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Motivations

Investigate Simulation Based Inference as a way to accurately fit complex X-ray spectra without requiring 
to too extensive computational resources 

As currently shown with XRISM-Resolve data, fitting spectra is rather challenging : takes ages and full 
Bayesian analysis is often not considered 

We need to prepare for data of even higher complexity and richness as expected from X-IFU (and data 
below 2 keV)
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SIXSA

In Paper 1 : Demonstration of working principles with CCD-like resolution— introduction of the PCA to 
reduce the dimensions of the spectra. Worked well in Gaussian and Poisson regimes (BD A&A 2024)

In Paper 2: First application to X-IFU mock spectra with the introduction of summary statistics to reduce 
the dimension of the spectra (DB, A&A 2025)

In Paper 3: Usage of an auto encoder to compress X-IFU like spectra and importance sampling for 
correcting the approximate posteriors with the known likelihood — scope of my presentation (Barret & 
Dupourqué, A&A submitted , 2025arXiv251216709B)
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SIXSA : what it does and doesn’t (yet)

Built upon the sbi package (Boelts 2025)

Relies on PyXspec to enable the use of the suite of spectral models available in XSPEC
‣ For X-IFU like spectra and complex models, simulations are the bottle neck (so is the evaluation of the likelihoods)

‣ 10000s of simulations required : NICER/XMM-Newton up to 6000 sim./seconds — Resolve/X-IFU down to 50 sim./
seconds 

Developed and tested on a Multi-core Mac-Power book (M3, 16 cores, 128G)

Use of XSPEC MCMC (Arnaud 1996), BXA (Buchner+) posteriors (obtained through parallelization) and 
Jaxspec (Dupourqué+)

Available on GitHub

Limited to one spectrum at a time for non amortized inference 
‣ Joint fitting of multiple spectra with tied model parameters not yet implemented

‣ Considering background is not an issue if a background spectrum exists (to be added to the source simulated 
spectrum) or a background model exists (to be folded simultaneously to the source model)
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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Initial proposal
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Restricting the priors through a classifier

Train a classifier to restrict the parameter space, by 
keeping parameter samples associated with the lowest 
c-stat (a given fraction say 5-10% of the samples)

Very fast — does not need large training samples 

The sbi package provides such a classifier (MLP, 
Resnet)

Design your own with you own classification criteria
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SIXSA pipeline — Multi-round inference

At each step, sanity checks can be performed
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Why summarizing spectra?

Reduce the information to ease the neural density estimator learning of the likelihood and prevent 
overfitting — limit is around hundreds of channels hence not applicable to Resolve/X-IFU spectra

Various reduction techniques: 
‣ Principal Component Analysis — not efficient when the spectra are similar

‣ Summary statistics — feature engineering, best if physics informed — global ones such as harness ratios good for 
featureless spectra

‣ Auto-encoders
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Autoencoders to summarize spectra

An autoencoder is a type of artificial neural network used primarily for unsupervised learning, especially in 
tasks like data compression, denoising, or dimensionality reduction.

Autoencoders have a symmetrical architecture, usually composed of three main parts:
‣ 1. Encoder

➡ Transforms the input data into a compressed (lower-dimensional) representation, called the latent space or bottleneck.

➡ Learns to capture the most important features of the input.

‣ 2. Latent Space / Bottleneck
➡ The compressed version of the input.

➡ Contains the essential information the model thinks is necessary to reconstruct the input.

‣ 3. Decoder
➡ Reconstructs the original input from the latent representation.

➡ Tries to make the output as close as possible to the original input.

The network is trained to minimize the difference between the input and the output, usually using a loss 
function like the Mean Squared Error (MSE).
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Autoencoders to summarize spectra

Structure of the encoder: 
‣ A sequence of fully connected (nn.Linear) layers.

‣ Each hidden layer is followed by:
➡ Batch Normalization (nn.BatchNorm1d) to stabilize training.

➡ GELU activation (nn.GELU) — a smooth, non-linear activation 

‣ The final encoder layer maps the last hidden layer to the latent 
space (latent_dim).

The decoder mirrors the structure of the encoder

Instead of using the MSE for the loss function, we consider 
the c-stat to account for the Poisson statistics of the 
simulated spectra

Each spectrum (2-3000 bins) is reduced to an array of 64 
elements (64 arbitrarily chosen) 

12
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Autoencoders to summarize spectra
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Autoencoders to summarize spectra
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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Infer

A neural network is then trained to learn the mapping between the model parameters and the compressed 
representations of the spectra as to approximate the likelihood
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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Truncated proposal - useful for BXA
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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Importance sampling

SIXSA does not require a likelihood to generate approximated posteriors.

However, in our case, the likelihood is known and can be used to correct the approximate posteriors 
through importance sampling as to get asymptotically exact posteriors 

How do it works ? 
‣ The target posterior distribution is 

‣ The proposal distribution is 

‣ The importance weights are then : 

‣ We draw a large number of samples from the proposal distribution, compute their importance weights with the exact 
likelihoods 

p(θ ∣ x) ∝ p(x ∣ θ) p(θ),

q(θ ∣ x)

w(θ) ∝
p(x ∣ θ) p(θ)

q(θ ∣ x)
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Importance sampling correction
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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Parameter retriever

Before using compressed spectral data in a neural density estimator, one can test whether a neural network 
can reliably map model parameters to the compressed spectra. 

This step validates the effectiveness of the compression method in preserving relevant information from the 
original high-dimensional spectra.

Why Compression First?
‣ Raw spectra contain thousands of bins—too complex for direct parameter mapping.

‣ Compression reduces dimensionality while aiming to retain essential features.

Testing this mapping helps determine:
‣ Whether the compression retains the key physical features.

‣ Which model parameters are best constrained by the data.

Neural Network Architecture: Parameter_retriever
‣ Type: Multi-Layer Perceptron (MLP)
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Parameter retriever

Before using compressed spectral data in a neural density estimator, one can test whether a neural network 
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Parameter retriever
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When things go right When things go wrong (spin is not constrained)
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SIXSA pipeline — Multi-round inference

At each step, sanity checks are performed
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A likelihood emulator

To reduce the computational burden of importance sampling, we use a neural network—
Likelihood_emulator—to approximate the likelihood function. This allows for fast and efficient evaluation 
across large parameter spaces.

Importance sampling requires a large number of likelihood evaluations.

Neural networks can learn the mapping from spectral model parameters to the likelihood function using a 
moderate training set (~tens of thousands of samples).

Once trained, the model dramatically speeds up evaluation without significantly sacrificing accuracy.
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Once trained the NN can predict likelihoods from new model parameters in no time (importance sampling)
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Further demonstration with 2 bvapec
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Application to real XRISM data - Perseus
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Scientific application - Poisson regime

Tracking the emission of the burst accounting for its interaction with the (blown) accretion disk emission !
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Conclusions 

Simulation-based inference with neural posterior estimation is a novel technique for X-ray spectra fitting

SIXSA delivers exact posteriors, comparable to MCMC and BXA (compression and importance sampling)

Applicable a wide range of spectral data from moderate to high spectral resolution data, biggest challenge 
is XRISM so far

Adding new features, such as for detecting model mis-specifications, is planned an over the long run, 
investigate how to deal with systematics in the data

Scientific applications to further increase its robustness. Nothing more efficient than real data. 

Catching up with latest developments in the field of SBI. Building blaock 

We want to make the building blocks available to the broader community ! — stay tuned ! 
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