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* Use Images (2 spatial 1 spectral dimension)
e Study extent and location of distinct spectral components

* E.g. separate image into thermal + non-thermal component
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* How does the photon index vary within the
Image”?

* Fitting spectrum independently in different pixels
not ideal

* Want to use information of gradual trends in
Image

* But still be sensitive to small regions that deviate

* So need small pixel size, but that means limited
statistics
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Solution: SUSHI!

Take an X-ray hyperspectral image, and define sets of spectral
models.

* Compute log likelihood of spectral fit to all pixels
Minimise log likelihood + a spatial regularisation term
min Cost (Xgara|icAe X M (6;)) +
0,A>0 o
log likelihood

* Spatial regularisation is the magic ingredient

* Penalises large deviations from one pixel to the next, unless strongly
preferred
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SUSHI: Strengths and Weaknesses J;B Y

.+ Great at separating image into | i DOes not provide errors

:  maps of distinct spectra : :°* Can be biased by input :
; i F o arameter values and fall into :
: » Finds small and large-scale : : |ocal minima :

trends in spectral parameters ‘e Uses a single arf and bkg

* Reliable at high resolution * Needs reliable surrogate

. Fast (runs on jax) £

: : i°* (Can produce unphysical

: « More accurate than i ¢ values, No tieing parameters
....comparable methods i WOGEC I P DICTT S S
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SUSHI: Use In Science

* Cleanly separate images of different spectral )
components

* Discover trends of spectral parameters within image

* Find regions of interest for further analysis

* Avoid fitting average of a varying spectral parameter

* Create pretty pictures

* Verify trends and evaluate significance with other
tools



* Plasma accelerated by
magnetic field of pulsar

* |nteract with ISM, stream
behind pulsar

M Often in or near SNR
LV - Sizc ~ DC

Lightho PWN: 1ati
ighthouse PWI e Synchrotron radiation
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Lighthouse PWN

: : : 1 pixel =4" x 4”
* See increasing [ with

distance — measure of
particles losing energy

e See asymmetry (top right
higher I')
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Pulsar Wind Nebula

* See increasing I with
distance — measure of
particles losing energy

* See asymmetry (top right
higher I')

 Plot shows I in colour,
transparency indicates
fewer counts

Photon Index
fed
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Pulsar Wind Nebula

* See increasing I with
distance — measure of
particles losing energy

* See asymmetry (top right
higher I')

 Plot shows I in colour,
transparency indicates
fewer counts

Photon Index
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: .Light_housé PWN

Only seen in a few PWN
Size ~ 10 pc

Electrons / positrons
streaming along
magnetic field lines ?

Synchrotron radiation
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Lighthouse PWN
1 pixel = 8" x 8”

* [ Increases with
distance, (then
decreases)

* Close to pulsar, brightest
part hardest

* Far away, [ Increases In
direction of motion

| David Bogensberger SUSHI Science Lumiere workshop 16.01.2026 9



PWN Filament (Jet)

* [ Increases with
distance, (then
decreases)

* Close to pulsar, brightest
part hardest

* Far away, I increases in
direction of motion




PWN Filament (Jet)

* [ Increases with o ° ;
distance, (then
decreases)

* Close to pulsar, brightest
part hardest

* Far away, I" increases in ] | |
dlreCtlon Of mOtlon o _If:'l;pendicule:rﬂ;istance {p::]'l-ﬂ >

2.0+

Index

Photon
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* Accretion onto

supermassive black
hole launches

relativistic plasma
jet

. '. o .
* Size ~ kpc ' .
Inverse Compton & | Cor e
Synchrotron | 1 —1  Bogensberger +24
1 kpc »
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Powerlaw Combined

1 pixel = 4" x 4”
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[" Increases with distance,
then plateaus

* Local I' trend within
smaller regions of jet

* Distinguish jet from other
sources

* New way to constrain jet
Inclination and speed?

1 pixel = 2" x 2”

- 0.6

Mk

- 0.4

I 0.2
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Centaurus A

AGN Jet
2.75 1
[ Increases with distance, —
then plateaus S5

2.00 4

e Local I trend within

Photon Index
By

3 = 1.75 '
smaller regions of jet ik &
. . . . . . .
« Distinguish jet from other 125] @885
sources 1.00 A * J'-j: —— Weighted Average
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 New way to constrain jet ————
Inclination and speed?



Centaurus A

AGN Jet

[ Increases with distance,
then plateaus

* Local I trend within
smaller regions of jet

* Distinguish jet from other
sources

 New way to constrain jet
Inclination and speed?

Photon Index
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* Synchrotron radiation
at forward shock

 Thermal component
with many strong lines

e Challenging spectrum,
but lots of data

e Size ~10 pc
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VNEI1 VNEI2 Powerlaw Combined

1 pixel =4" x 4”
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2 4
10 ] data
—— Total fit

i —— VNEIL fit

3 —— VNEI2 fit

] —— Powerlaw fit
107 4 Background
1071
1073 .
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SUSHI Summar

* SUSHI CAN identify interesting & unexpected
trends

| | Challenge: !

* SUSHI CAN tell you where to look for interesting i1 Think about I
science further analysis iwhat SUSHI |

* SUSHI MAY indicate a more accurate distributioni could dofor
of parameter values than other methods | your research,
-andforyour ]

* SUSHI DOES NOT find the best fit in every pixel i fayourite source
(and that is a good thing!) oo & me=" il A )

* SUSHI DOES NOT tell you the significance of a
trend (use other tools to verify)



Summary:

 SUSHI is a powerful new tool to decompose
hyperspectral images into images of component
spectra, and determine more accurate parameter
maps

e [tidentifies trends in the data, and tells us where to
look for new science

* Applied to archival Chandra data of the Lighthouse

PWN, Cen A and Tycho, | https://github.com/JMLascar/SUSHI

gxhc?ﬁnalrﬁgﬂysggalféed .LascarJ Bobin J., Acero, F., 2024
) -A&A 686 259
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https://github.com/JMLascar/SUSHI
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