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X-Ray Imaging and
Spectroscopy Mission

Unprecedented high spectral resolution X-ray data

But for analysis..

- Very large response matrices
XRISM XL RMF ~1 GB

- More than 10,000 bins

- Needs comprehensive atomic database

- Requires extensive exploration of the
parameter space



Agarwal, M.,+ (submitted)

UltraSPEX

Python tool — Iintegrates UltraNest with SPEX

Why use UltraSPEX?
UltraNest SPEX

(Bayesian framework with Nested Sampling)
- Extensively explore parameter space - Optimally bin the response file
- Supports high-dimensional, multimodal ¥ (XRISM XL RMF 800 MB -> 20 MB)

distribution - Comprehensive atomic database
- Robust to parameter degeneracies - Higher customizability of models
- Bayesian evidence - Tunable optimisations for quick calc

- Parallelizable (e.g., ignore ions, ignore broadening)



Cassiopeila A

dead-star of the show

« Youngest galactic core-collapse supernova
(~350 years)

* Nearby (~3.4 kpc or ~11,000 light-years)
» Light Echoes (Rest et al. 2008, Krause et al. 2008)

« Secure spectroscopic classification (Type lib)
.e. stripped envelope explosion of a

red supergiant (15-25 M ;)

 Light echoes from different vantage points
show asymmetric explosion

 Neutron star

« Benchmark system to study the
formation and destruction of dust

« Brightest object in radio, and very bright in X-ray
thus very well-studied across all wavelengths




XRISM Observations of Cas A
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Chandra / Suzaku
X-ray CCDs

XRISM (Resolve)
Microcalorimeter

Credits: M. Sawada; XRISM
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XRISM Cassiopelia A

- Overview paper
Plucinsky P.,, Agarwal M.,+ 2025 (PASJ XRISM special issue)

- Mapping Dynamics of Si/S ejecta
Vink J., Agarwal M.+ 2025 (PASJ XRISM special issue)
Suzuki+ 2025 (PASJ XRISM special issue)

ociety of

- Mapping Dynamics of Fe ejecta
Bamba A., Agarwal M.,+ 2025 (PASJ XRISM special issue)

- Detection of P, Cl, and K
XRISM Collab.,+ 2025 (Nature Astronomy)

Soeceal ksse; Lo cial Results fram SRISM

- Mapping Plasma properties - Physical model - UltraSPEX
Agarwal M.,+ (submitted to ApJ)



Mapping dynamics of SiI/S ejecta - Gaussian analysis
Vink J., Agarwal M.,+ 25 (PASJ special issue)
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H-like lines faster than He-like

Vink J., Agarwal M.,+ 25 (PASJ special issue) . Generally, the H-like lines have a

He-like Si/S He-like Si/s higher absolute velocity compared to
Velocity %0 Broadening ° He-like lines
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« Suzuki+ 25, we explain this with
N e S a two-component NEI model -
: Y ) L e e the ejecta with a higher velocity
‘? G are shock heated earlier, and thus a
higher ionization is achieved

~1000

« Caveat: In some regions in NW we
find He-like lines to be faster
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Dynamics of Si and S ejecta - Double Gaussian analysis
Vink J., Agarwal M.,+ 25 (PASJ special issue) |
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UltraSPEX fits

Vink J., Agarwal M.,+ 25 (PASJ special issue)
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Double Gaussian fitting - line profiles (vinkJ. Agarwal M.+ 25)
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Redshift of Si and S ejecta

Vink J., A | M., + 25 .
IN garwa » Both components are either

Relatively blue-shifted component Relatively red-shifted comy; red-shifted (N\Y) or blue-shifted (SE)
He-like Si/S He-like Si/S
« Except north,

distinct red-shifted ( ) and
blue-shifted ( ) components

« Narrow, low-velocity components near
the center likely originate from shocked
CSM, but their exact origin remains

ambiguous

explosion center
forward shock
reverse shock
s shocked ejecta
shocked CSM




Broadening of Si and S ejecta

Vink J., A | M.,+ 25 .
IN garwa « Both components are either

Relatively blue-shifted component Relatively red-shifted comy { + red-shifted (NW) or blue-shifted (SE)

L R o = \.. « Except north,
A~ pa ’ ‘ . \ / \ ' :
H . /. : distinct red-shifted ( ) and
s B ' blue-shifted ( ) components

- Narrow, low-velocity components near
the center likely originate from shocked
CSM, but thelr exact origin remains
ambpbiguous
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XRISM Cassiopeia A

- Overview paper
Plucinsky P.,, Agarwal M.,+ 2025 (PASJ XRISM special issue)

- Mapping Dynamics of Si/S ejecta
Vink J., Agarwal M.,+ 2025 (PASJ XRISM special issue)
Suzuki+ 2025 (PASJ XRISM special issue)

ociety of

- Mapping Dynamics of Fe ejecta
Bamba A., Agarwal M.,+ 2025 (PASJ XRISM special issue)

- Detection of P, Cl, and K
XRISM Collab.,+ 2025 (Nature Astronomy)

Soeceal bssae; L0 gl Results from SRISM

- Mapping Plasma properties - Physical model - UltraSPEX
Agarwal M.+ (submitted to ApJ)
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Plasma dynamics

Asymmetric uncertainties and multimodal posteriors for redshift
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Plasma dynamics
- Fe-group has both higher Doppler velocity and Doppler broadening than the IMEs in most regions

- The Doppler kinematic differences between IMEs and IGEs are highest near the center and
decrease radially outwards.
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Plasma dynamics

Ca has higher Doppler velocities than the IMEs, and even Fe, in some SE regions

Ca ~ -1500 km/s, i.e., more than 5()01“%88 km/s faster than IMEs
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lonisation age and electron temperature - oo sacsor

the plasma
- We find generally lower values for electron temperature than expected.

- An Intriguing anti-correlation between ionisation age and electron temperature

The ejecta was shocked at a lower velocity than expected,
and the n, was higher than expected, likely due to clumping
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Nonthermal emission

Several parameter degeneracies
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Nonthermal emission

Western regions show enhanced nonthermal emission and a harder spectrum

We find a high (>50%) contribution of nonthermal emission |
to the 4-6 keV continuum flux across the remnant R
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UltraSPEX

new Python tool to do Bayesian model fitting with SPEX
Mmaximize the scientific return of your high-resolution data

* SI/S ejecta dynamics — incomplete shell structure - Vink J., Agarwal M., +25

» Most regions, either redshifted (NW) or blueshifted (SE) — match the patchy, knotty shell structure
seen in optical data

» Except in the north, where both sides of the shocked ejecta shell are visible
* Narrow lines (<500 km/s) in the center, potentially shocked CSM

* Mapping plasma properties — physical modeling with UltraSPEX - Agarwal+26 (submitted)

* High abundance ratios of Ar/Si, Ca/Si and Ni/Fe at the base of the jets

* Fe-group faster and broader than IMEs in most regions (interesting exception with Ca)

» Evidence for lower-than-expected shock velocities in the past and highly clumpy ejecta
* High (>50%) nonthermal contribution throughout the remnant
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