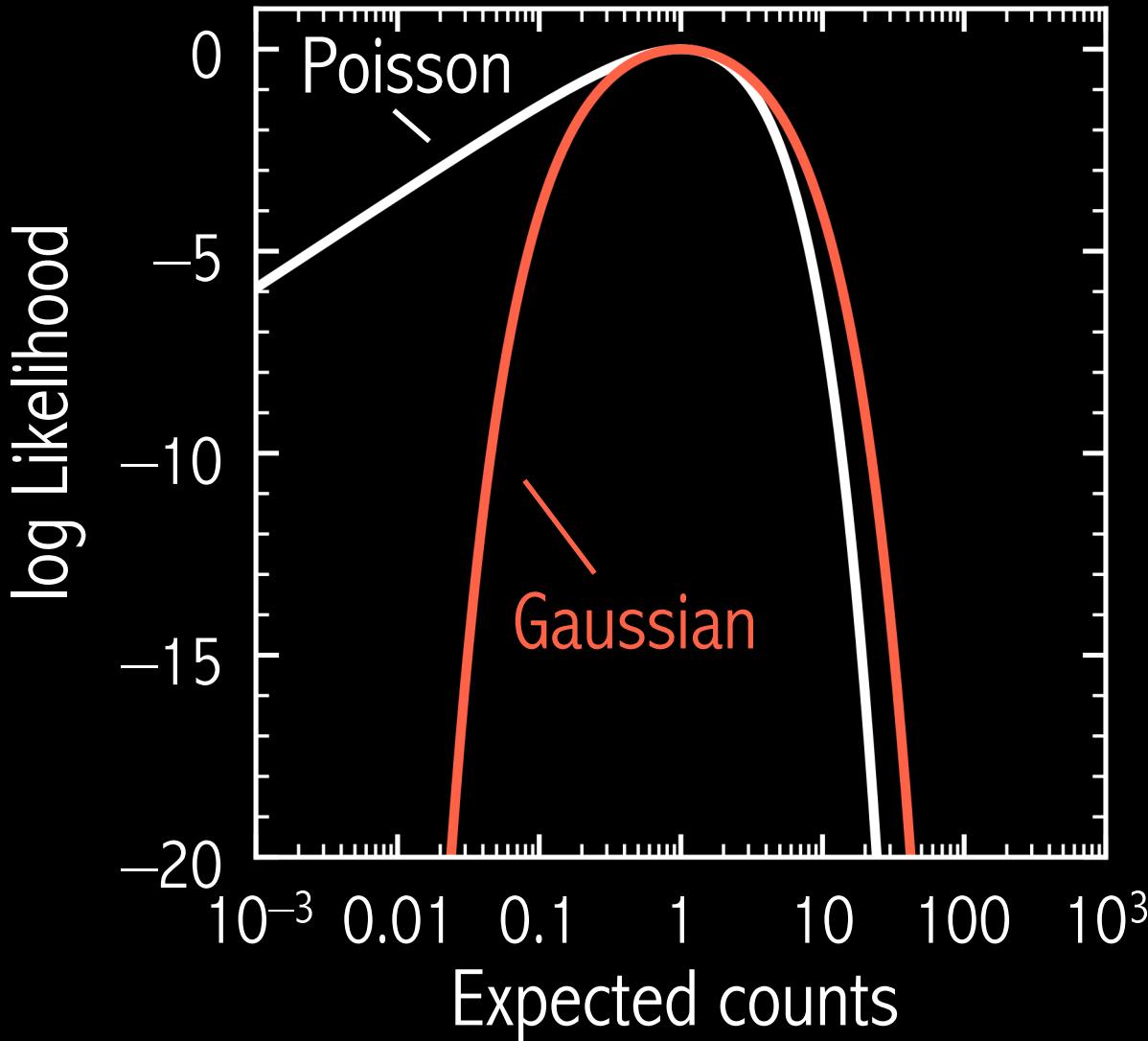
background

$$N(c) = \sum R(c, E) \times A(E) \times F(E) dE + b(c)$$



Likelihood shapes (fit statistic = $-2 \log \mathcal{L}$)

Detected 1 count



Gaussian high end more permissive

$$\mathcal{L}(k|\lambda, \sigma) = \frac{1}{\sigma \sqrt{(2\pi)}} \exp \left\{ -\frac{1}{2} \left(\frac{k - \lambda_i}{\sigma} \right)^2 \right\}$$

$$-2 \ln \mathcal{L}(k|\lambda, \sigma) \propto (k - \lambda_i)/\sigma^2$$

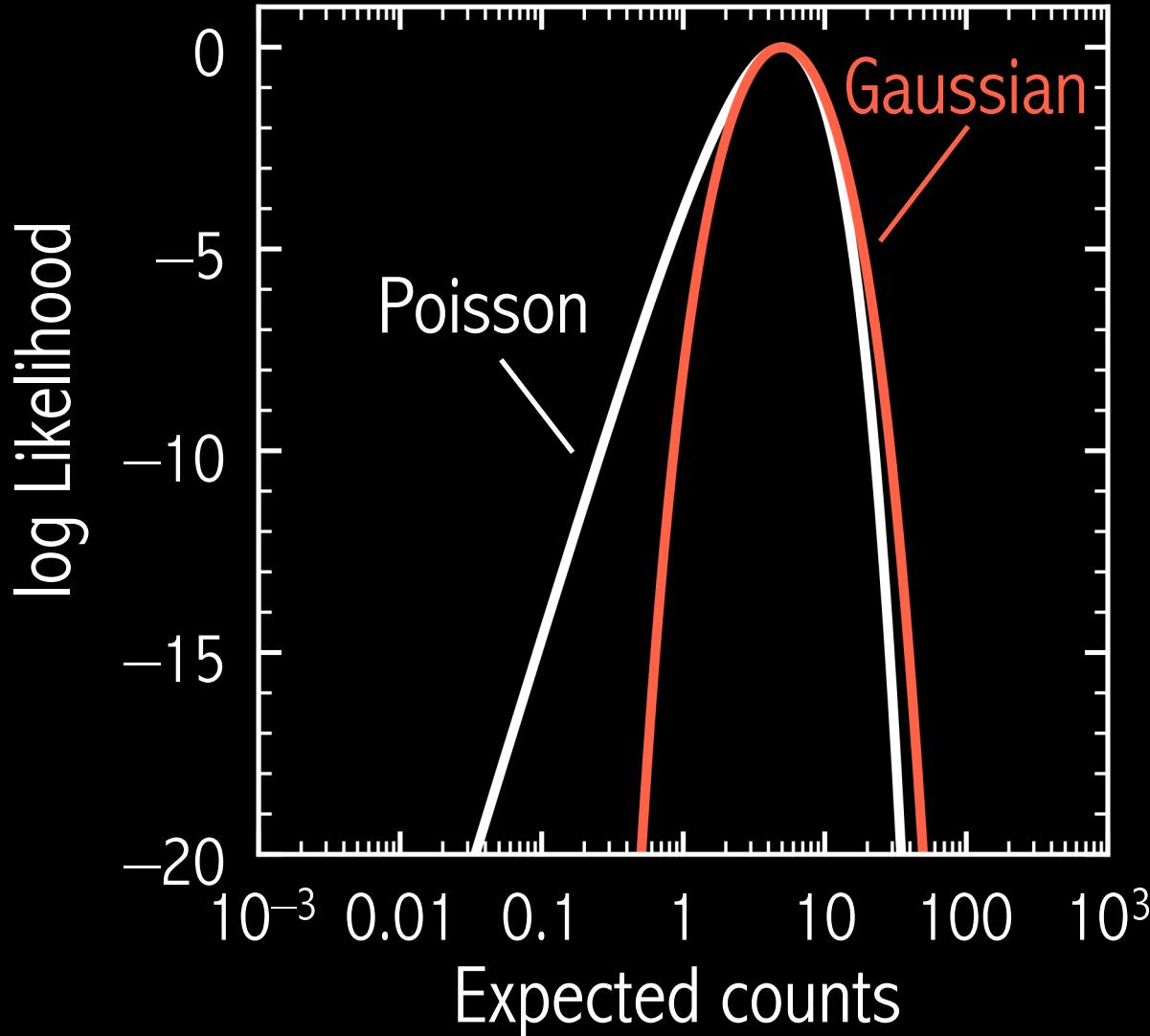
Poisson low end more permissive

$$\mathcal{L}(k|\lambda) = \frac{\lambda^k \times e^{-\lambda}}{k!}$$

$$-2 \ln \mathcal{L}(k|\lambda) \propto 2\lambda - 2k \ln \lambda$$

Likelihood shapes (fit statistic = $-2 \log \mathcal{L}$)

Detected 5 counts



Gaussian high end more permissive

$$\mathcal{L}(k|\lambda, \sigma) = \frac{1}{\sigma \sqrt{(2\pi)}} \exp \left\{ -\frac{1}{2} \left(\frac{k - \lambda_i}{\sigma} \right)^2 \right\}$$

$$-2 \ln \mathcal{L}(k|\lambda, \sigma) \propto (k - \lambda_i)/\sigma^2$$

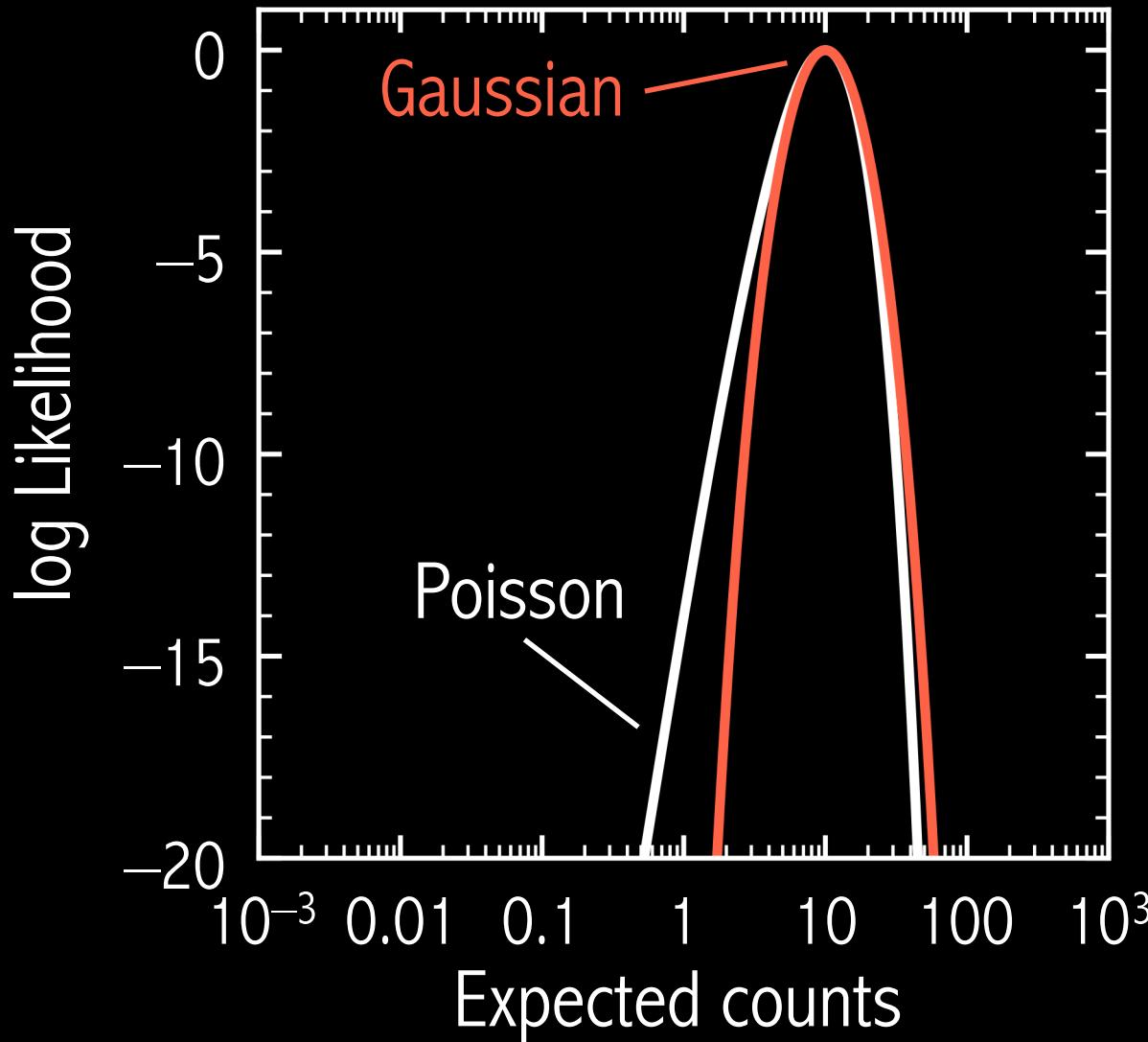
Poisson low end more permissive

$$\mathcal{L}(k|\lambda) = \frac{\lambda^k \times e^{-\lambda}}{k!}$$

$$-2 \ln \mathcal{L}(k|\lambda) \propto 2\lambda - 2k \ln \lambda$$

Likelihood shapes (fit statistic = $-2 \log \mathcal{L}$)

Detected 10 counts



Gaussian high end more permissive

$$\mathcal{L}(k|\lambda, \sigma) = \frac{1}{\sigma \sqrt{(2\pi)}} \exp \left\{ -\frac{1}{2} \left(\frac{k - \lambda_i}{\sigma} \right)^2 \right\}$$

$$-2 \ln \mathcal{L}(k|\lambda, \sigma) \propto (k - \lambda_i)/\sigma^2$$

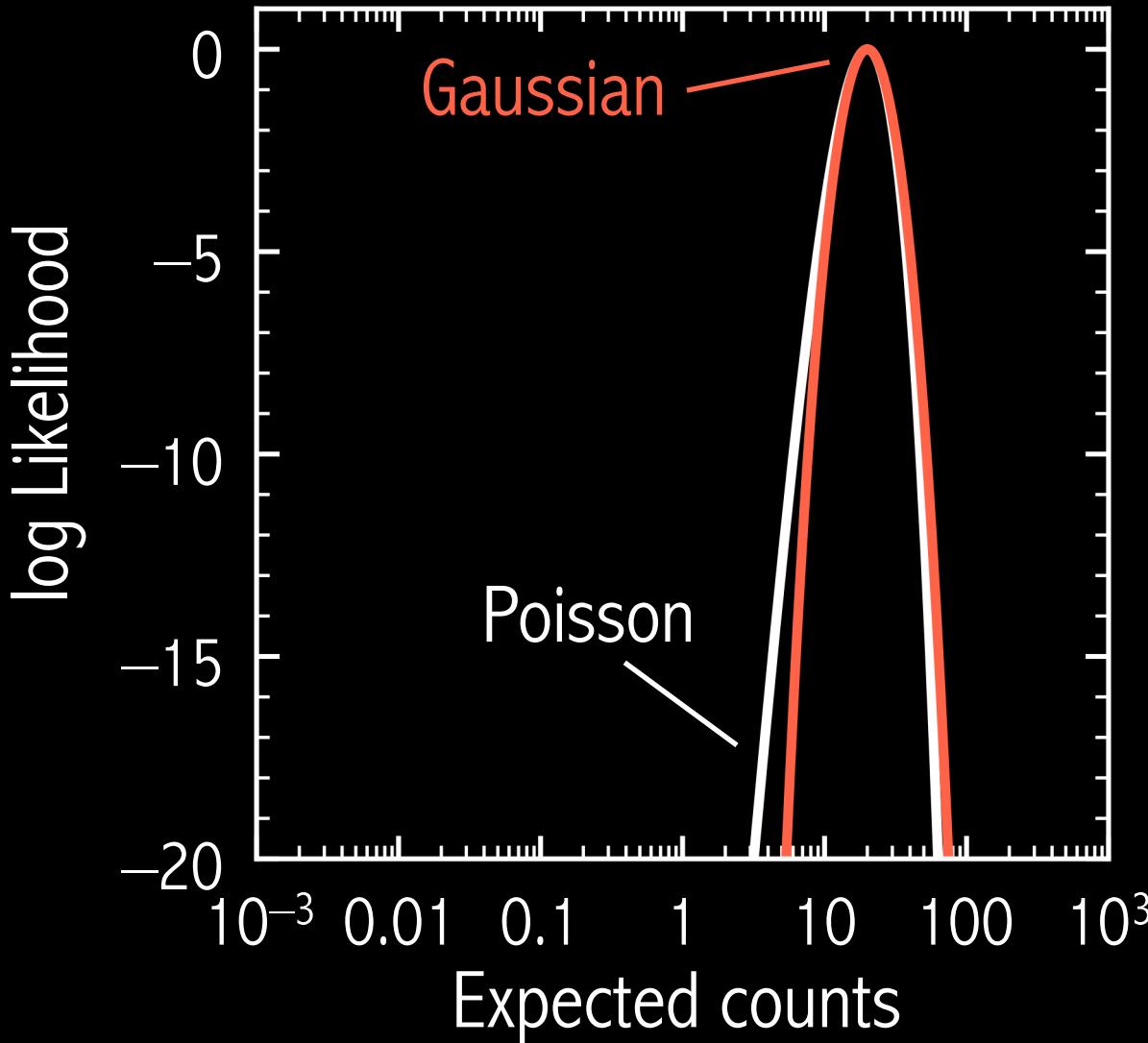
Poisson low end more permissive

$$\mathcal{L}(k|\lambda) = \frac{\lambda^k \times e^{-\lambda}}{k!}$$

$$-2 \ln \mathcal{L}(k|\lambda) \propto 2\lambda - 2k \ln \lambda$$

Likelihood shapes (fit statistic = $-2 \log \mathcal{L}$)

Detected 20 counts



Gaussian high end more permissive

$$\mathcal{L}(k|\lambda, \sigma) = \frac{1}{\sigma \sqrt{(2\pi)}} \exp \left\{ -\frac{1}{2} \left(\frac{k - \lambda_i}{\sigma} \right)^2 \right\}$$

$$-2 \ln \mathcal{L}(k|\lambda, \sigma) \propto (k - \lambda_i)/\sigma^2$$

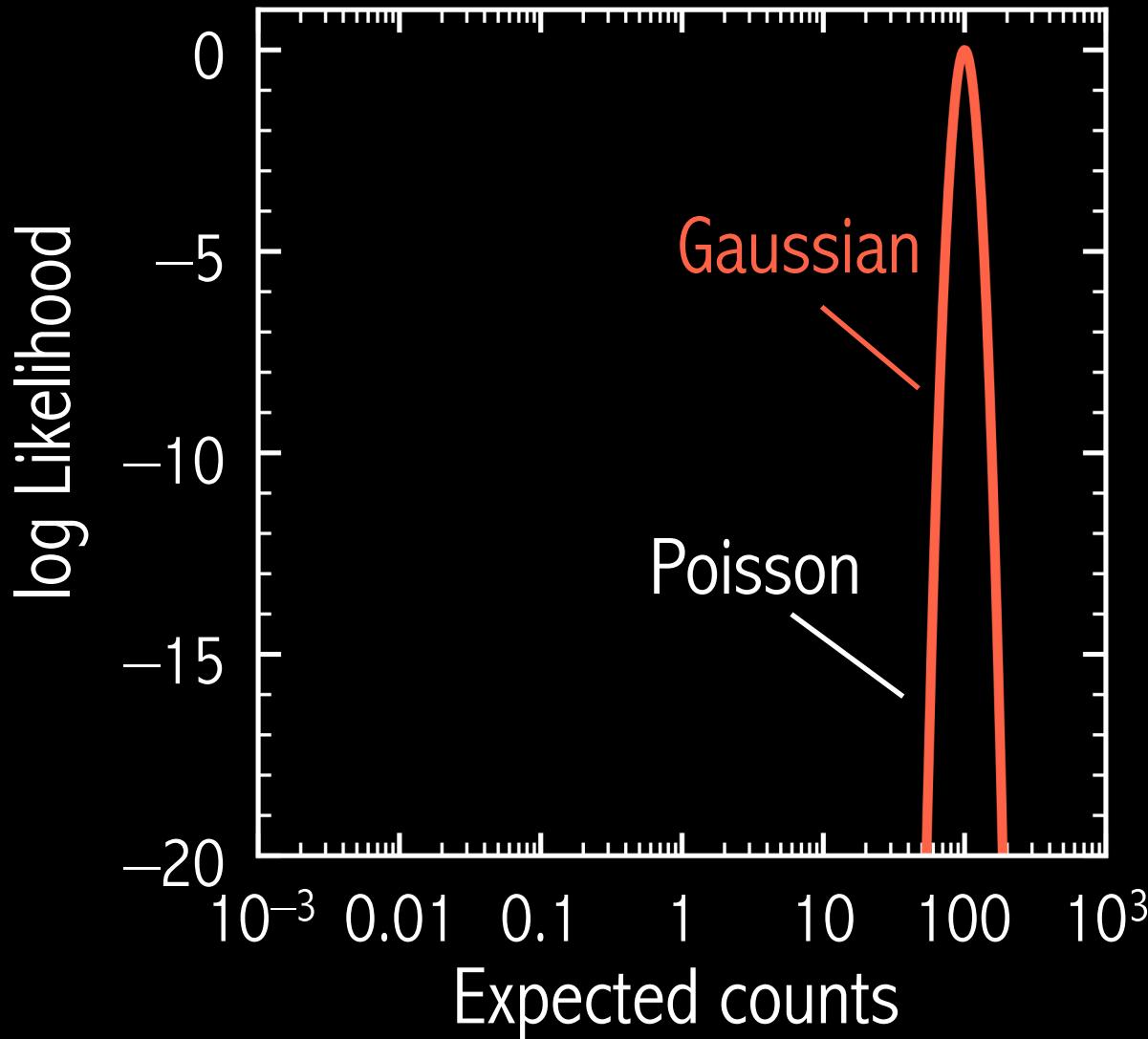
Poisson low end more permissive

$$\mathcal{L}(k|\lambda) = \frac{\lambda^k \times e^{-\lambda}}{k!}$$

$$-2 \ln \mathcal{L}(k|\lambda) \propto 2\lambda - 2k \ln \lambda$$

Likelihood shapes (fit statistic = $-2 \log \mathcal{L}$)

Detected 100 counts



Gaussian high end more permissive

$$\mathcal{L}(k|\lambda, \sigma) = \frac{1}{\sigma \sqrt{(2\pi)}} \exp \left\{ -\frac{1}{2} \left(\frac{k - \lambda_i}{\sigma} \right)^2 \right\}$$

$$-2 \ln \mathcal{L}(k|\lambda, \sigma) \propto (k - \lambda_i)/\sigma^2$$

Poisson low end more permissive

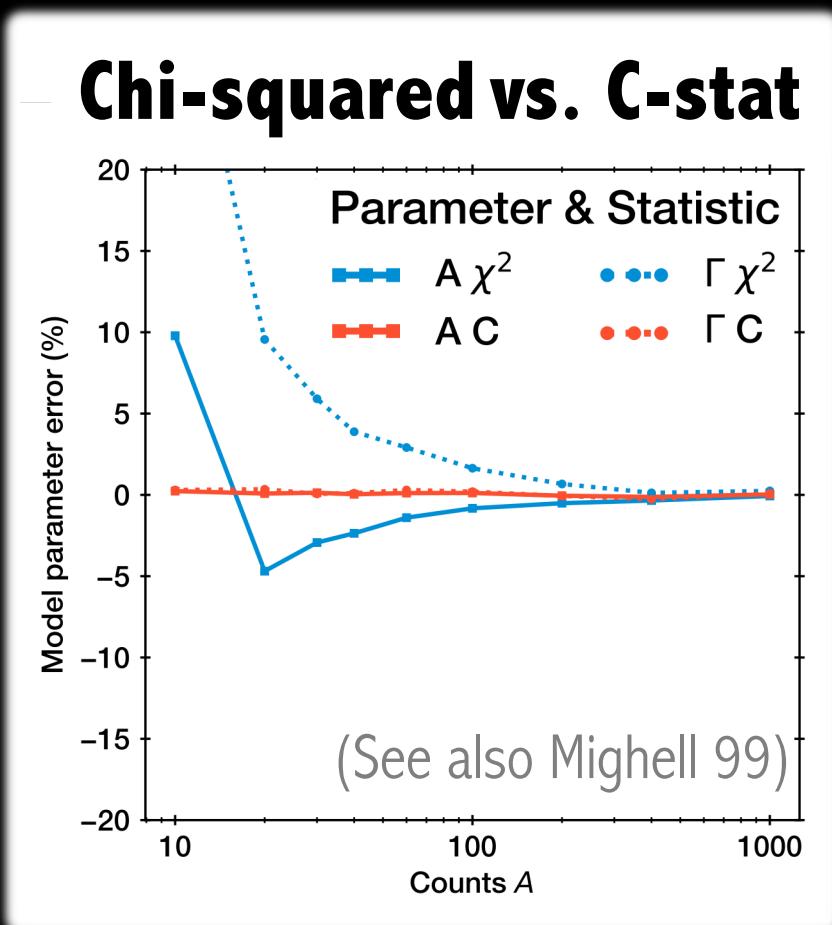
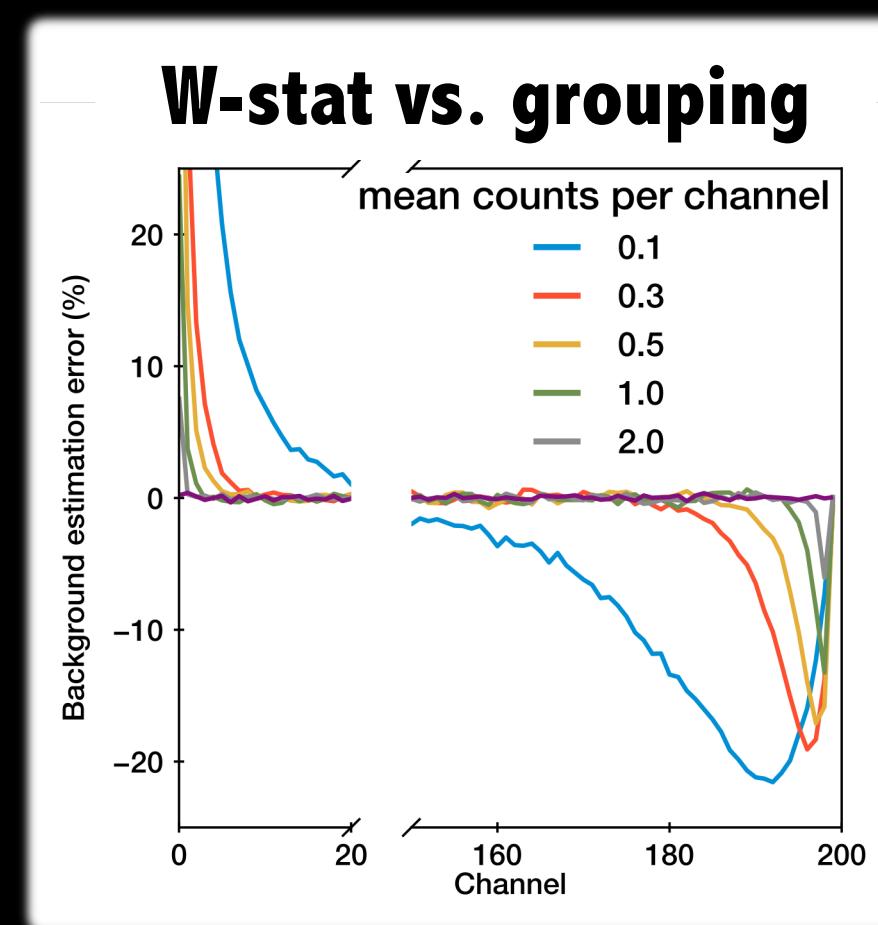
$$\mathcal{L}(k|\lambda) = \frac{\lambda^k \times e^{-\lambda}}{k!}$$

$$-2 \ln \mathcal{L}(k|\lambda) \propto 2\lambda - 2k \ln \lambda$$

Chi-squared and modified C-stat (W-stat) Buchner & Boorman 23

Chi-squared is biased at **low and high counts** (e.g., Humphrey+09)

Note W-stat typically requires grouping to avoid biases!



X-ray spectral fitting with forward folding

Detected
count rate

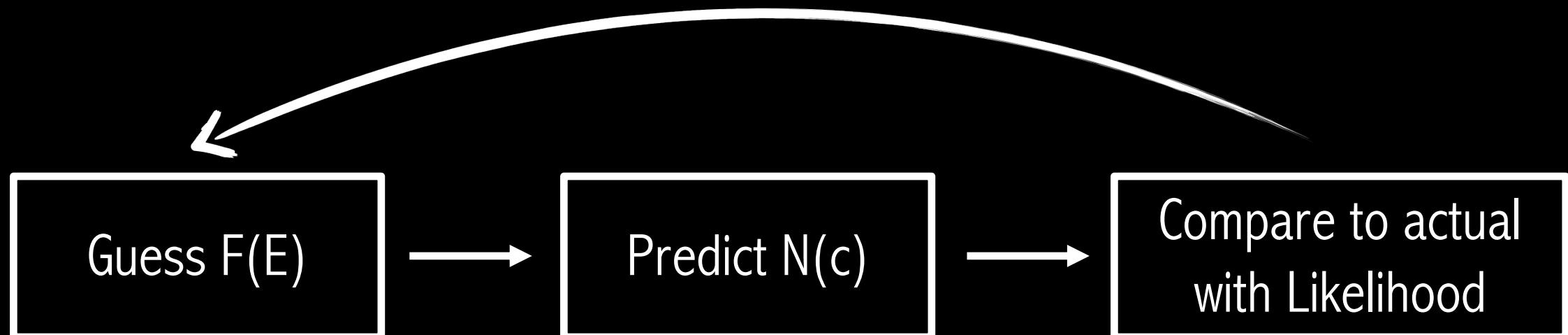
Response

Effective area

Astrophysics

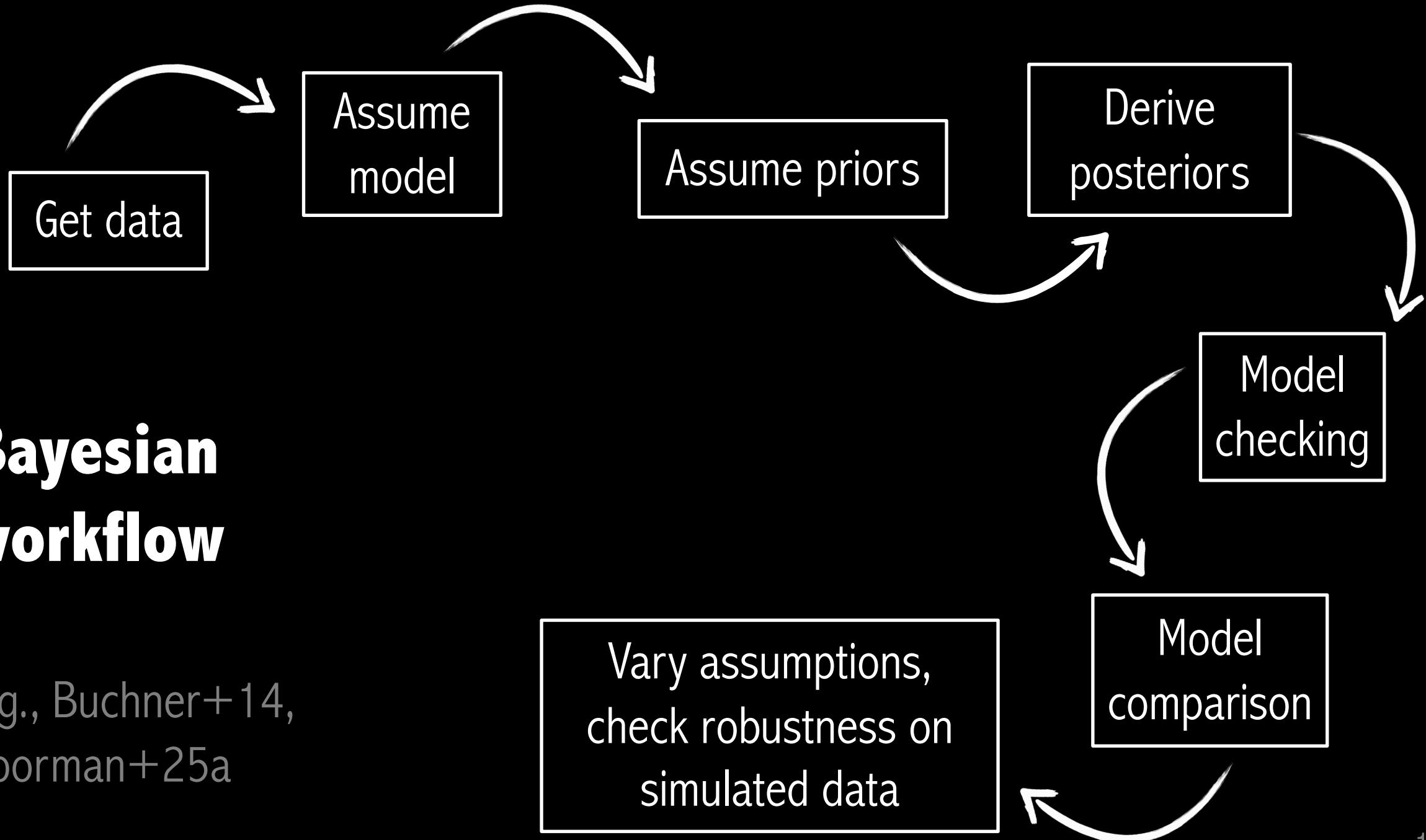
background

$$N(c) = \sum R(c, E) \times A(E) \times F(E) dE + b(c)$$



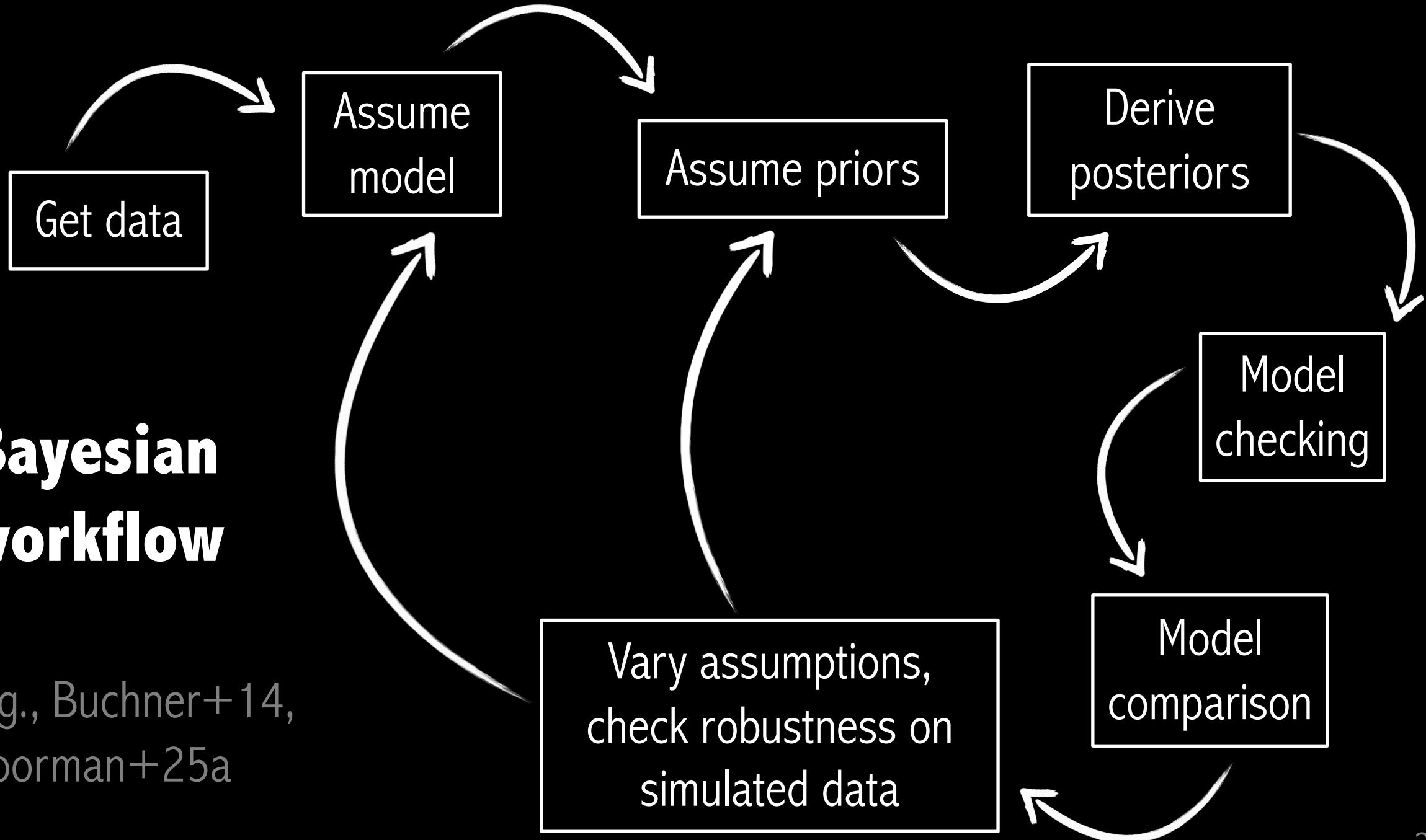
Bayesian workflow

E.g., Buchner+14,
Boorman+25a

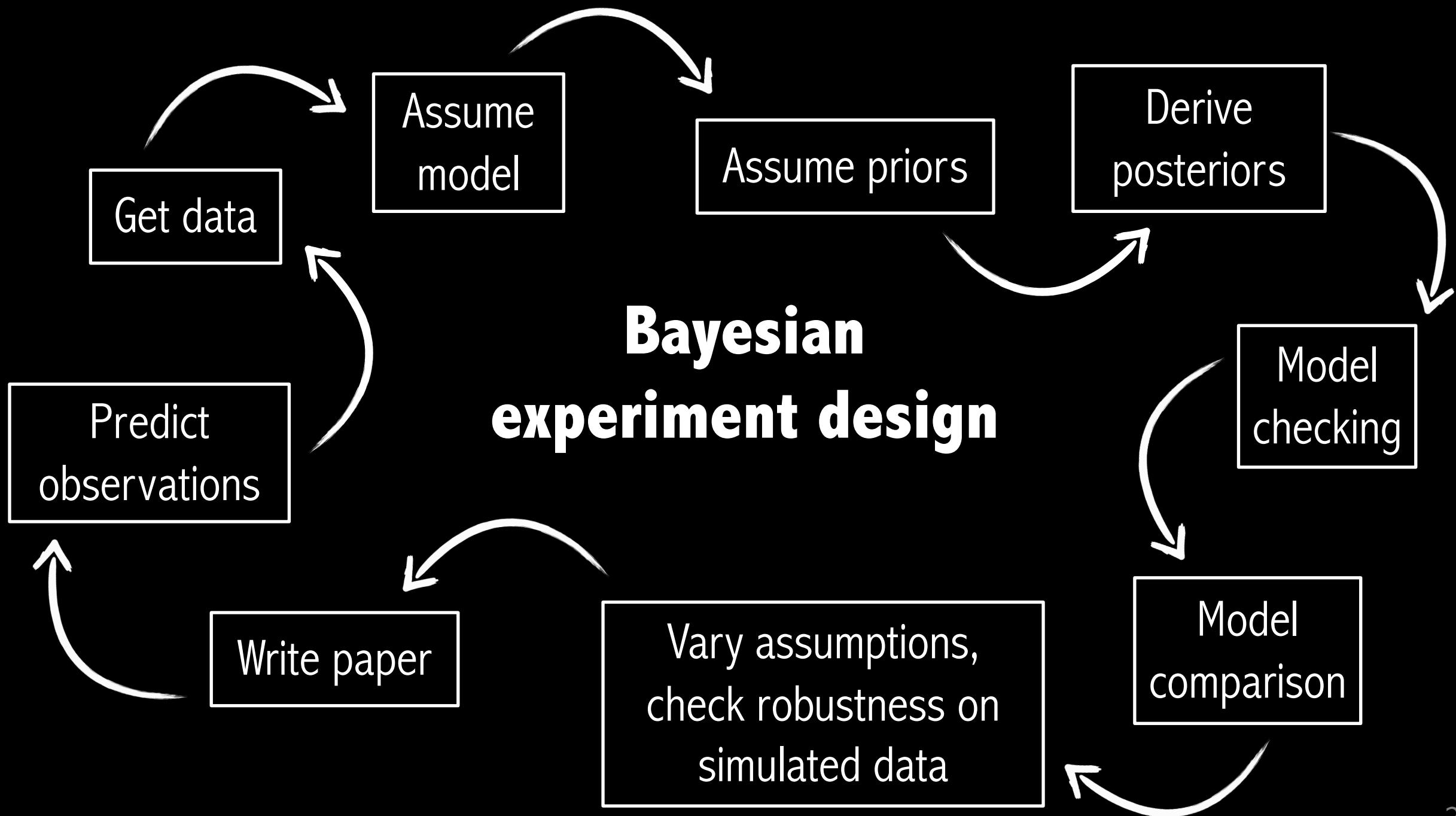


Bayesian workflow

E.g., Buchner+14,
Boorman+25a

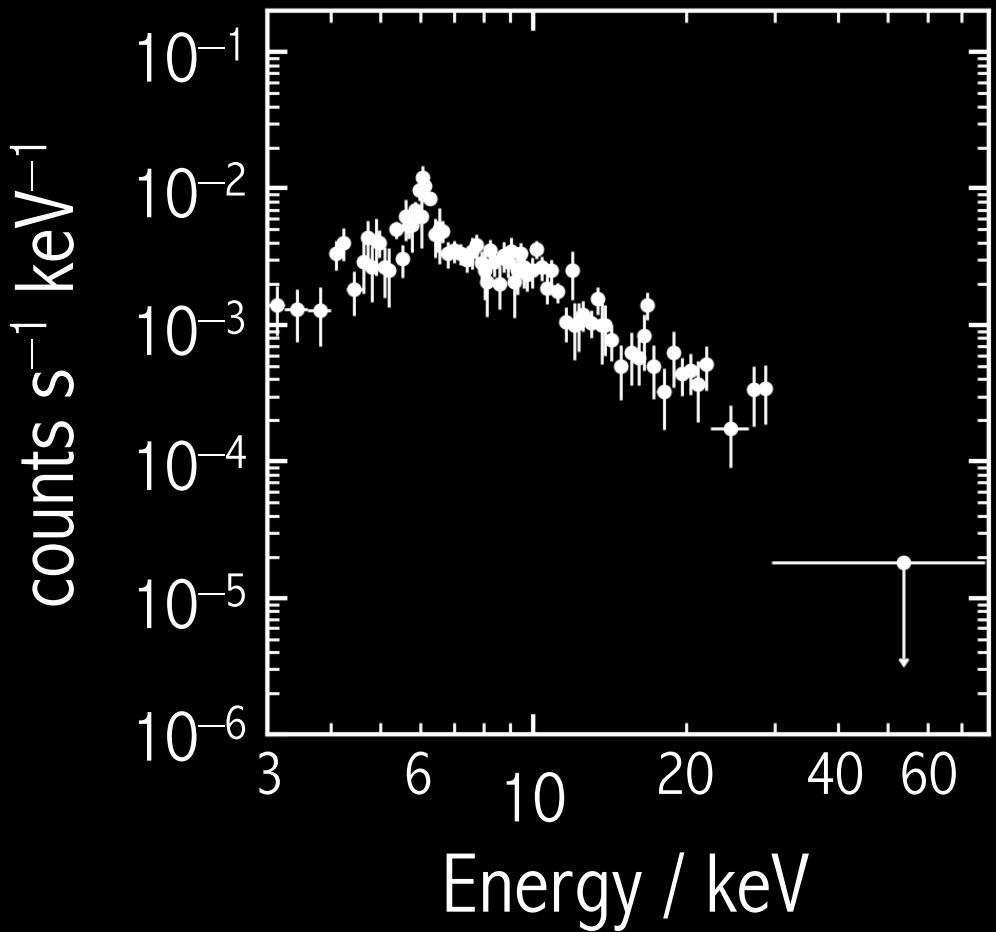


Bayesian experiment design



An example NuSTAR spectrum

All exercises available through tutorial: peterboorman.com/tutorial_bxa



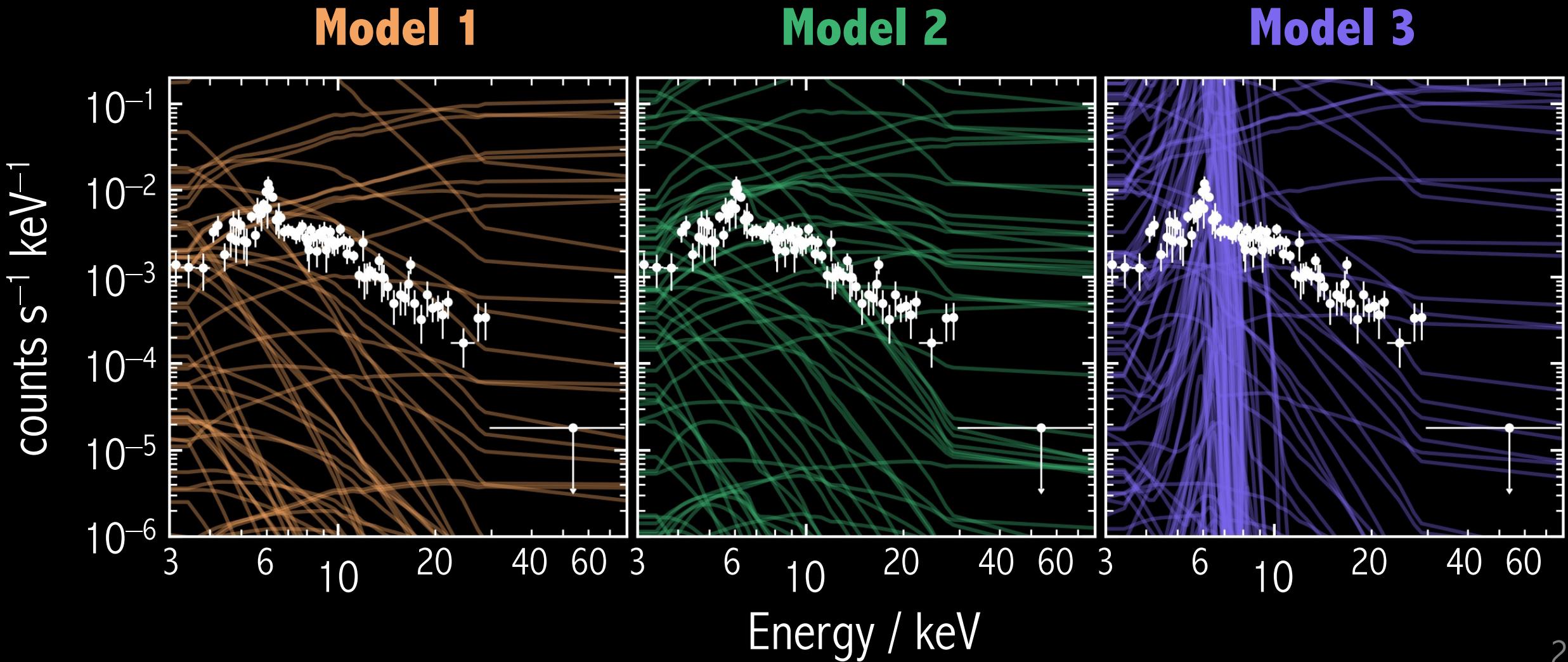
Model 1 = powerlaw

Model 2 = zTBabs * powerlaw

Model 3 = zTBabs * powerlaw + zGauss

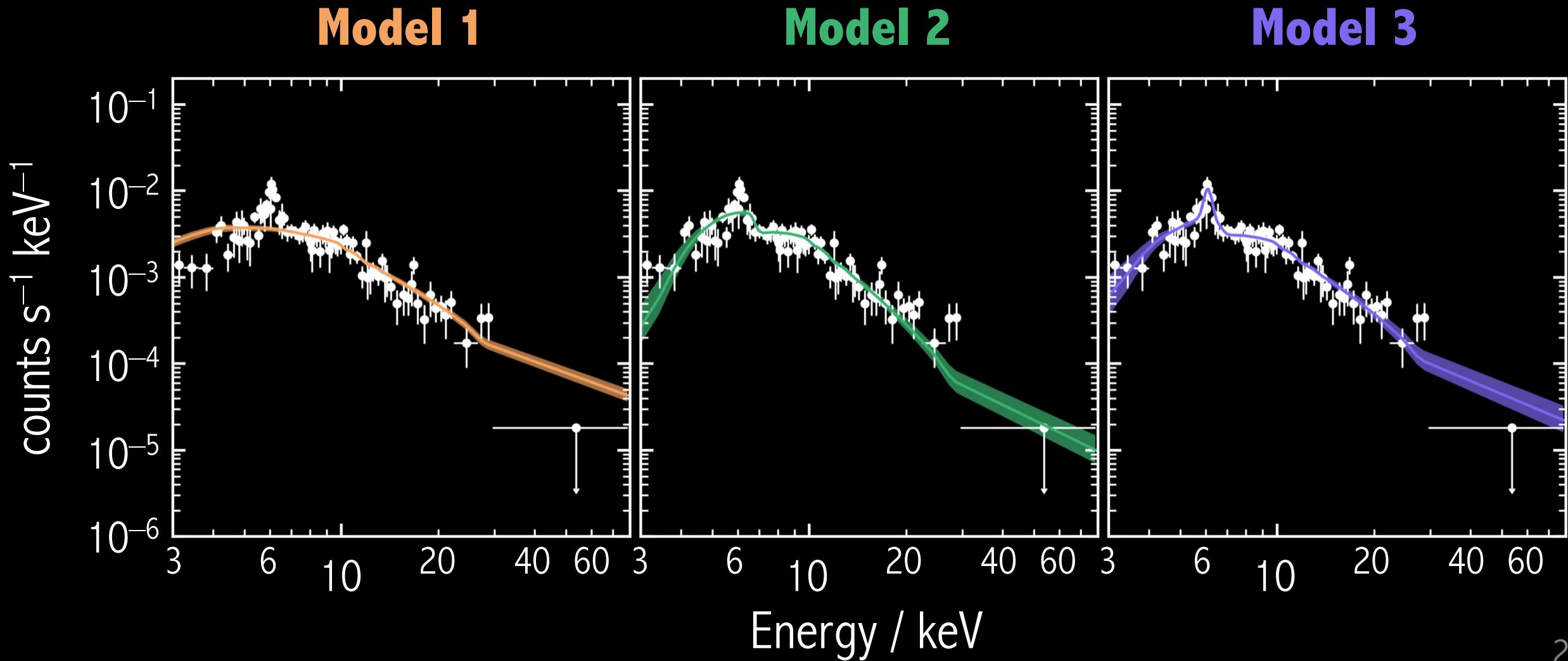
Prior predictive checks (see tutorial Exercise 1.1)

Constrain parameter priors with information **prior to the observation**



Deriving posteriors (see tutorial Exercises 1.3 & 2.1)

Using Monte Carlo sampling to learn from the data



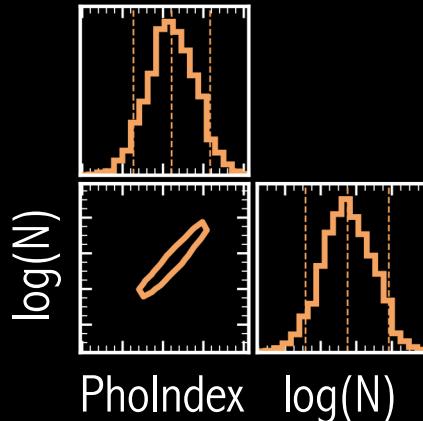
Corner plots

Marginal and conditional posterior distributions

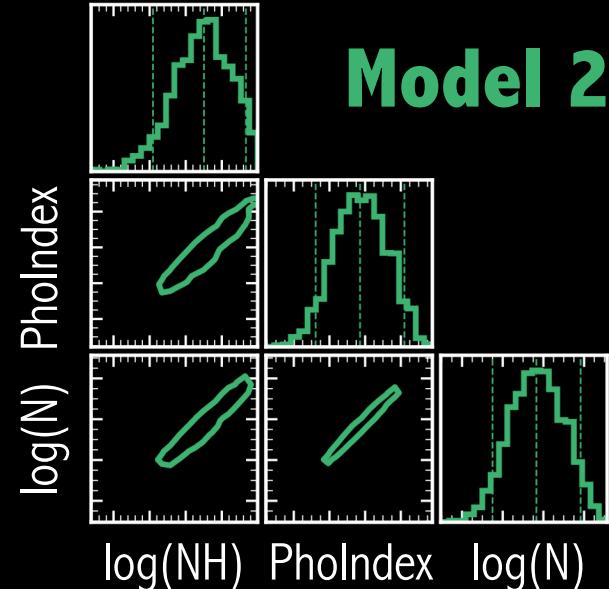
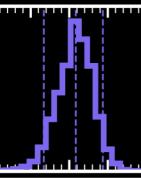
Useful for visualization the posterior

Does not provide a goodness-of-fit, nor
proof that the sampling algorithm has worked

Model 1



Model 2



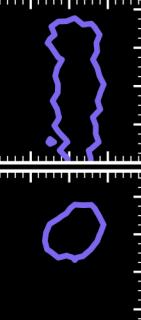
$\log(N)$

PholIndex

$\log(\text{NH})$

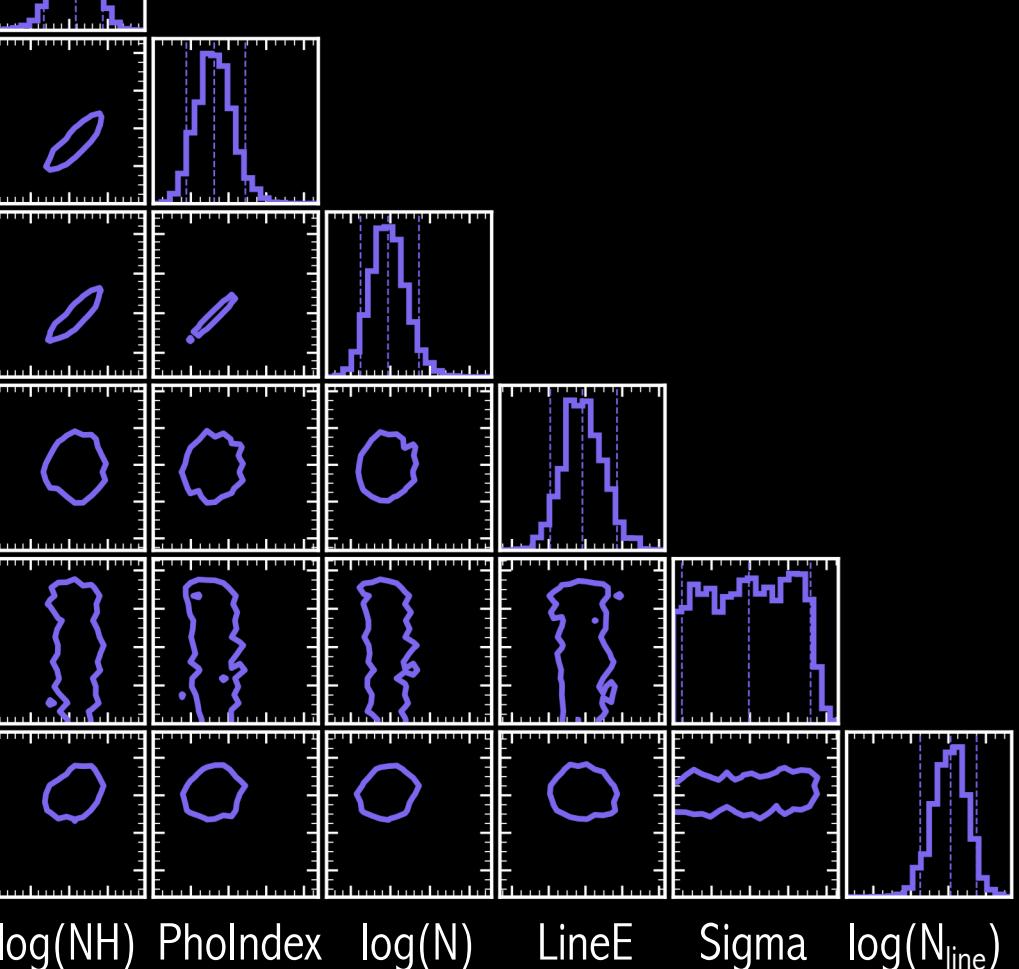
LineE

Σ



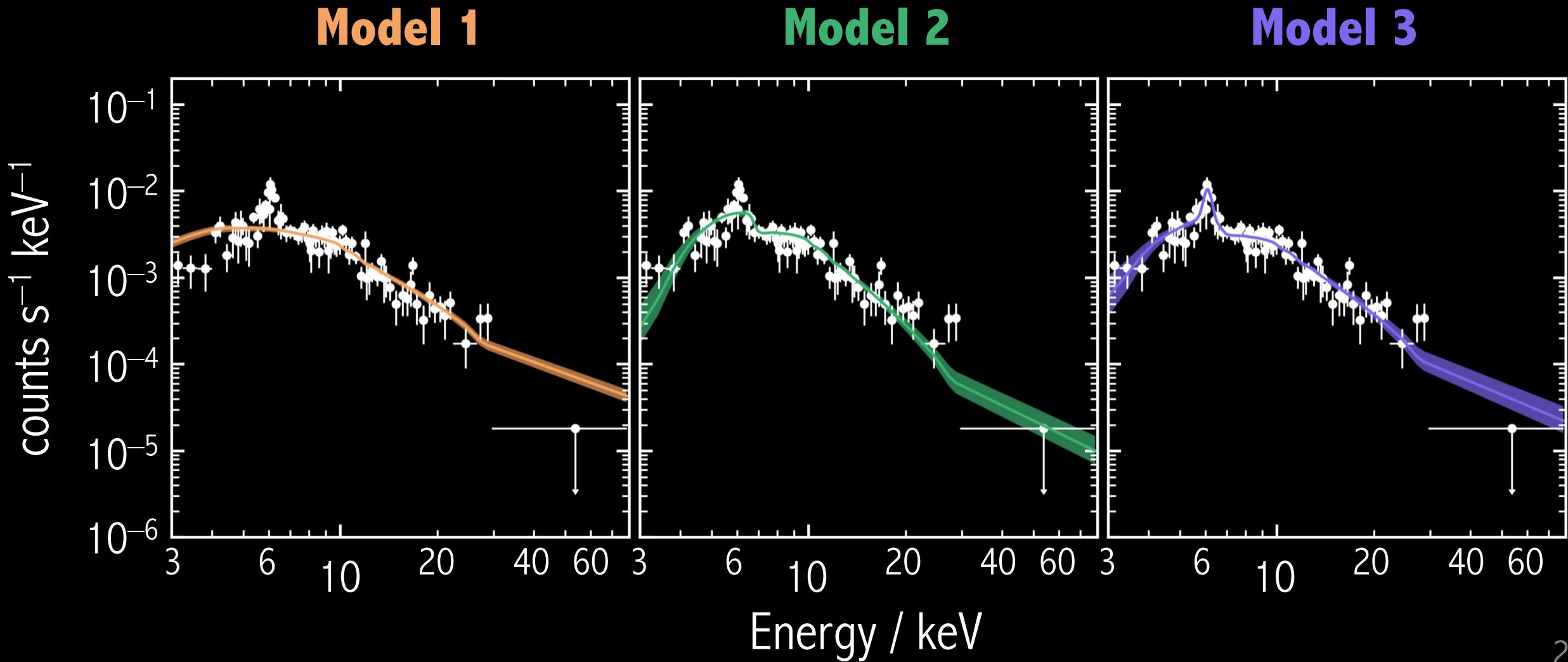
$\log(N_{\text{line}})$

Model 3



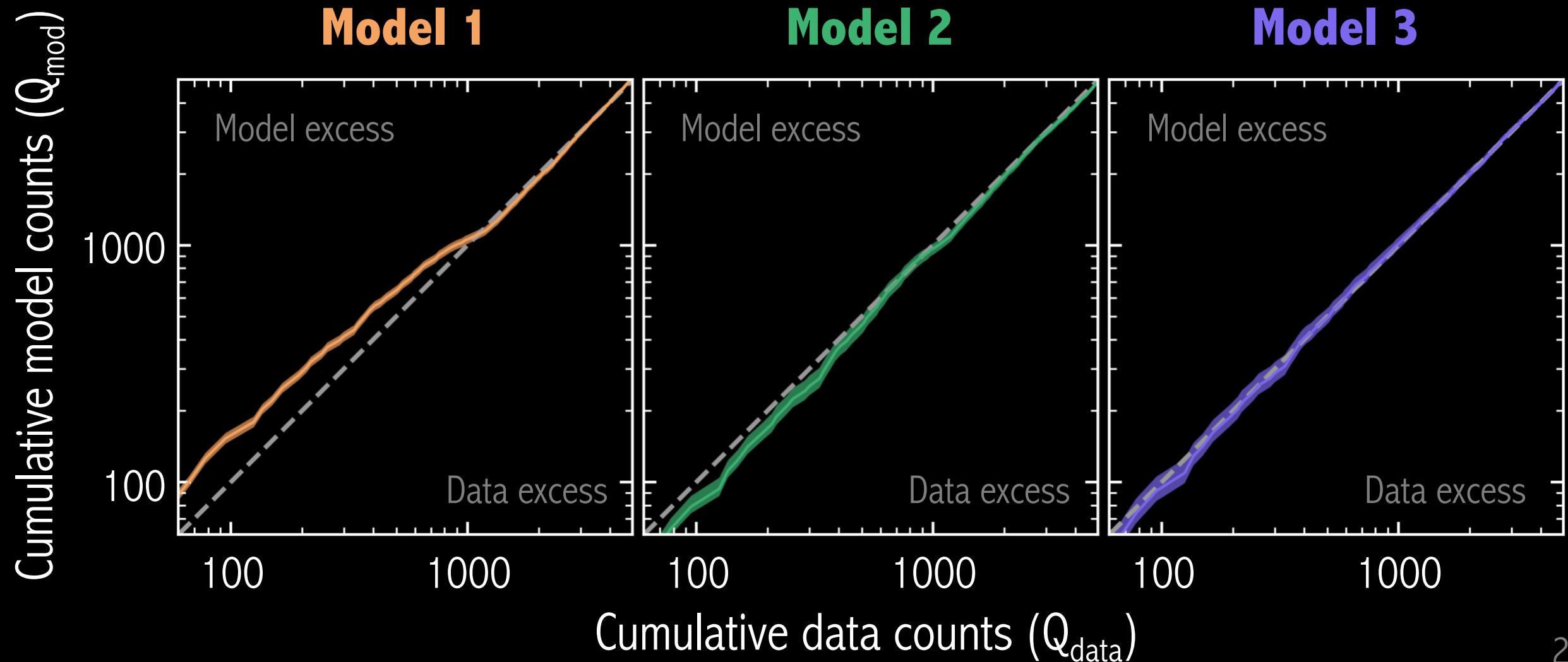
Deriving posteriors (see tutorial Exercises 1.3 & 2.1)

Using Monte Carlo sampling to learn from the data



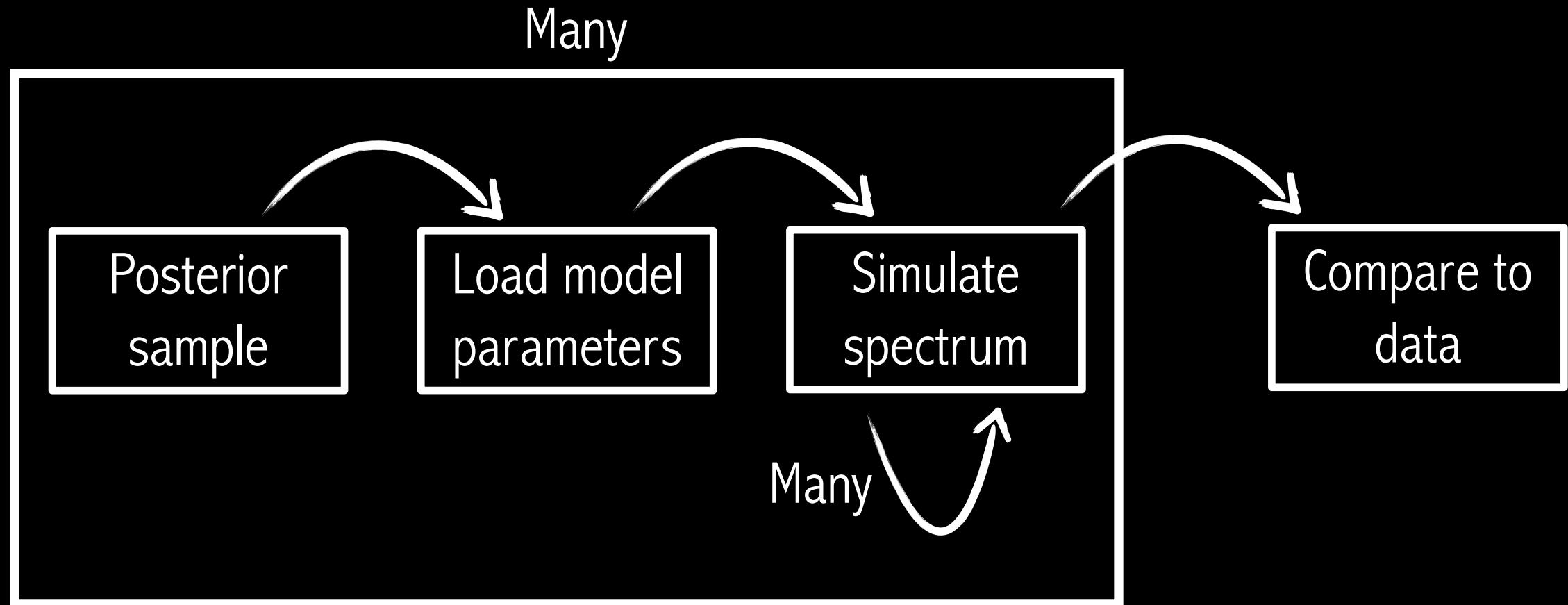
Quantile-Quantile plots (see tutorial Exercise 2.2)

A way to search for missing components from entirely ungrouped spectra



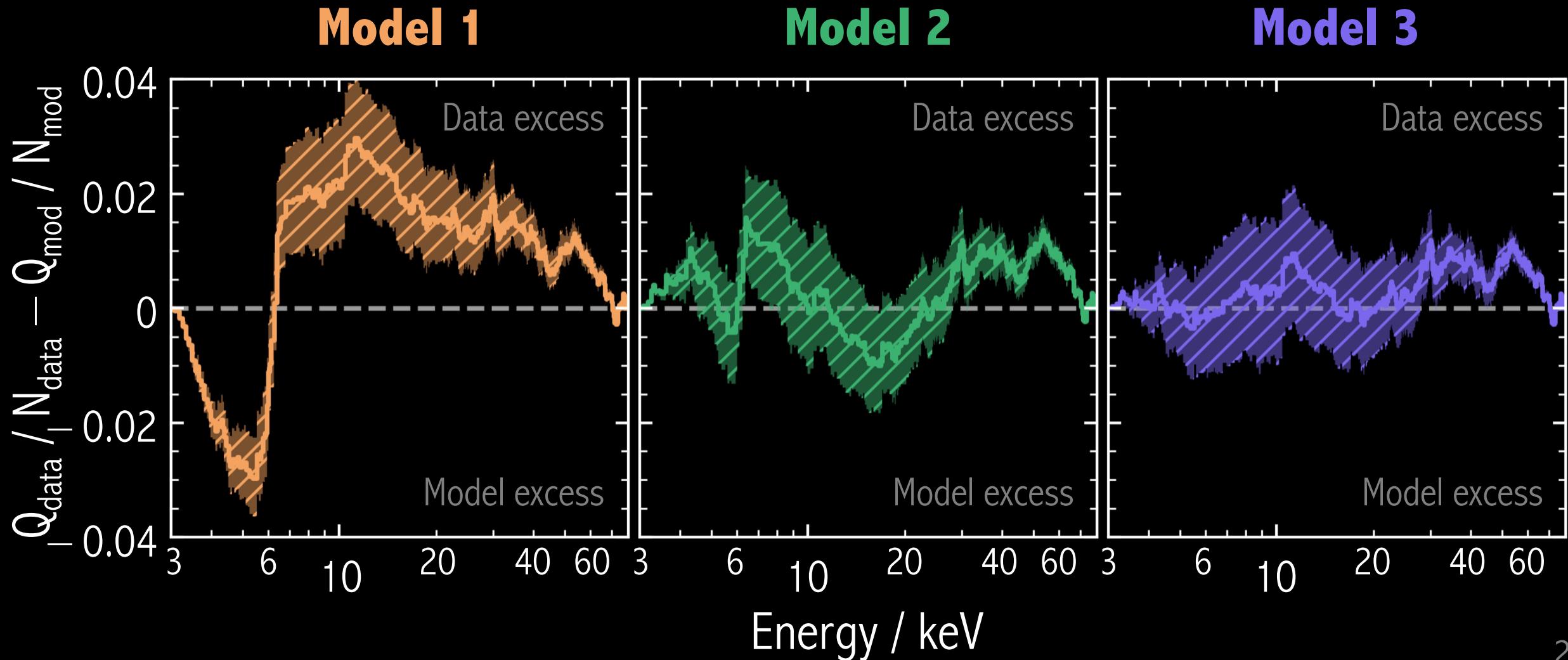
Model checking (see tutorial Exercise 2.3)

Posterior predictive checks quantify the goodness-of-fit and can be useful in the search for missing model components



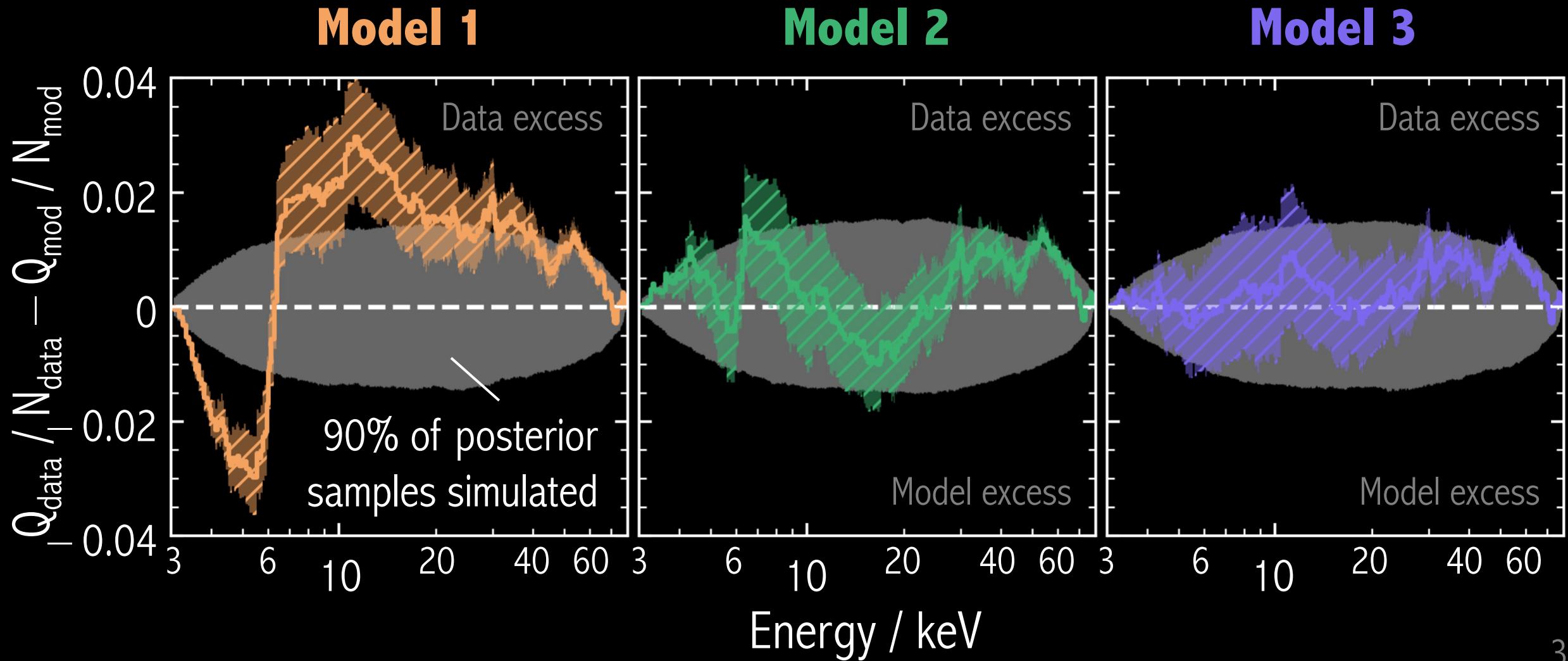
Quantile-Quantile difference (see tutorial Exercise 2.2)

Reproject Quantile-Quantile plots vs. channel energy (Buchner & Boorman 23)



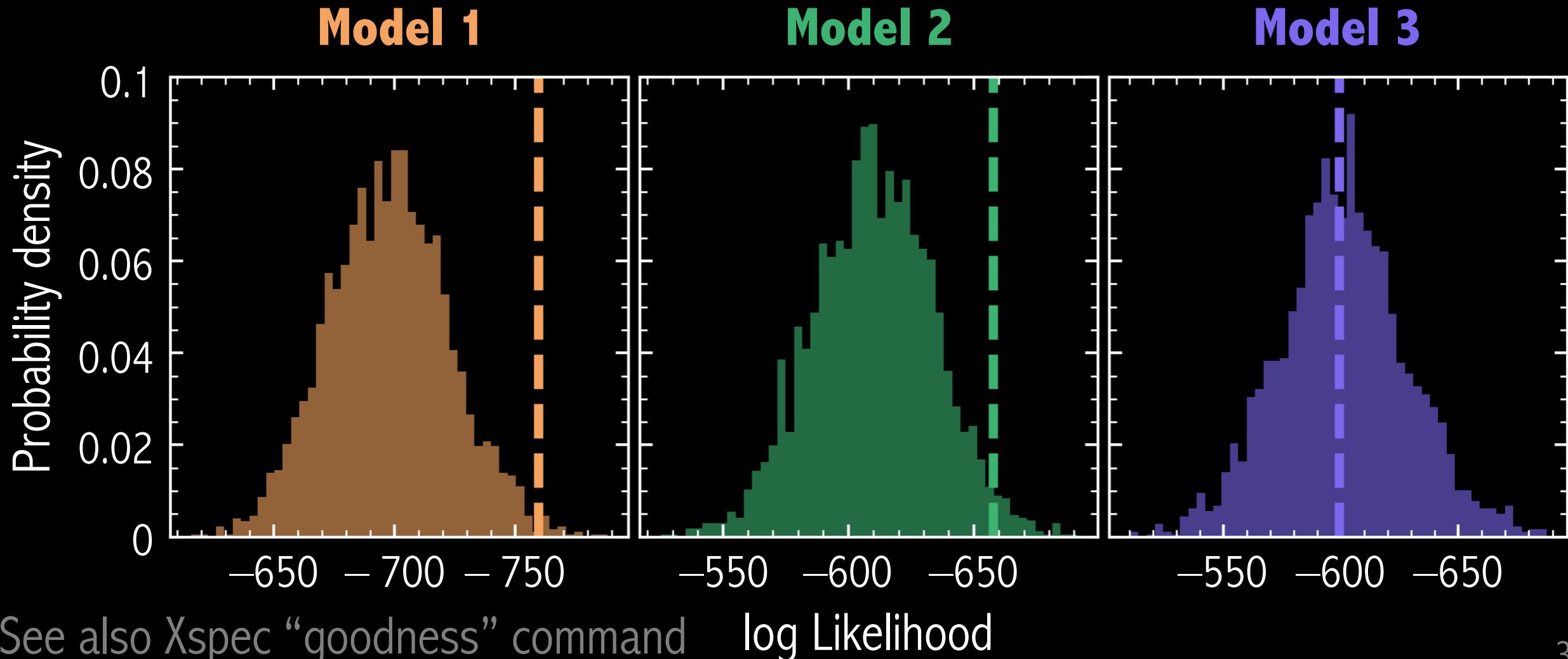
Posterior predictive checks (see tutorial Exercise 2.3)

Useful to quantify the goodness-of-fit and search for missing model components



Profiling the Likelihood (see tutorial Exercise 2.3)

Comparing best-fit to best-fits of many generated data as a goodness-of-fit test



Traversing the space of parameter spaces in the space sciences

Johannes Buchner

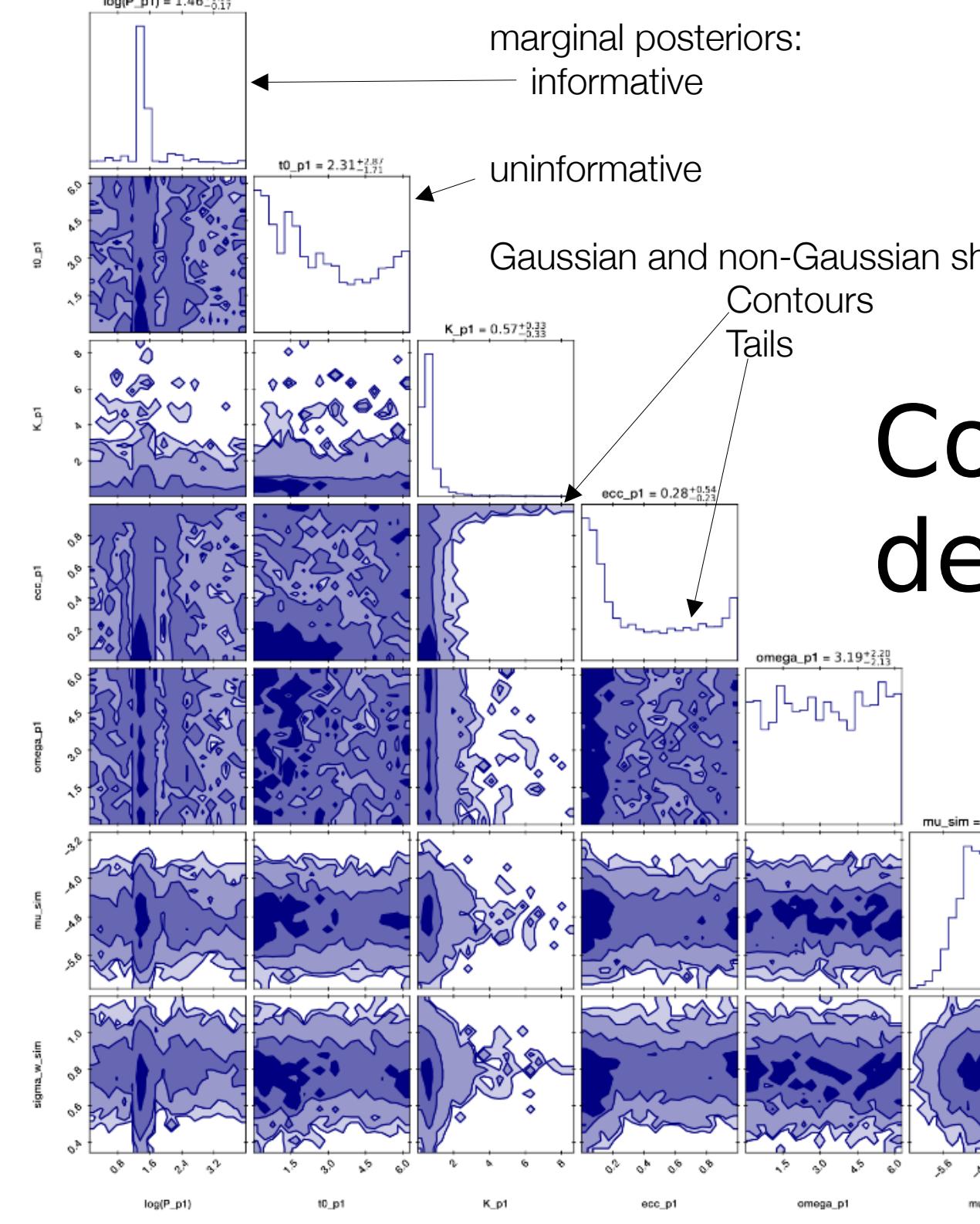
<http://astrost.at/istics/>

Lumière, 15.01.2025
Johannes Buchner

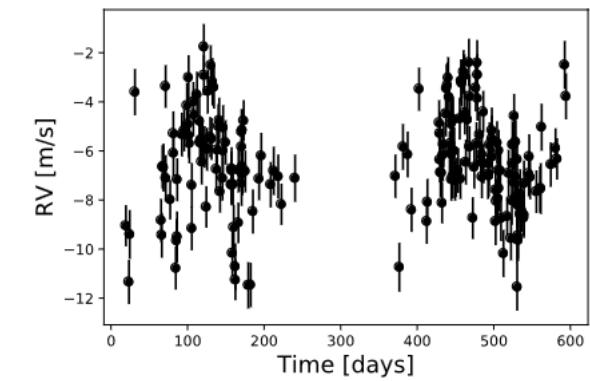
Model comparison
Nested Sampling
UltraNest/MLFriends
BXA

with Peter Boorman, David Homan,
and the BXA community

MPE



Complex degeneracies



Model comparison

Model comparison

Buchner+14

- Empirical models
 - Information content
 - Prediction quality
- Component presence
 - Regions of practical equivalence
- Physical effects
 - Bayesian model comparison
 - Priors often well-justified

<https://arxiv.org/abs/1506.02273>

Betancourt (2015)

Information criteria

Akaike (1973)

- Akaike information criterion
- Is more complex worth storing?

$$AIC = 2 * d - 2 * L_{\max}$$

$$AIC = 2 * d + CStat$$

Advantages:

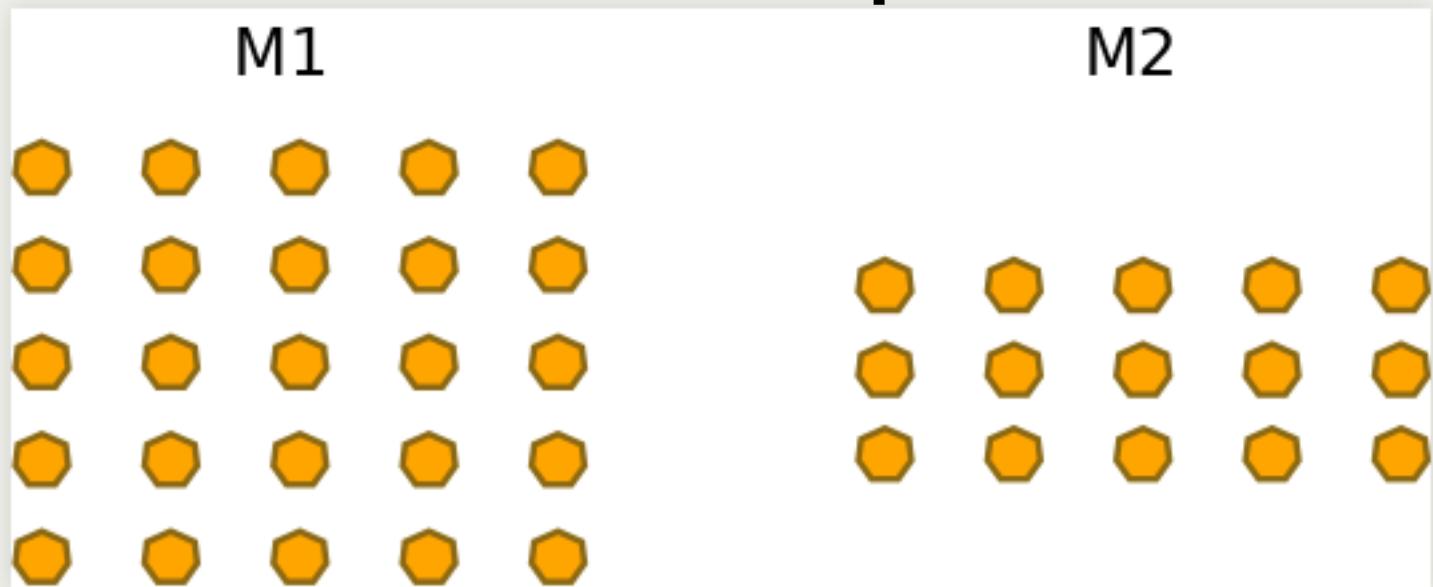
- rooted in information theory
- independent of prior

Disadvantages:

- No uncertainties, thresholds unclear
- ...

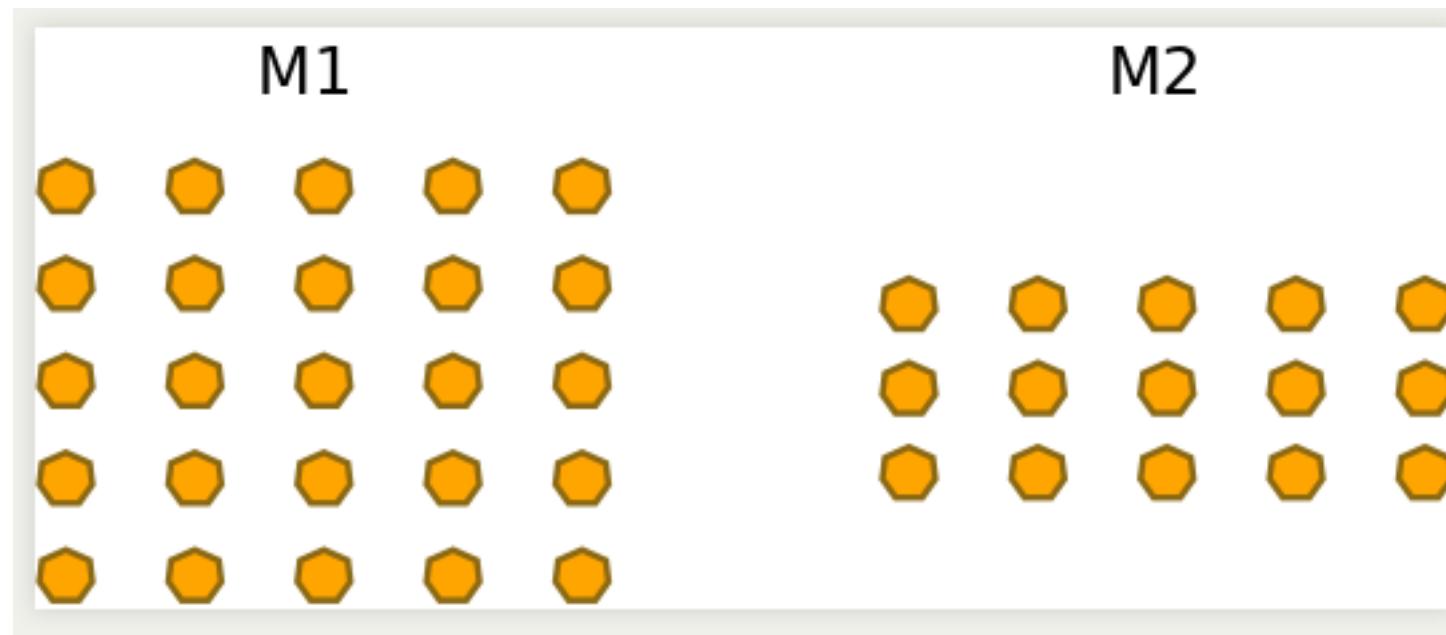
Bayesian model comparison

Two
models

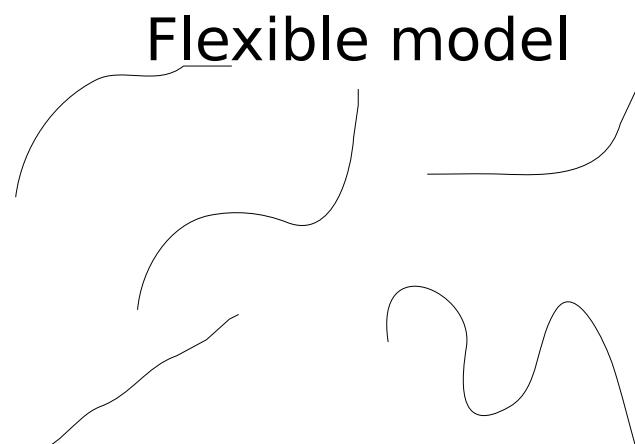


- Compare two parameter spaces by $\sum \mathcal{L}|_{M1} / \sum \mathcal{L}|_{M2}$
 - How many coins to put in M1, M2?
 - model prior

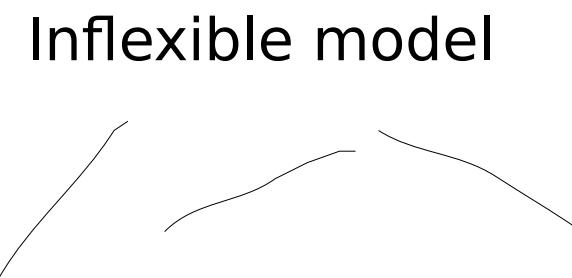
Punishing prediction diversity



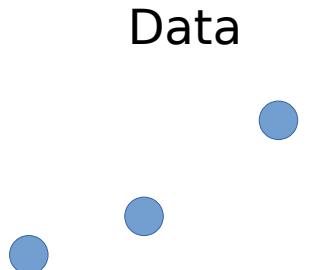
(not number of parameters)



L high, V tiny



L medium, V medium



ML training?

What to do with Z

- $Z1, Z2$

$$\frac{p(M1|D)}{p(M2|D)} = \frac{Z1 \cdot p(M1)}{Z2 \cdot p(M2)}$$

}

Posterior
odds ratio

}

Bayes factor

Prior
odds ratio

What to do with Z

- Z_1, Z_2

$$\frac{p(M1|D)}{p(M2|D)} = \frac{Z1 \cdot p(M1)}{Z2 \cdot p(M2)}$$
$$\frac{p(M_1|D)}{\sum p(M_i|D)} = \frac{Z_1 \cdot p(M_i)}{\sum_i Z_i \cdot p(M_i)}$$

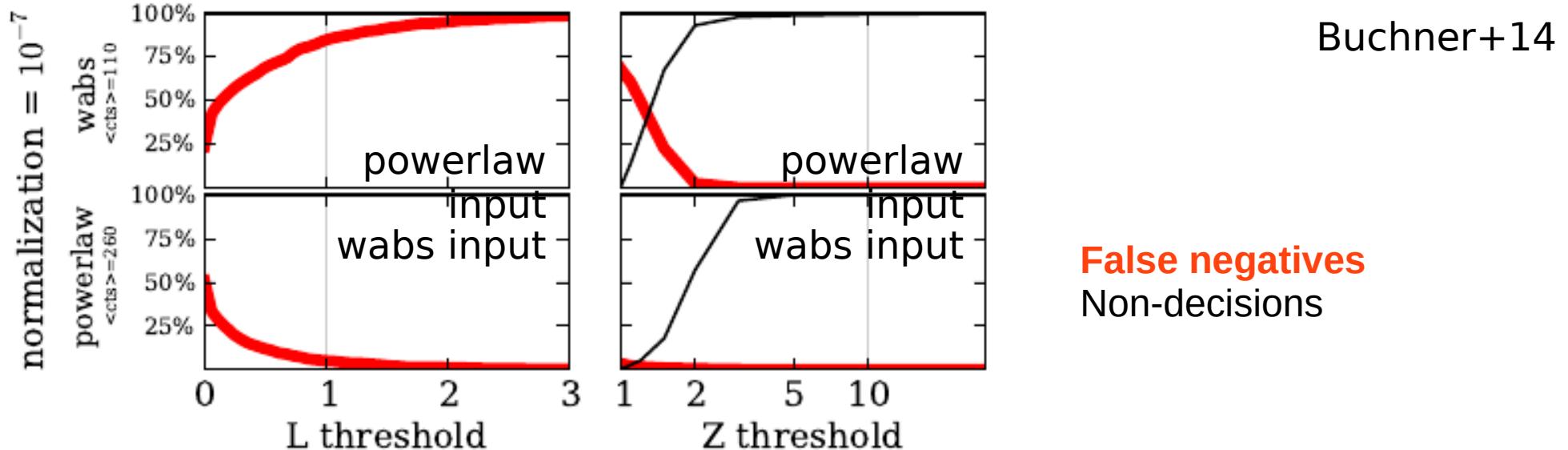
- model priors: leave to reader or motivated by theory
- Discard highly improbable model or marginalise
- Does $\frac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

Calibrating model decisions

- Model probabilities → decisions
- False decision rate
 - (false positives/negatives)
 - Monte Carlo simulations
(parametric bootstrap)

Buchner+14

Calibrating model decisions



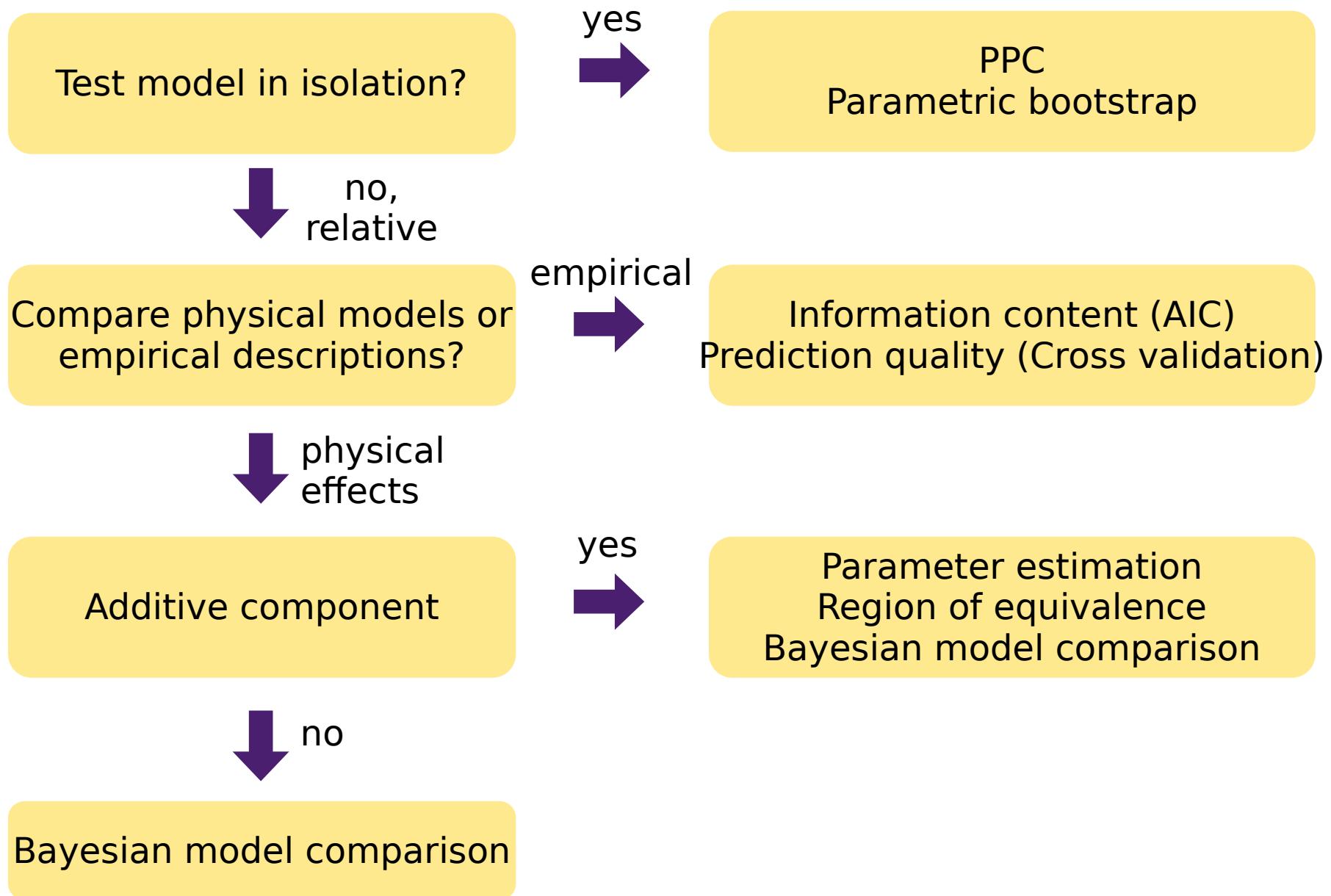
Advantages:

- Get rid of parameter prior dependences
- Have frequentist properties of Bayesian method
- Completely Bayesian treatment + decisions

Disadvantages:

- Can be computationally expensive

Model comparison

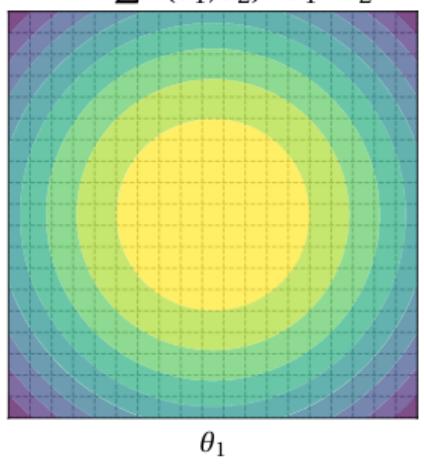


How to compute the Bayesian evidence Z

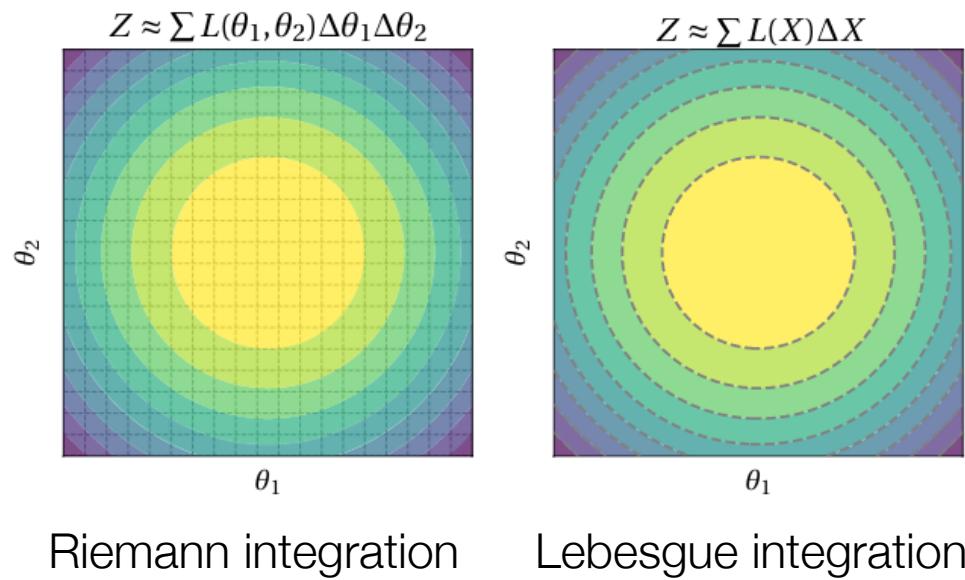
aka marginal likelihood

Nested Sampling

$$Z \approx \sum L(\theta_1, \theta_2) \Delta\theta_1 \Delta\theta_2$$

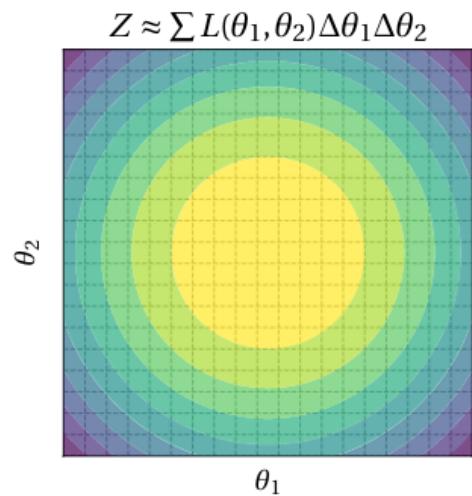
 θ_2  θ_1

Riemann integration

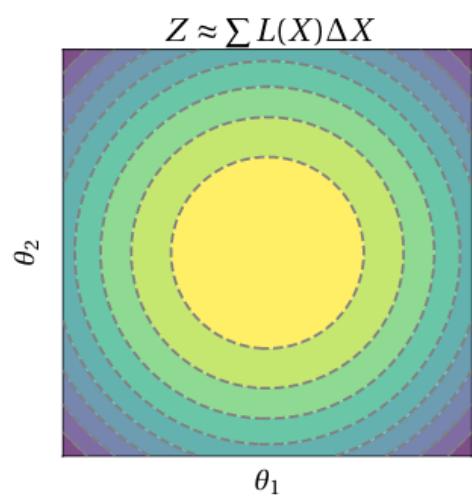


Riemann integration

Lebesgue integration



Riemann integration



Lebesgue integration

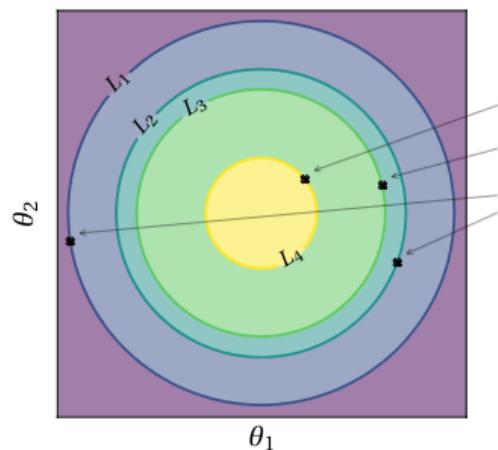
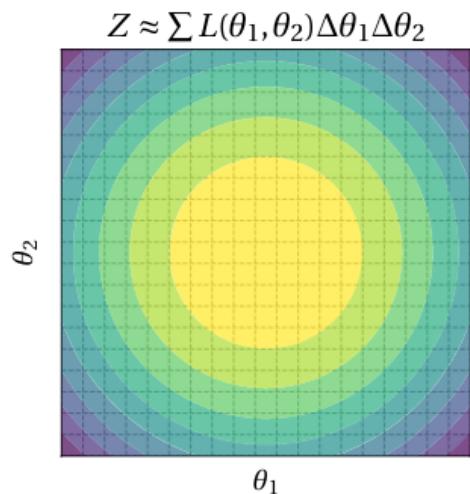
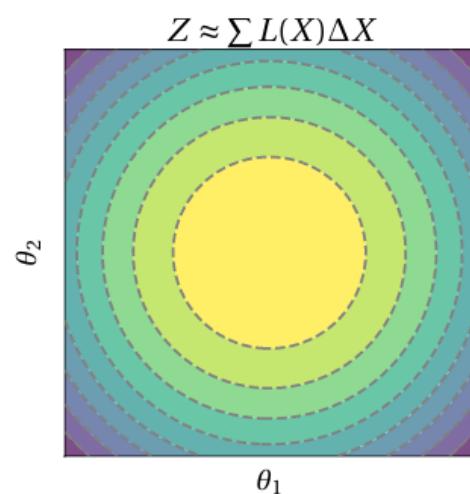


Figure 1 | Illustrations of NS algorithm.



Riemann integration



Lebesgue integration

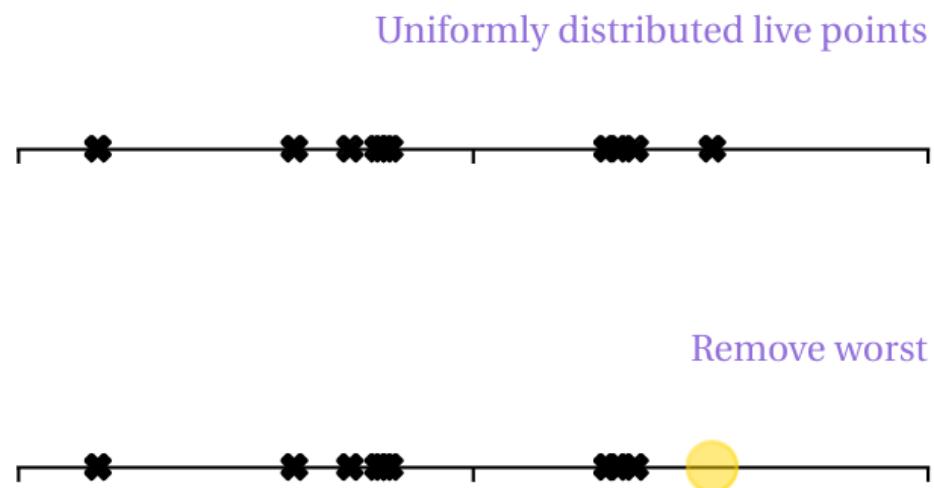
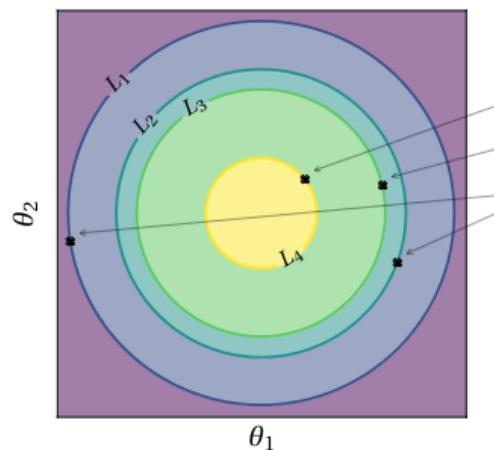
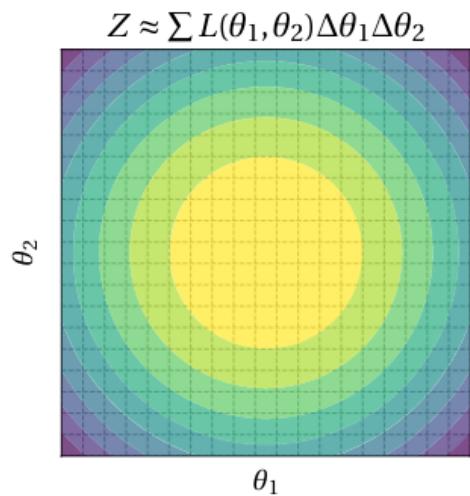
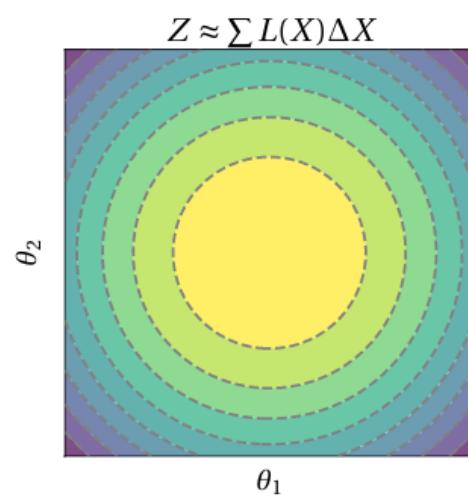


Figure 1 | Illustrations of NS algorithm.



Riemann integration



Lebesgue integration

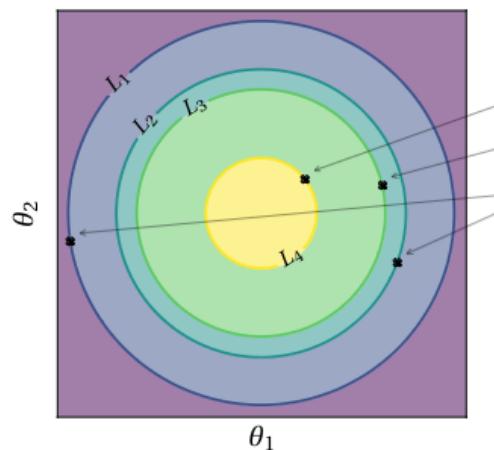
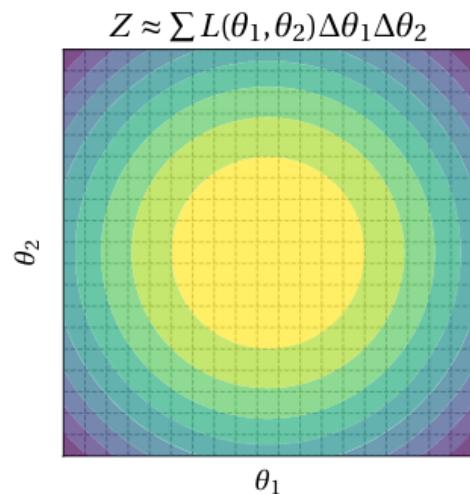
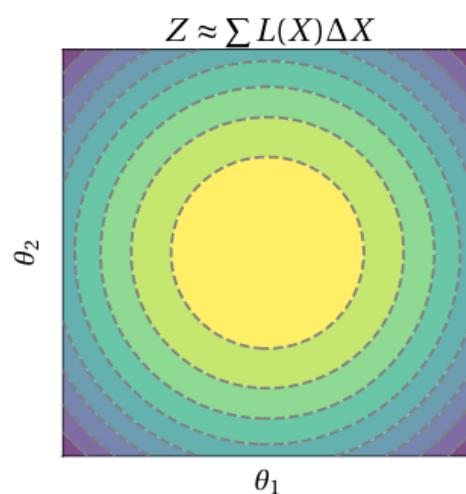


Figure 1 | Illustrations of NS algorithm.



Riemann integration



Lebesgue integration

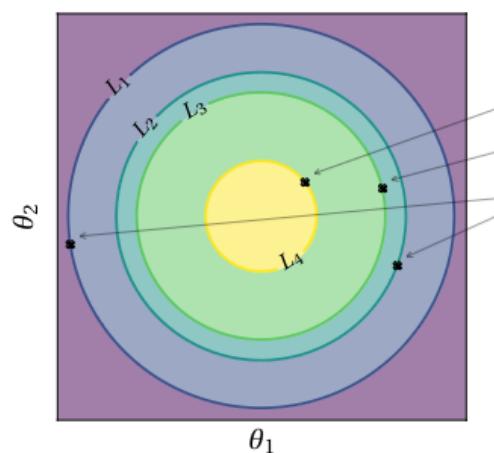
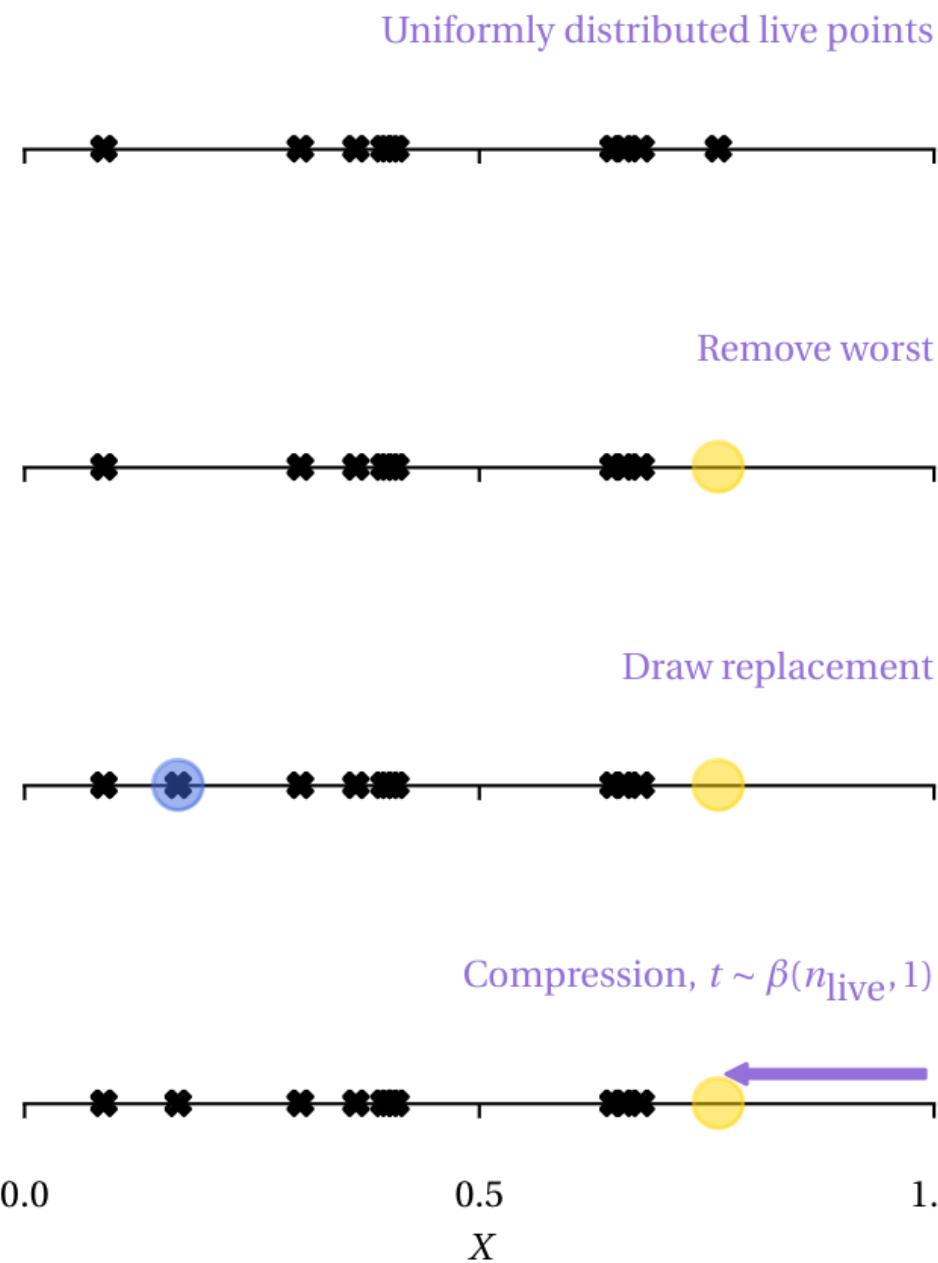
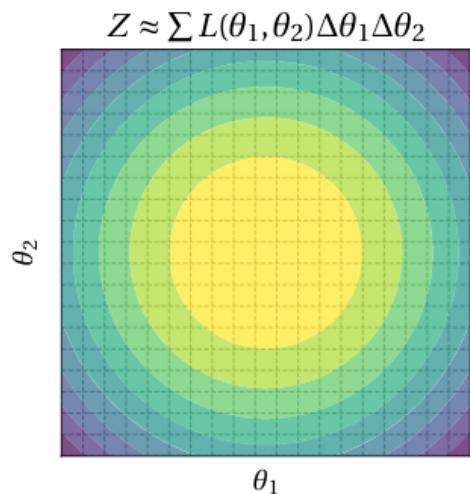


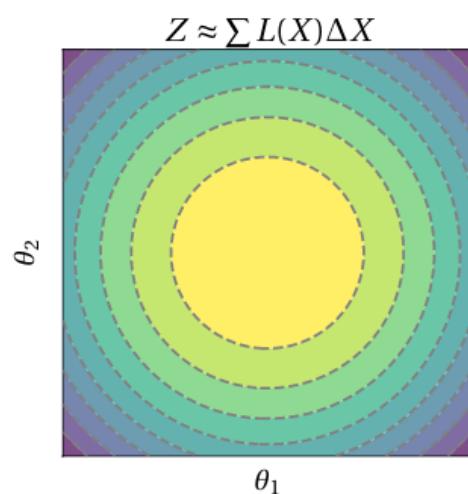
Figure 1 | Illustrations of NS algorithm.



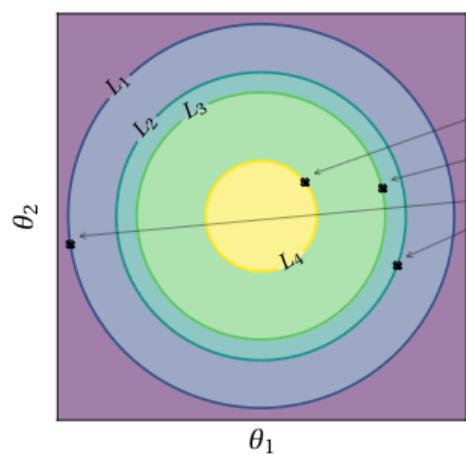
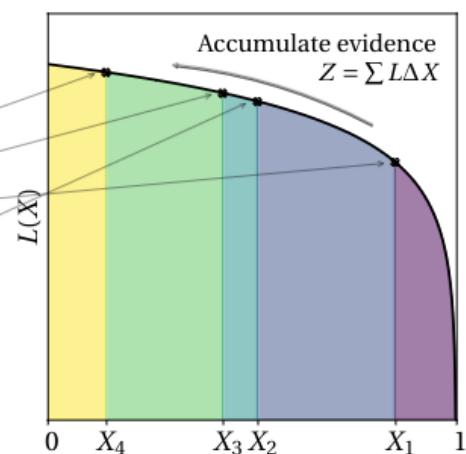
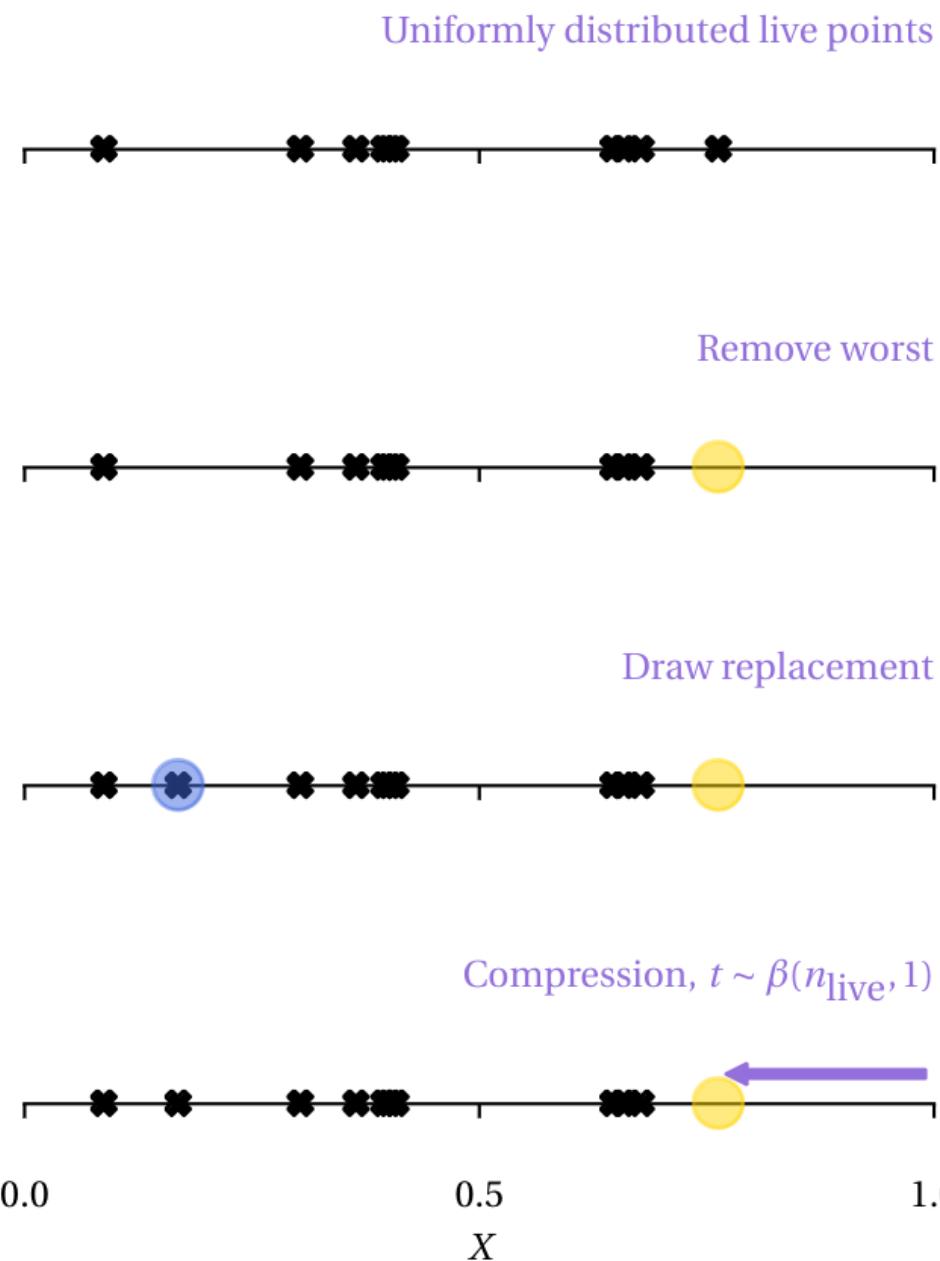
c | Compression in one iterate of NS.



Riemann integration

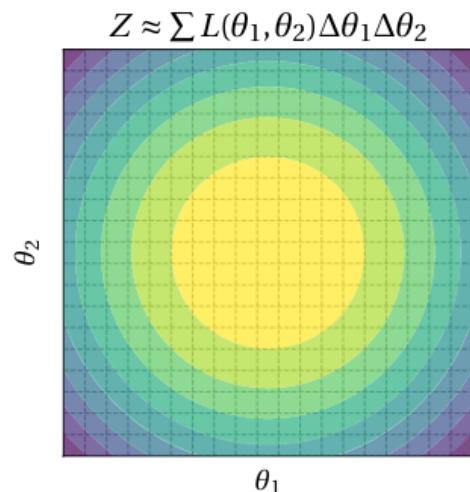


Lebesgue integration

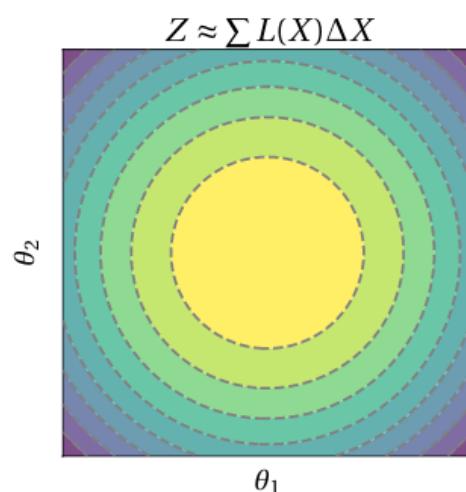


c | Compression in one iterate of NS.

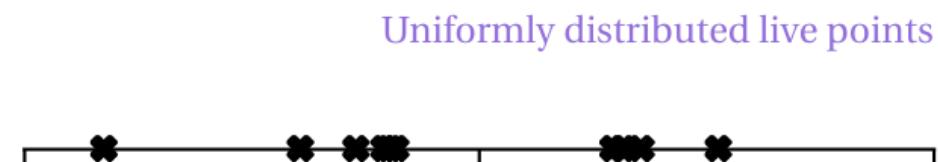
Figure 1 | Illustrations of NS algorithm.



Riemann integration

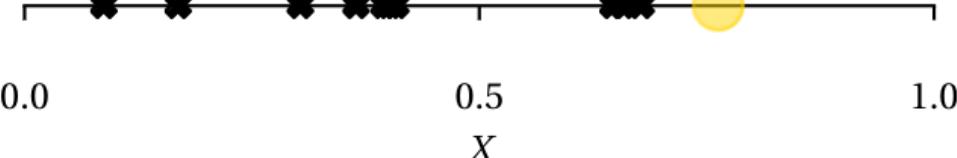


Lebesgue integration



Remove worst

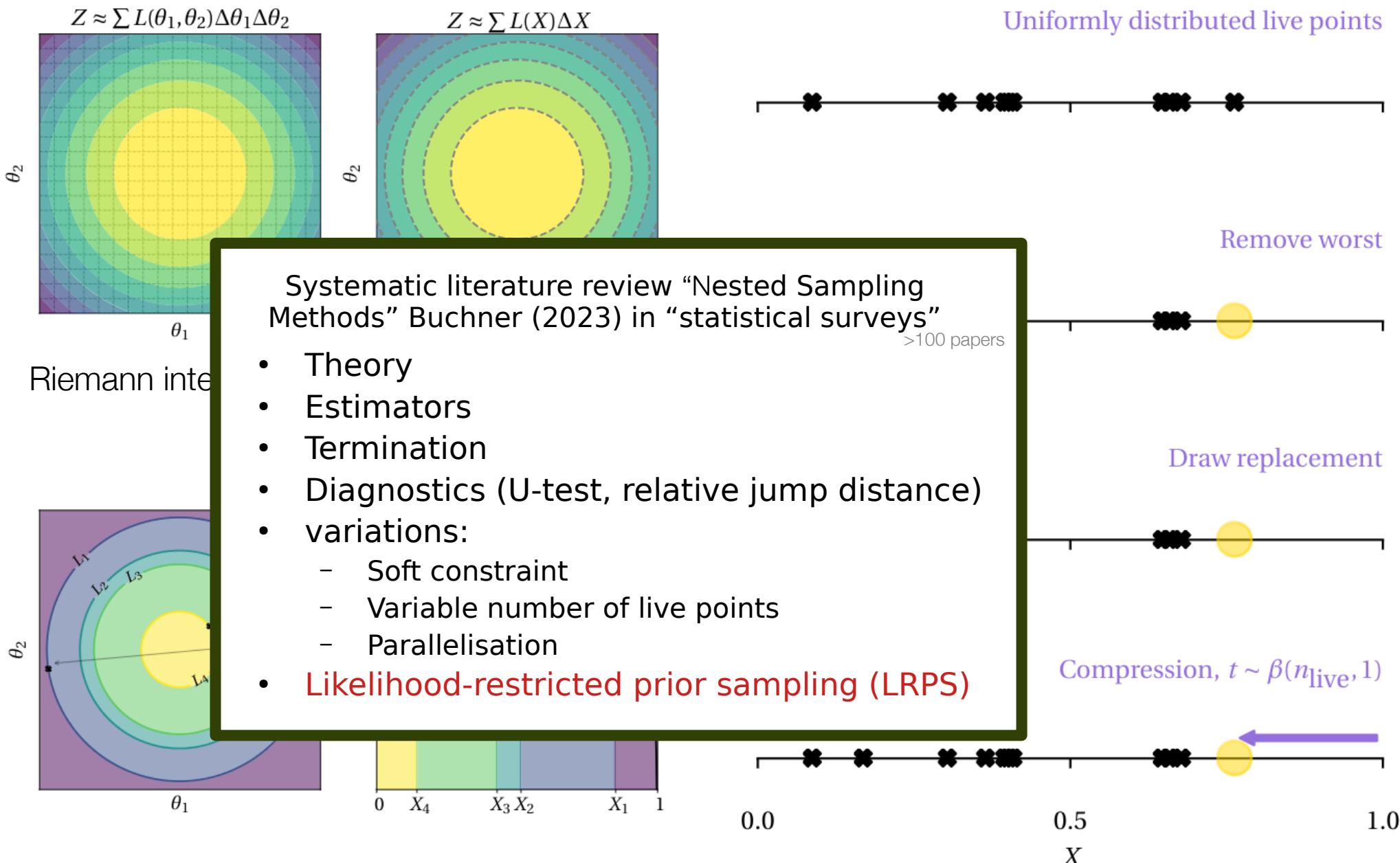
Draw replacement

Compression, $t \sim \beta(n_{\text{live}}, 1)$ 

c | Compression in one iterate of NS.

Convergence proof of Z and posterior :
e.g. Evans (2007), Chopin&Robert (2010)

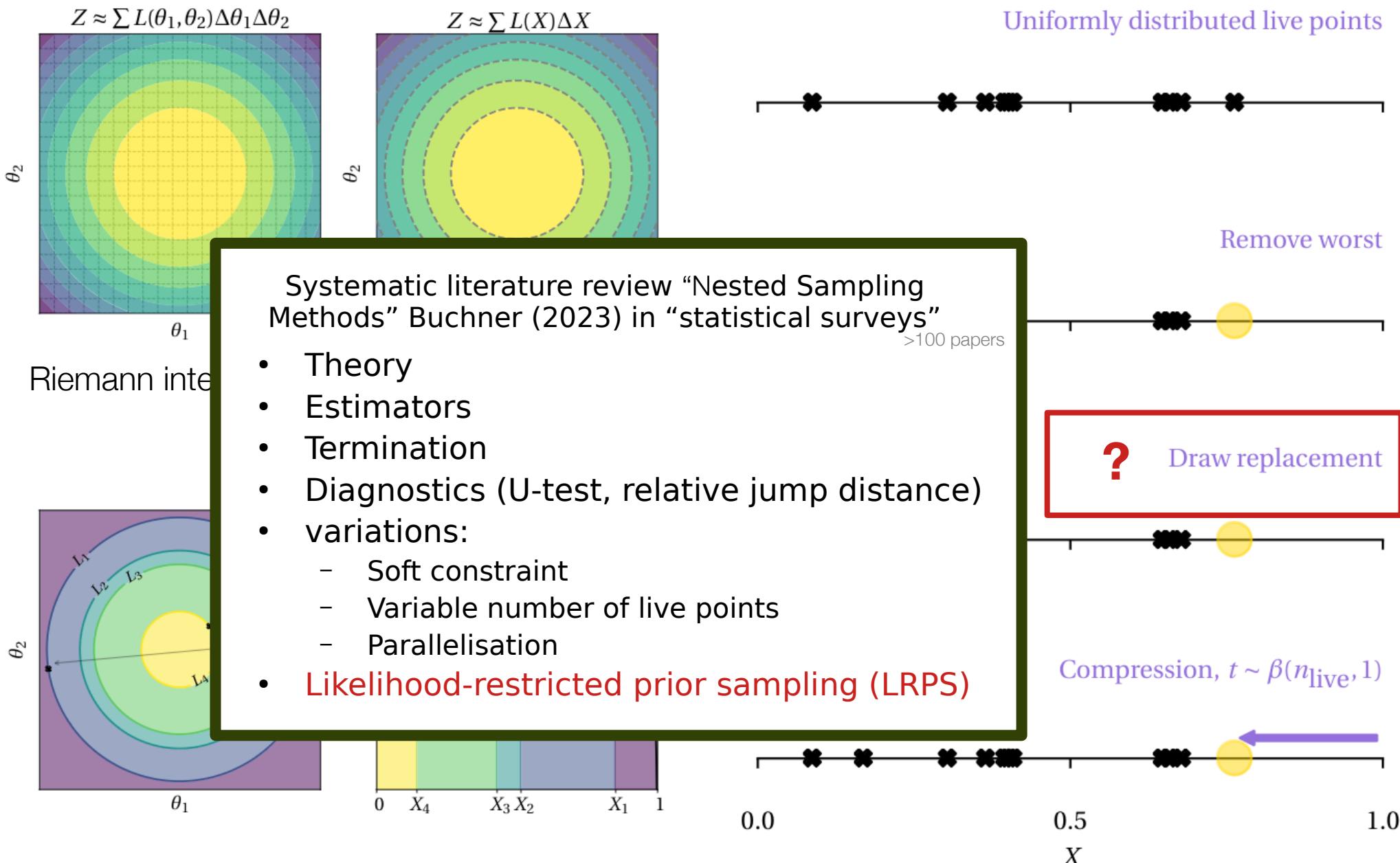
Figure 1 | Illustrations of NS algorithm.



c | Compression in one iterate of NS.

Convergence proof of Z and posterior :
e.g. Evans (2007), Chopin&Robert (2010)

Figure 1 | Illustrations of NS algorithm.



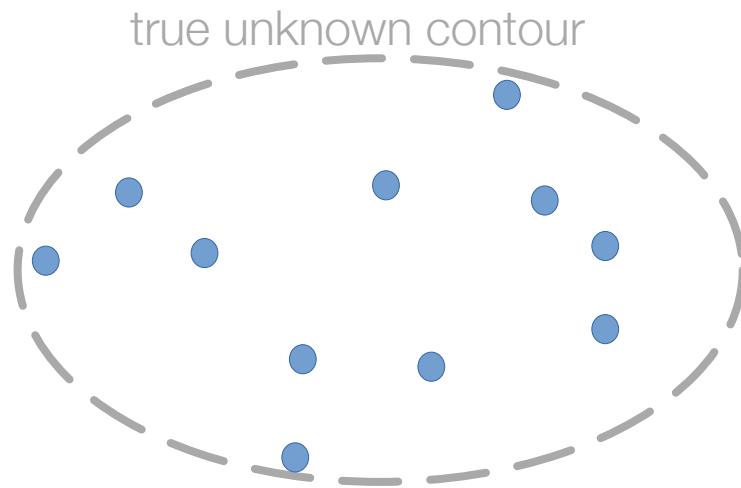
c | Compression in one iterate of NS.

Convergence proof of Z and posterior :
e.g. Evans (2007), Chopin&Robert (2010)

Figure 1 | Illustrations of NS algorithm.

- Step samplers?

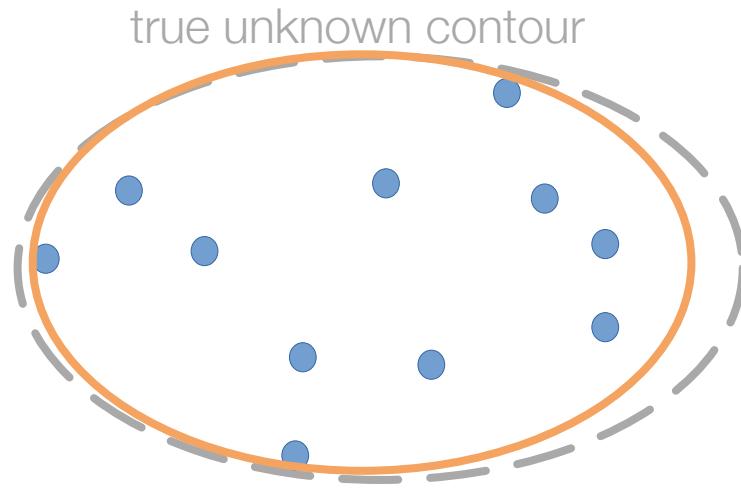
Likelihood-restricted prior sampling (LRPS)



Region-based methods:

Insight: Live points already traces out neighbourhood bounded by true unknown contour

Likelihood-restricted prior sampling (LRPS)

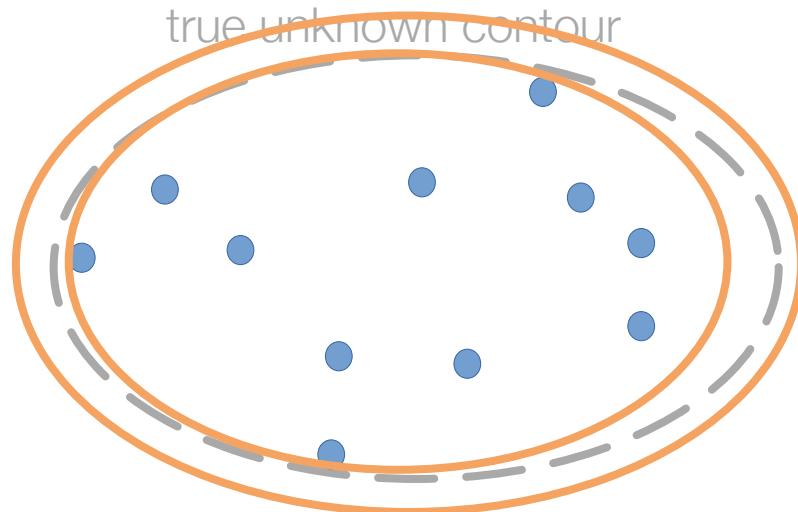


Region-based methods:

Insight: Live points already traces out neighbourhood bounded by true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)

Likelihood-restricted prior sampling (LRPS)



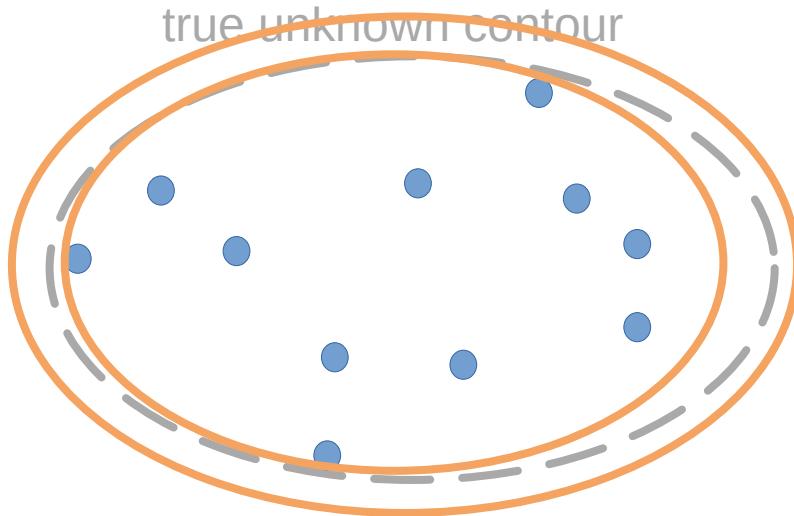
Region-based methods:

Insight: Live points already traces out neighbourhood bounded by true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)
→ enlarge by a fudge factor

Sample and reject

Likelihood-restricted prior sampling (LRPS)



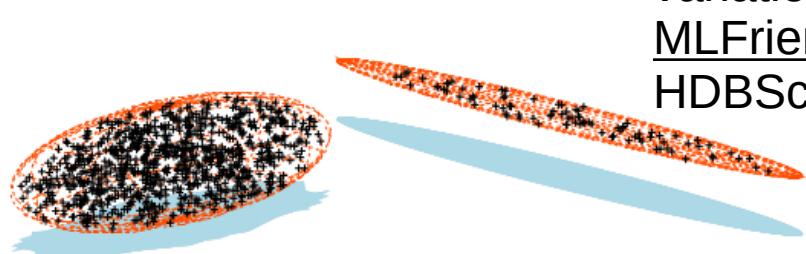
Region-based methods:

Insight: Live points already traces out neighbourhood bounded by true unknown contour

Smallest encapsulating ellipsoid
(Mukherjee+06, Rollins15)
→ enlarge by a fudge factor

Sample and reject

Other shapes: Clustering



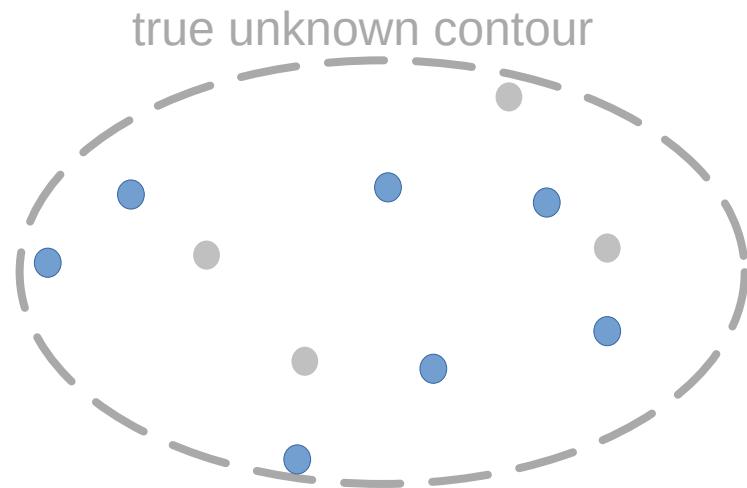
K-means: Shaw+07, Theisen+13

X-means: Feroz+08, Feroz+09 (MultiNest), splitting criteria variations

MLFriends: Buchner14,17 (UltraNest)

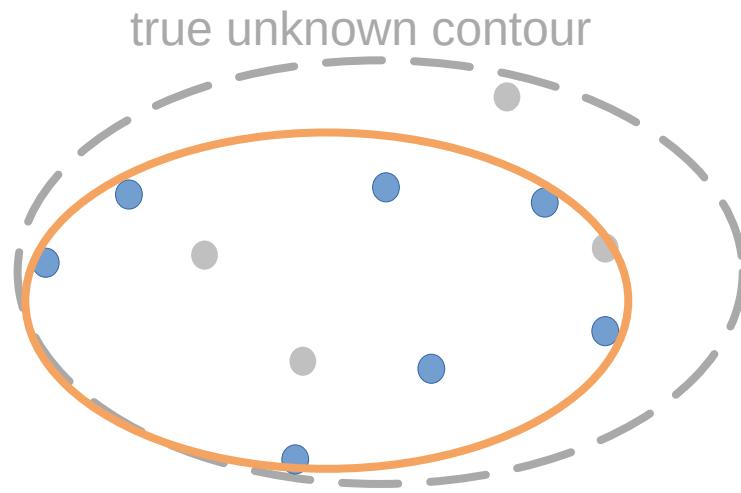
HDBScan? → unclear how to sample with fuzzy clusters

Bootstrapping: robust self-calibration



Sample with replacement
→ **training sample**
Left out points:
→ validation sample

Bootstrapping: robust self-calibration



Sample with replacement

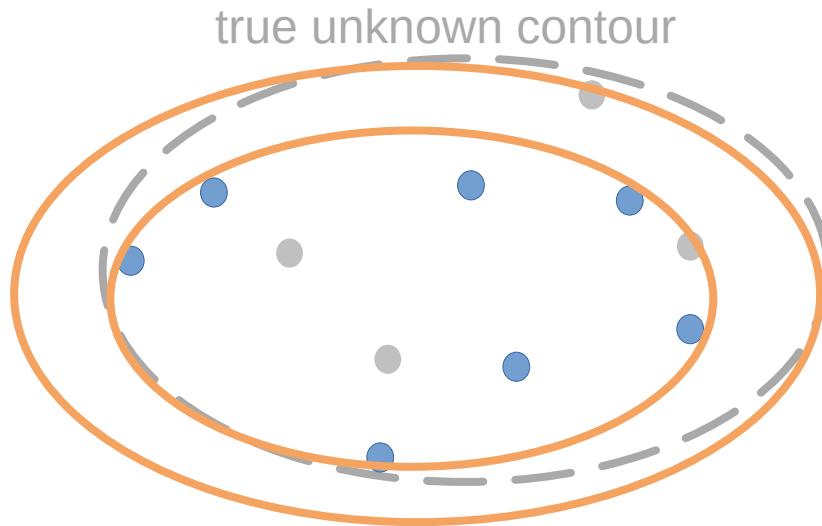
→ **training sample**

Left out points:

→ **validation sample**

Find enclosing ellipsoid

Bootstrapping: robust self-calibration



Sample with replacement

→ **training sample**

Left out points:

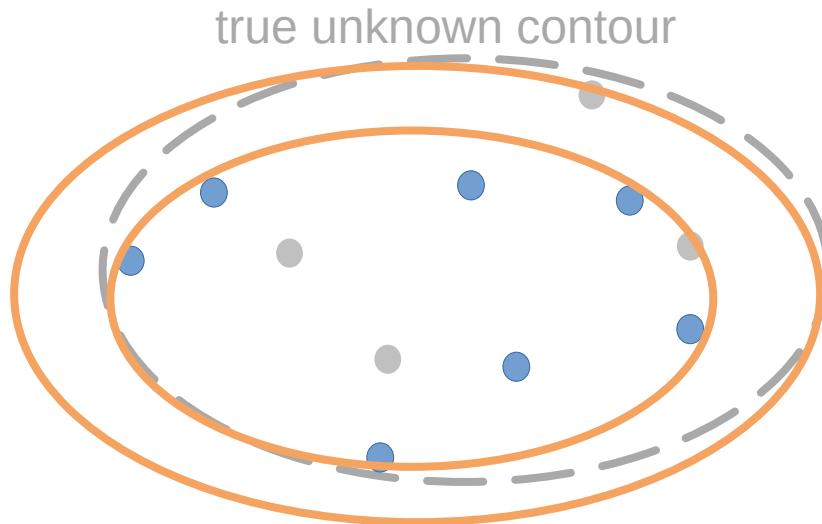
→ **validation sample**

Find enclosing ellipsoid

Enlarge until validation sample
contained

→ **enlargement factor**

Bootstrapping: robust self-calibration



Sample with replacement

→ **training sample**

Left out points:

→ **validation sample**

Find enclosing ellipsoid

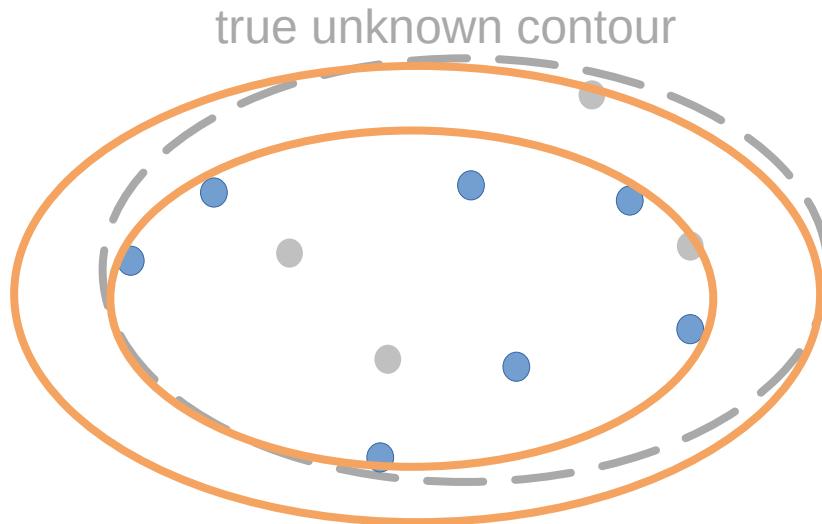
Enlarge until validation sample
contained

→ **enlargement factor**

Repeat a few times, retain largest enlargement factor

→ enlargement to apply to the full live point set

Bootstrapping: robust self-calibration



Sample with replacement

→ **training sample**

Left out points:

→ **validation sample**

Find enclosing ellipsoid

Enlarge until validation sample
contained

→ **enlargement factor**

Repeat a few times, retain largest enlargement factor

- enlargement to apply to the full live point set
- emulates other realisations of the nested sampling run
- general, conservative approach, with safety guarantees

(Buchner14, Buchner17)

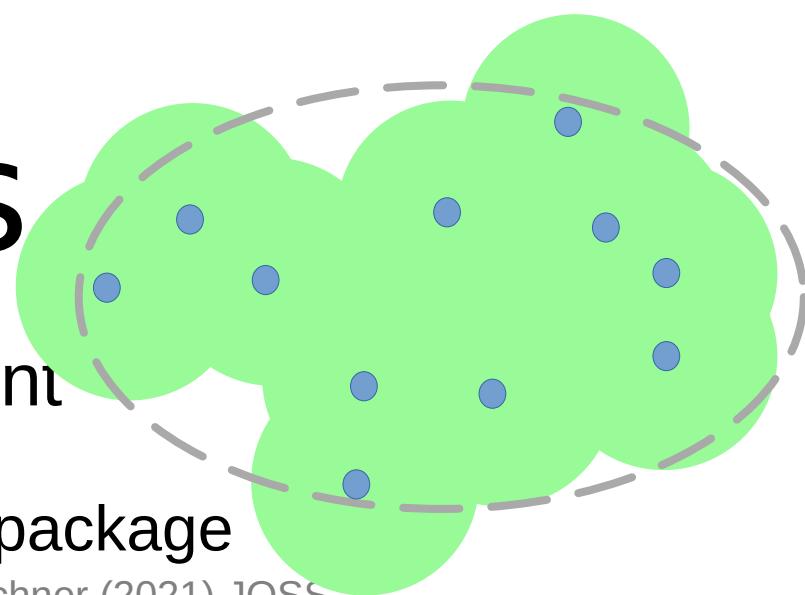
Complex shapes

MLFriends: Ellipsoid for each live point

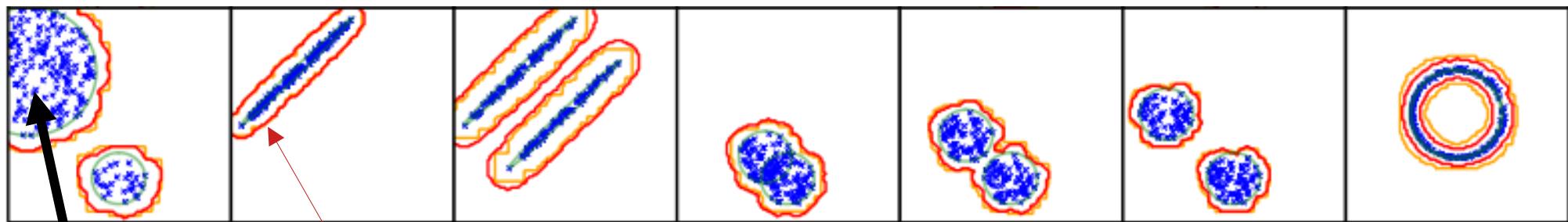
Buchner (2014,2019)

default algorithm in the UltraNest Python package

Buchner (2021) JOSS



Adapting to complex contours



Live points

Constructed sampling region

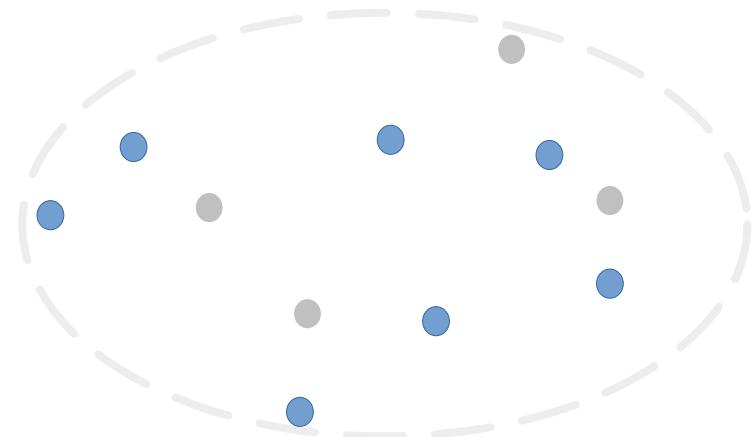
Demo:

<https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,banana>

Analysing the bootstrap

sample with replacement

→ 2/3 in **training sample**, 1/3 in validation sample



(37)

$$P(k) = \frac{S_2(K, k) K!}{K^K (K - k)!}$$

which combines the number of unique partitions of size k (S_2 , Stirling number of the second kind) with the number of permutations (selecting k out of K). The expectation of k is

(38)

$$E(k) = K \left(1 - \left(1 - \frac{1}{K} \right)^K \right) \quad \text{is } \sim 66\%$$

with the variance:

$$(39) \quad \text{Var}(k) = n \left(1 - \frac{1}{K} \right)^K + K^2 \left(1 - \frac{1}{K} \right) \left(1 - \frac{2}{K} \right)^K - K^2 \left(1 - \frac{1}{K} \right)^{2K}.$$

Never in validation sample in **m** rounds:

$$p_m < (1 - p_1)^m \times K$$

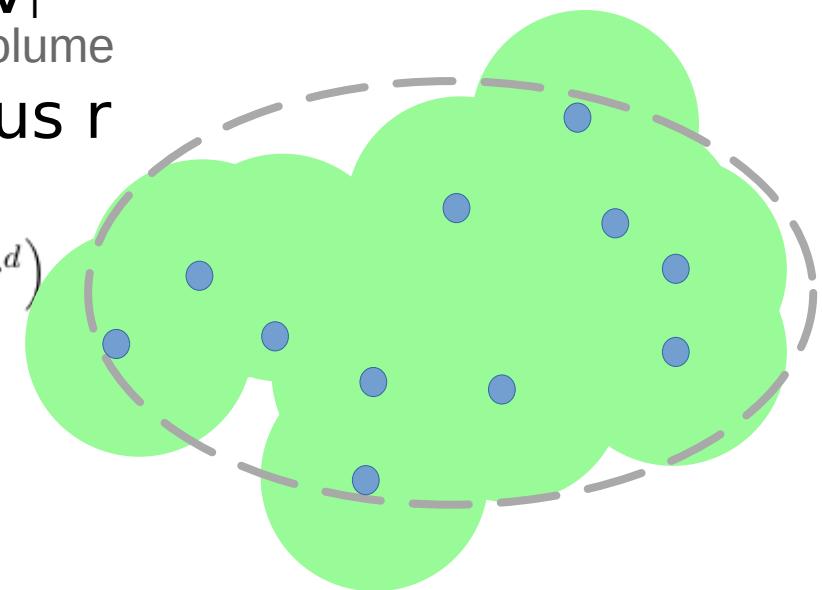
$$p_m = 10^{-6}, \quad K = 1000 \rightarrow m = 45$$

Analysing region construction

- Homogeneous Poisson Point Process
- within contour “Intensity” $\lambda = K / V_i$
Number of live points / Current prior volume
- Sphere around live point with radius r

no other live point nearby: $P(< r) = 1 - \exp(-\lambda V_d r^d)$

with unit n -sphere volume: $V_d = \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2} + 1\right)}$



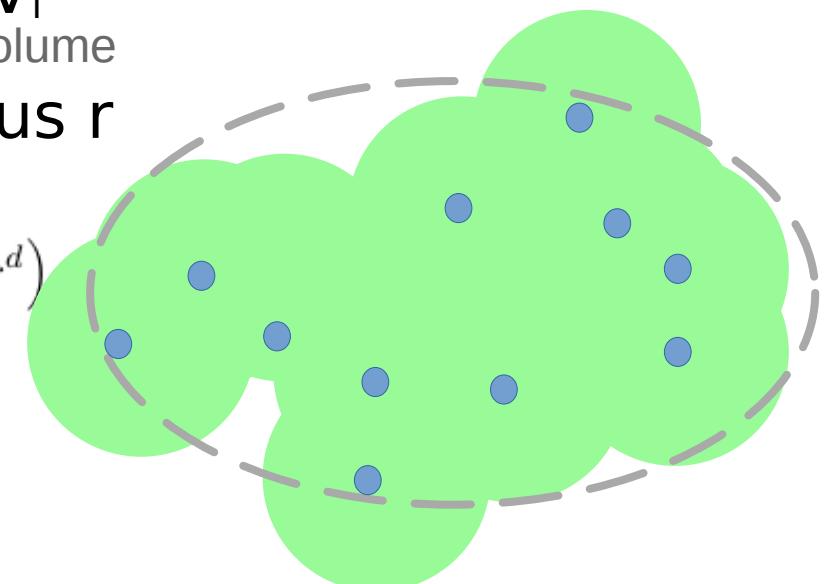
Analysing region construction

- Homogeneous Poisson Point Process
- within contour “Intensity” $\lambda = K / V_i$
Number of live points / Current prior volume
- Sphere around live point with radius r

no other live point nearby: $P(< r) = 1 - \exp(-\lambda V_d r^d)$

with unit n -sphere volume: $V_d = \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2} + 1\right)}$

Radius from m bootstrap rounds with K live points $r_{\max}^d \approx \frac{\ln\left(\frac{2}{3}Km\right)}{\frac{1}{3}K} \times \frac{V_i}{V_d}$



Analysing region construction

- Homogeneous Poisson Point Process
- within contour “Intensity” $\lambda = K / V_i$
Number of live points / Current prior volume
- Sphere around live point with radius r

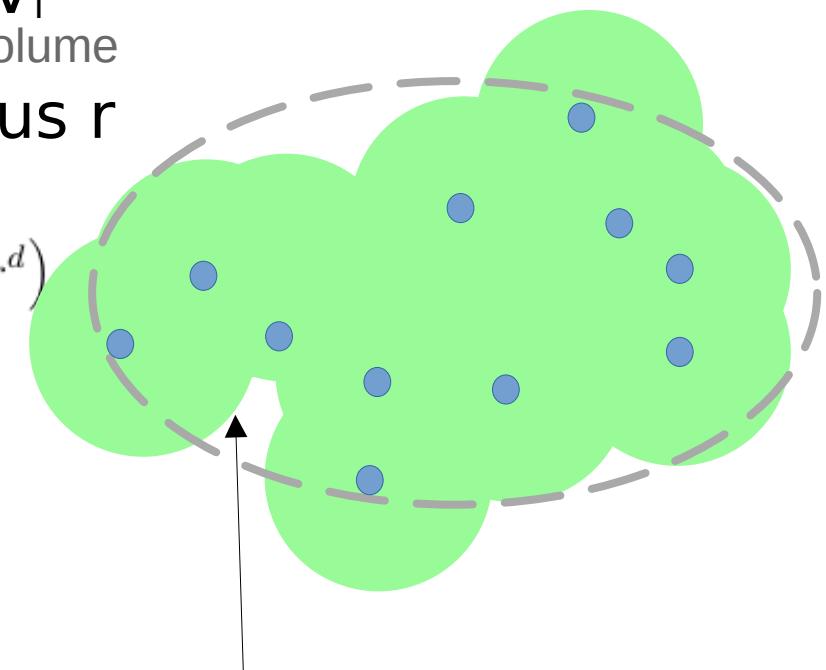
no other live point nearby: $P(< r) = 1 - \exp(-\lambda V_d r^d)$

with unit n-sphere volume: $V_d = \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2} + 1\right)}$

Radius from m bootstrap rounds with K live points $r_{\max}^d \approx \frac{\ln\left(\frac{2}{3}Km\right)}{\frac{1}{3}K} \times \frac{V_i}{V_d}$

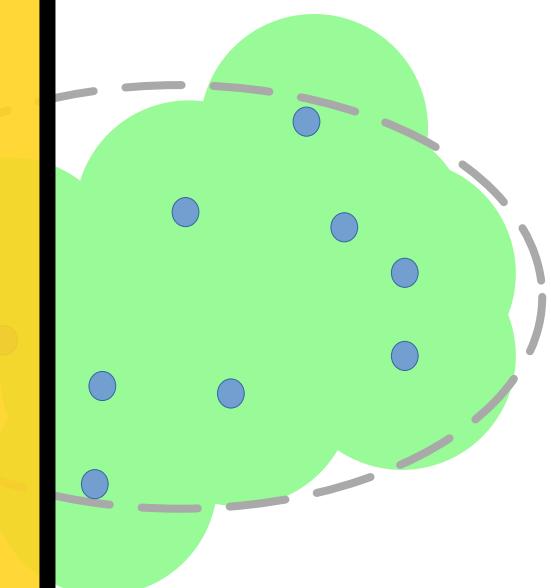
$$P^{\text{missed}} = \exp\left(-\lambda V_d r_{\max}^d\right) = \left(\frac{2}{3}Km\right)^{-3}$$

$$p_m = 10^{-6}, K = 1000 \rightarrow P^{\text{missed}} = 4 \times 10^{-14}$$



Analysing region construction

- Homogeneous Poisson Point Process
- $\lambda = K / V_i$
- Sphere at each iteration, a uniform live point distribution is maintained
 - By induction, nested sampling with MLFriends converges to posterior & evidence
 - With implementable, finite compute
 - Usual flag-pole caveat for all Monte Carlo algorithms (V/K resolution)



$$= \left(\frac{2}{3}Km\right)^{-3}$$
$$P^{\text{missed}} = 4 \times 10^{-14}$$

So what is BXA?

Idea: make
physical parameter inference &
model comparison
easy & practical

parallelisation,
resuming
sophisticated, robust

inference engine

based on nested sampling

MultiNest
UltraNest

+ background models
+ some visualisation tools

XMM2Athena
319,565 X-ray sources
processed (Webb+23)

community models
fully-fledged
fitting data formats
environment
sherpa
pyxspec
(threeml)
(spex)

Extra slides

- Landscape of X-ray spectral fitting
- Rules of thumb for UltraNest
- Parameter distributions from many data sets

An evolving software landscape

- **Xspec**

maintainance is institutional effort

Xspec models a community focal point

- 2014: BXA: xspec/sherpa plug-in for modern inference algorithms

Buchner+14

- 2022: Model emulators

- 2024+: Diff PPL: e.g. jaxspec

– Require re-implementing models!

Kerzendorf+22

Matzeu+22

Dupourqué+24

Barret+24

- Missing?

– partially diff XSF? → fastXSF

Great to see activity!

– Spectral component emulators + BXA?

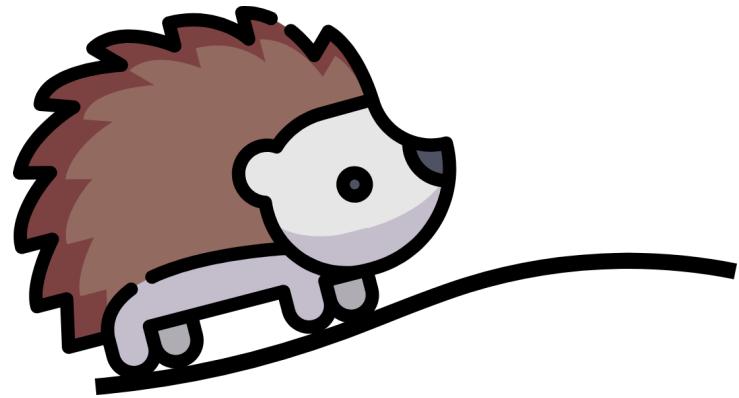
IACHEC statistics

Some nested sampling papers

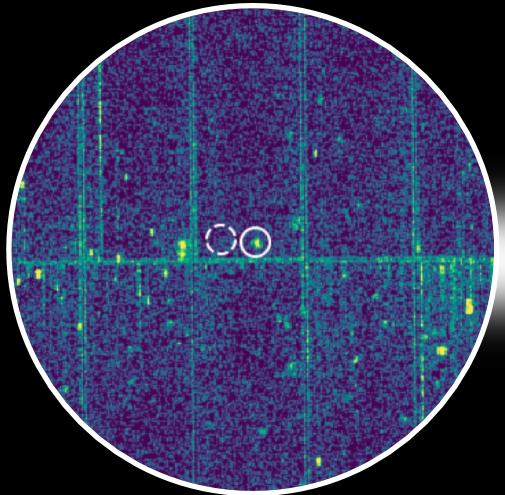
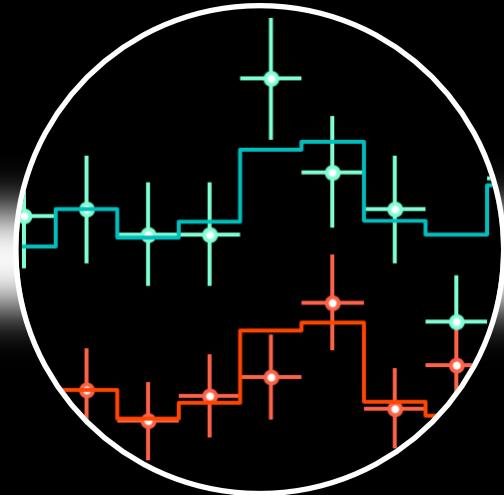
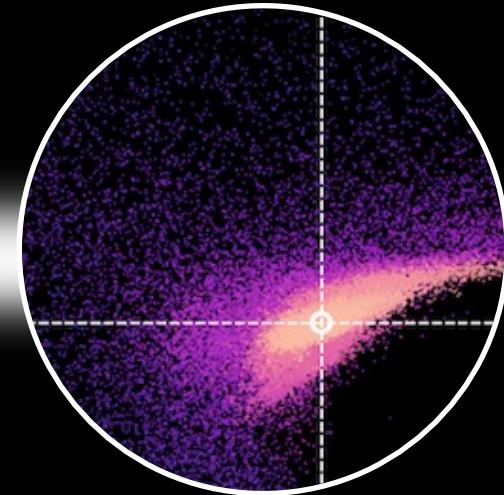
1 <input type="checkbox"/>	2016S&C....26..383B	2016/01	cited: 159	MultiNest biases RadFriends algorithm
	A statistical test for Nested Sampling algorithms			
	Buchner, Johannes			
2 <input type="checkbox"/>	2019PASP..131j8005B	2019/10	cited: 209	MLFriends algorithm (affine invariant form)
	Collaborative Nested Sampling: Big Data versus Complex Physical Models			
	Buchner, Johannes			
3 <input type="checkbox"/>	2021JOSS....6.3001B	2021/04	cited: 413	UltraNest software paper
	UltraNest - a robust, general purpose Bayesian inference engine			
	Buchner, Johannes			
4 <input type="checkbox"/>	2021JOSS....6.3045B	2021/05	cited: 6	BXA software paper
	Bayesian X-ray Analysis (BXA) v4.0			
	Buchner, Johannes			
5 <input type="checkbox"/>	2022PSFor...5...46B	2022/12	cited: 4	Performance comparison of step sampler proposals
	Comparison of Step Samplers for Nested Sampling			
	Buchner, Johannes			
6 <input type="checkbox"/>	2023StSur..17..169B	2023	cited: 107	Systematic literature review
	Nested Sampling Methods			
	Buchner, Johannes			
7 <input type="checkbox"/>	2024arXiv240211936B	2024/02	cited: 3	stuck step samplers diagnostic
	Relative Jump Distance: a diagnostic for Nested Sampling			
	Buchner, Johannes			

Rules of thumb for UltraNest

- Do inference correct once is faster than quick & dirty heuristics that need many verification simulations
- Read the documentation :)
- Number of live points $O(1000)$
- If $d > 20$, use a step sampler
 - RJD diagnostic
- Priors do not have to be uniform – smooth edges may be useful to avoid rerunning
- Define your question well



Merci de votre attention! **Avez-vous des questions?**



Johannes Buchner

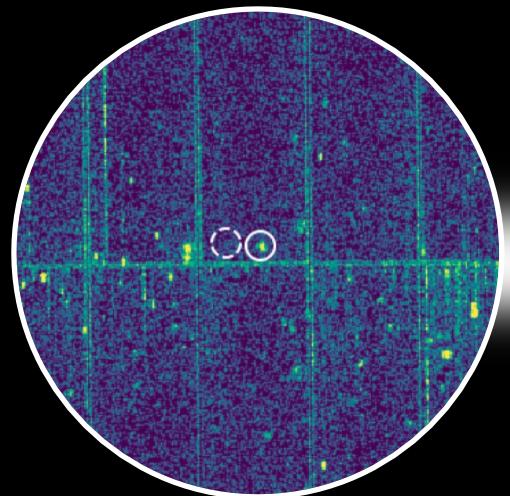
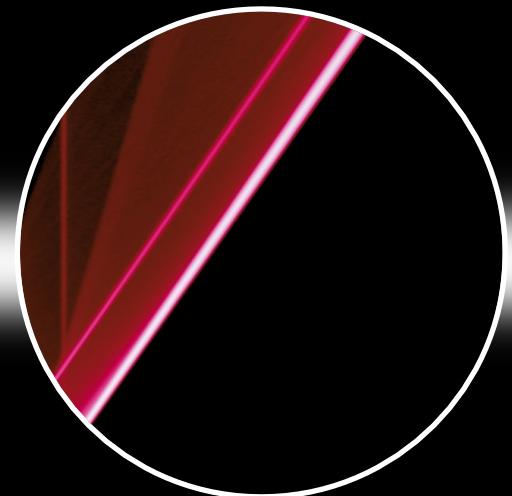
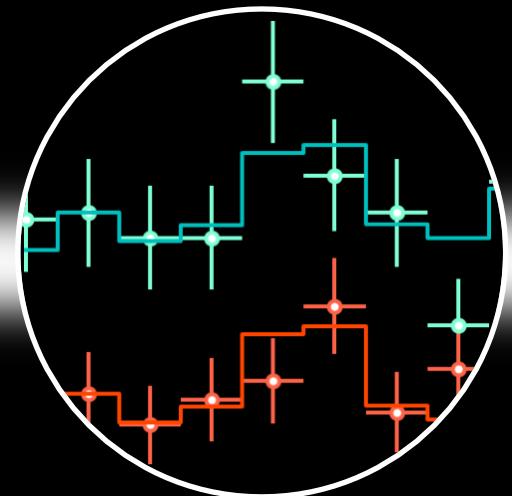
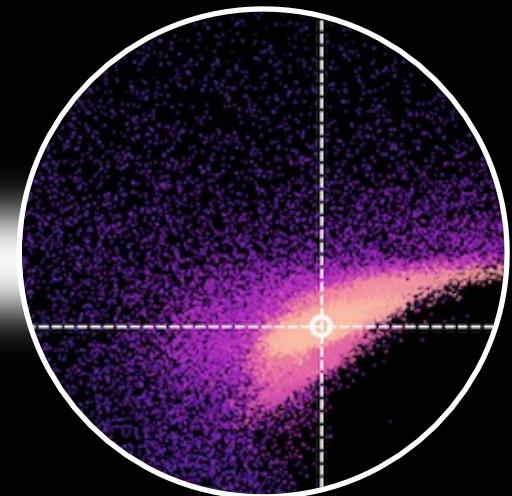
jbuchner@mpe.mpg.de

astrost.at/istics

Peter Boorman

boorman@mpe.mpg.de

peterboorman.com



peterboorman.com/tutorial_bxa