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Cesa

@) Motivations < IFU

ATHENA X-ray Integral Field Unit

® Investigate Simulation Based Inference as a way to accurately fit complex X-ray spectra without requiring
to too extensive computational resources

® As currently shown with XRISM-Resolve data, fitting spectra is rather challenging : takes ages and full
Bayesian analysis is often not considered

© We need to prepare for data of even higher complexity and richness as expected from X-IFU (and data
below 2 keV)
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¥ IFU

ATHENA  X-ray Integral Field Unit

® In Paper 1 : Demonstration of working principles with CCD-like resolution— introduction of the PCA to
reduce the dimensions of the spectra. Worked well in Gaussian and Poisson regimes (BD A&A 2024)

® In Paper 2: First application to X-IFU mock spectra with the introduction of summary statistics to reduce
the dimension of the spectra (DB, A&A 2025)

® In Paper 3: Usage of an auto encoder to compress X-IFU like spectra and importance sampling for

correcting the approximate posteriors with the known likelihood — scope of my presentation (Barret &
Dupourgué, A& A submitted , 2025ar X10251216709B)
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Cesa

@=) SIXSA :what it does and doesn’t (yet) ’< IFU

ATHENA X-ray Integral Field Unit

@ Built upon the sbi package (Boelts 2025)

® Relies on PyXspec to enable the use of the suite of spectral models available in XSPEC

» For X-IFU like spectra and complex models, simulations are the bottle neck (so is the evaluation of the likelihoods)

» 10000s of simulations required : NICER/ XMM-Newton up to 6000 sim./seconds — Resolve/X-IFU down to 50 sim. /
seconds

® Developed and tested on a Multi-core Mac-Power book (M3, 16 cores, 128G)

® Use of XSPEC MCMC (Arnaud 1996), BXA (Buchner+) posteriors (obtained through parallelization) and
Jaxspec (Dupourqué+)

© Available on GitHub

@ Limited to one spectrum at a time for non amortized inference
» Joint fitting of multiple spectra with tied model parameters not yet implemented

» Considering background is not an issue if a background spectrum exists (to be added to the source simulated
spectrum) or a background model exists (to be folded simultaneously to the source model)
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““athena

SIX5SA pipeline — Multi-round inference

*< IFU

ATHENA

X-ray Integral Field Unit

Sample & Simulate
{0}, ~ Proposal(0)

&z
— 1 x}. = Model({6} )

Barret & Dupourqué, A&A submitted , 2025arXiv251216709B

Inference round

Infer
Train NDE using

()}, 104,

Summarize
Train S on {x},

PCA, Spectral summaries,
Embedding Net, Autoencoder ...

. Parameter retriever :
: Optional neural network :
. retrieving the spectral model
: parameters from the latent space:
. Diagnosis for the efficiency of :

the compression schemes

-------------------------------------------------

Need Convergence
refinement reached
— e

------------------------------------------------

. Neural network to speed up
. the sampling of the proposal,
focusing on high density

4

: regions of the parameter space :

------------------------------------------------

Importance sampling

Exact correction with the final
proposal and the true likelihood

. Likelihood emulator :

EOptionaI network learning the:
: posterior probability to speed:
. up the importance sampling :

Fosteron?)

® At each step, sanity checks are performed
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““athena

SIX5SA pipeline — Multi-round inference

*< IFU

ATHENA

X-ray Integral Field Unit

Need Convergence
refinement reached
— e

Inference round

------------------------------------------------

. Parameter retriever :
: Optional neural network :
. retrieving the spectral model
: parameters from the latent space:
. Diagnosis for the efficiency of :

the compression schemes

-------------------------------------------------

. Neural network to speed up

. the sampling of the proposal,
focusing on high density :

. regions of the parameter space :

------------------------------------------------

~_______i|sample & Simulate Summarize Infer E
| Prior(0) , > {0} . ~ Proposal(6) Train S on {x.}l. Train NDE using |
—— { |{x}, = Model({0) )| | erecssicemmmznes || (S0}, {6}, |

Importance sampling

Exact correction with the final
proposal and the true likelihood

. Likelihood emulator :

EOptionaI network learning the:
: posterior probability to speed:
. up the importance sampling :

Fosteror©)

® At each step, sanity checks are performed
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%y Sample and simulate *SIFU

ATHENA X-ray Integral Field Unit

e A power law with a narrow line of fixed energy with unknown redshift and width (Poisson statistics added)

Prior coverage @t.f(?l.md 0 Withl QOOQO simulat;ed spectra
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@) Restricting the priors through a classifier #S1FU

ATHENA X-ray Integral Field Unit

— restricted prior : samples at round 1
-—= restricted prior : samples at round 3
— restricted prior : samples at round 5
@ Train a classifier to restrict the parameter space, by
keeping parameter samples associated with the lowest :
. . -
c-stat (a given fraction say 5-10% of the samples) E
® Very fast — does not need large training samples PR
.
D NG
° . o (o ) -\;.:,
@ The sbi package provides such a classifier (MLP, =
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““athena

SIX5SA pipeline — Multi-round inference

*< IFU

ATHENA

X-ray Integral Field Unit

Need Convergence
refinement reached
— e

Inference round

------------------------------------------------

. Parameter retriever :
: Optional neural network :
. retrieving the spectral model
: parameters from the latent space:
. Diagnosis for the efficiency of :

the compression schemes

-------------------------------------------------

. Neural network to speed up

. the sampling of the proposal,
focusing on high density :

. regions of the parameter space :

------------------------------------------------

i |sample & Simulate Summarize Infer E
| Prior(0) , {0} ~ Proposal(6) Train S on {x_}l. Train NDE using | :
o {x}. = Model({0}) Embedding Net. Atoencoder ... {S(x)} > {H}i 5

Importance sampling

Exact correction with the final
proposal and the true likelihood

. Likelihood emulator :

EOptionaI network learning the:
: posterior probability to speed:
. up the importance sampling :

Fosteror©)

@ At each step, sanity checks can be performed
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@) Why summarizing spectra? S IFU

ATHENA X-ray Integral Field Unit

® Reduce the information to ease the neural density estimator learning of the likelihood and prevent
overfitting — limit is around hundreds of channels hence not applicable to Resolve/X-IFU spectra

@ Various reduction techniques:
» Principal Component Analysis — not efficient when the spectra are similar

» Summary statistics — feature engineering, best if physics informed — global ones such as harness ratios good for
featureless spectra

» Auto-encoders
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@=) Autoencoders to summarize spectra ’$IFU

ATHENA X-ray Integral Field Unit

©® An autoencoder is a type of artificial neural network used primarily for unsupervised learning, especially in
tasks like data compression, denoising, or dimensionality reduction.

® Autoencoders have a symmetrical architecture, usually composed of three main parts:

» 1. Encoder

= Transforms the input data into a compressed (lower-dimensional) representation, called the latent space or bottleneck.
= Learns to capture the most important features of the input.
» 2. Latent Space / Bottleneck
= The compressed version of the input.
= (Contains the essential information the model thinks is necessary to reconstruct the input.
» 3. Decoder
= Reconstructs the original input from the latent representation.

= Tries to make the output as close as possible to the original input.

® The network is trained to minimize the difference between the input and the output, usually using a loss
function like the Mean Squared Error (MSE).
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esa

@=) Autoencoders to summarize spectra ’$IFU

ATHENA X-ray Integral Field Unit

© Structure of the encoder:

» A sequence of fully connected (nn.Linear) layers.

» Each hidden layer is followed by:

, input_dim, latent_dim, hidden_dims):

0
= Batch Normalization (nn.BatchNorm1d) to stabilize training.

= GELU activation (nn.GELU) — a smooth, non-linear activation

encoder_layers = []
prev_dim = input_dim

» The final encoder layer maps the last hidden layer to the latent [EEEESEINEETRIES

. encoder_layers += [
space (latent_dim). e e G, (1),
nn.BatchNormld(h),
nn.GELU()

© The decoder mirrors the structure of the encoder 1

prev_dim = h

encoder_layers.append(nn.Linear(prev_dim, latent_dim))

.encoder = nn.Sequential(*encoder_layers)

® Instead of using the MSE for the loss function, we consider
the c-stat to account for the Poisson statistics of the
simulated spectra

@ Each spectrum (2-3000 bins) is reduced to an array of 64 Python code of the encoder (torch)

elements (64 arbitrarily chosen)
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Autoencoders to summarize spectra < IFU

ATHENA X-ray Integral Field Unit
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Autoencoders to summarize spectra <IFU

ATHENA X-ray Integral Field Unit
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““athena

SIX5SA pipeline — Multi-round inference

*< IFU

ATHENA

Need Convergence
refinement reached
— e

Inference round

------------------------------------------------

. Parameter retriever :
: Optional neural network :
. retrieving the spectral model
: parameters from the latent space:
. Diagnosis for the efficiency of :

the compression schemes

-------------------------------------------------

. Neural network to speed up

. the sampling of the proposal,
focusing on high density :

. regions of the parameter space :

------------------------------------------------

i |sample & Simulate Summarize Infer E
| Prior(0) , {0} ~ Proposal(6) Train S on {x.}l. Train NDE using |
o {x}. = Model({0}) Embedding Net. Atoenooder ... {S(x)} > {H}i 5

Importance sampling

Exact correction with the final
proposal and the true likelihood

. Likelihood emulator :

EOptionaI network learning the:
: posterior probability to speed:
. up the importance sampling :

Fosteror©)

® At each step, sanity checks are performed
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= Infer ’< IFU

ATHENA X-ray Integral Field Unit

@ A neural network is then trained to learn the mapping between the model parameters and the compressed
representations of the spectra as to approximate the likelihood

Training history — SIXSA round 2
5F « XSPEC best fit c-stat=2240.7/2807 d.o.f
. (O MRIround 1 : Best validation loss = -14.0 (training time=89.7 s) |

O MRI round 2 : Best validation loss = -25.6 (training time=15.3 s) |
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b SIXSA pipeline — Multi-round inference

*< IFU

ATHENA

X-ray Integral Field Unit

Need Convergence
refinement reached
— e

Inference round

Sample & Simulate Summarize Infer
{0}, ~ Proposal(6) Train S on {x}, Train NDE using
{x}. = Model({8} )] | embeaing net autoencoaer .. || 15(X) };, 10}

GE

4

llllllllllllllllllllllllllllllllllllllllllllllll

~ Parameter retriever " Truncated proposal

Optional neural network Neural network to speed up

: retr|e¥|ng ]:[he S,E’heCTr?l rr?[odel i : the sampling of the proposal,
: parameters from the latent space: focusing on high density

. Diagnosis for the efficiency of  regions of the parameter space :
the compression schemes : :

--------------------------------------------------
lllllllllllllllllllllllllllllllllllllllllllllll

. Importance sampling

Exact correction with the final
proposal and the true likelihood

. Likelihood emulator :

EOptionaI network learning the:
: posterior probability to speed:
. up the importance sampling :

Fosteron?)

® At each step, sanity checks are performed
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b Truncated proposal - useful for BXA <IFU

ATHENA X-ray Integral Field Unit

— Proposal after inference round 1 A\ — SIXSA round 1
****** Proposal after inference round 2 — SIXSA round 2

* Best fit XSPEC | - SIXSA round 3
* Best fit XSPEC
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““athena

SIX5SA pipeline — Multi-round inference

*< IFU

ATHENA

Need Convergence
refinement reached
— e

Inference round

------------------------------------------------

. Parameter retriever :
: Optional neural network :
. retrieving the spectral model
: parameters from the latent space:
. Diagnosis for the efficiency of :

the compression schemes

-------------------------------------------------

. Neural network to speed up

. the sampling of the proposal,
focusing on high density :

. regions of the parameter space :

------------------------------------------------

i |sample & Simulate Summarize Infer E
| Prior(0) , {0} ~ Proposal(6) Train S on {x.}l. Train NDE using | :
o {x}. = Model({0}) Embedding Net. Atoenooder ... {S(x)} > {H}i 5

Importance sampling

Exact correction with the final
proposal and the true likelihood

- Likelihood emulator :

EOptionaI network learning the:
: posterior probability to speed:
. up the importance sampling :

Fosteron?)

® At each step, sanity checks are performed
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@) Importance sampling ’< IFU

ATHENA X-ray Integral Field Unit

© SIXSA does not require a likelihood to generate approximated posteriors.

© However, in our case, the likelihood is known and can be used to correct the approximate posteriors

through importance sampling as to get asymptotically exact posteriors

© How do it works ?

» The target posterior distribution is p(@ | x) o« p(x | ) p(6),

» The proposal distribution is g(8 | x)

0) p(0
, Theimportance weights are then : w(f) p(x | ) pl0)
q(0 | x)

» We draw a large number of samples from the proposal distribution, compute their importance weights with the exact
likelihoods
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athena
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Histogram of importance weights
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@) SIXSA pipeline — Multi-round inference

*< IFU

ATHENA

X-ray Integral Field Unit

Need Convergence
refinement reached
— e

Inference round

4

------------------------------------------------

. Parameter retriever " Truncated proposal

Optional neural network Neural network to speed up

: retrie¥ing ]:che Sfﬁcfr? rr;odel : the sampling of the proposal,
: parameters from the latent space: focusing on high density

. Diagnosis for the efficiency of : : regions of the parameter space
the compression schemes : :

llllllllllllllllllllllllllllllllllllllllllllllllll
-----------------------------------------------

-------------------------------------------------- N Importance sampling

e Sample & Simulate Summarize Infer 5 Exact correotion with the final
| Prior(0) {6} ~ Proposal(0) Train S on {x}, Train NDE using | *Likelihood emulator |
IR PCA, Spectral summaries, . :Optional network learning the:
{x }i = Model({&} i) Embedding Net, Autoencoder ... { S (X) } i { 0 } ; : posterior probabilty o speed
o |POSterior(0),

® At each step, sanity checks are performed
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© Before using compressed spectral data in a neural density estimator, one can test whether a neural network

Parameter retriever *SIFU

ATHENA X-ray Integral Field Unit

can reliably map model parameters to the compressed spectra.

@ This step validates the effectiveness of the compression method in preserving relevant information from the

original high-dimensional spectra.

® Why Compression First?

» Raw spectra contain thousands of bins—too complex for direct parameter mapping.

» Compression reduces dimensionality while aiming to retain essential features.

® Testing t

» W]

hetl

nis mapping helps determine:

ner the compression retains the key physical features.

» W

nich model parameters are best constrained by the data.

© Neural Network Architecture: Parameter retriever

» Type: Multi-Layer Perceptron (MLP)
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© Before using compressed spectral data in a neural density estimator, one can test whether a neural network

Parameter retriever *SIFU

ATHENA X-ray Integral Field Unit

can reliably map model parameters to the compressed spectra.

@ This step validates the effectiveness of the compression method in preserving relevant information from the

original high-dimensional spectra.

® Why Compression First?

» Raw spectra contain thousands of bins—too complex for direct parameter mapping.

» Compression reduces dimensionality while aiming to retain essential features.

® Testing t

» W]

hetl

nis mapping helps determine:

ner the compression retains the key physical features.

» W

nich model parameters are best constrained by the data.

© Neural Network Architecture: Parameter retriever

» Type: Multi-Layer Perceptron (MLP)
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%y Parameter retriever *SIFU

X-ray Integral Field Unit

ATHENA
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““athena

SIX5SA pipeline — Multi-round inference

*< IFU

ATHENA

Need Convergence
refinement reached
— e

Inference round

------------------------------------------------

. Parameter retriever :
: Optional neural network :
. retrieving the spectral model
: parameters from the latent space:
. Diagnosis for the efficiency of :

the compression schemes

-------------------------------------------------

. Neural network to speed up

. the sampling of the proposal,
focusing on high density :

. regions of the parameter space :

------------------------------------------------

i |sample & Simulate Summarize Infer E
| Prior(0) , {0} ~ Proposal(6) Train S on {x.}l. Train NDE using | :
o {x}. = Model({0}) Embedding Net. Atoenooder ... {S(x)} > {H}i 5

Importance sampling

Exact correction with the final
proposal and the true likelihood

. Likelihood emulator :

;Optional network learning the:
: posterior probability to speed :
: up the importance sampling :

Fosteror0)

® At each step, sanity checks are performed
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Cesa

@) A likelihood emulator ’< IFU

ATHENA X-ray Integral Field Unit

® To reduce the computational burden of importance sampling, we use a neural network—
Likelihood_emulator—to approximate the likelihood function. This allows for fast and efficient evaluation
across large parameter spaces.

@ Importance sampling requires a large number of likelihood evaluations.

@ Neural networks can learn the mapping from spectral model parameters to the likelihood function using a
moderate training set (~tens of thousands of samples).

® Once trained, the model dramatically speeds up evaluation without significantly sacrificing accuracy:.
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Eesa

@) Alikelihood emulator *<IFU

ATHENA X-ray Integral Field Unit

® Once trained the NN can predict likelihoods from new model parameters in no time (importance sampling)

T 25000 samples

3001 B Mean—0.0003840.0044 -

1000} |
| 250}
300 |
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- - i
L 600 = ;
S < 1507
= J00) ~
| 100}
200 50}
0 —1134 —1132 —1130 —1128 —1126 —1124 —1122 0 —0.010 —0.005 0.000 0.005 0.010
Log-likelihood ALog-likelihood (exact - predicted)
The training sample of the likelihood emulator The accuracy to predict new likelihood with the emulator
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ATHENA X-ray Integral Field Unit

Further demonstration with 2 bvapec ’< IFU

— BXA

- SIXSA (AE 64, WIS, exact R)
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&% Application to real XRISM data - Perseus  #8IFU

ATHENA X-ray Integral Field Unit

— BXA
ffffffff SIXSA (AE 64, WIS approx)

— Observed spectrum (41378 counts)
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X-ray Integral Field Unit

ATHENA

1SSON regime

Scientific application - Po

@ Tracking the emission of the burst accounting for its interaction with the (blown) accretion disk emission !
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A Type I X-ray burst observed by NICER
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Cesa

%) Conclusions < IFU

ATHENA X-ray Integral Field Unit

e Simulation-based inference with neural posterior estimation is a novel technique for X-ray spectra fitting
© SIXSA delivers exact posteriors, comparable to MCMC and BXA (compression and importance sampling)

@ Applicable a wide range of spectral data from moderate to high spectral resolution data, biggest challenge
is XRISM so far

e Adding new features, such as for detecting model mis-specifications, is planned an over the long run,
investigate how to deal with systematics in the data

@ Scientific applications to further increase its robustness. Nothing more efficient than real data.
e Catching up with latest developments in the field of SBI. Building blaock

© We want to make the building blocks available to the broader community ! — stay tuned !

BD, 2025arXiv251216709B
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