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Supernova remnant science

® Study explosions & nucleosythesis products”
® X-rays: all elements Z~8 - 28

® Type la vs core-collapse explosions?

® Explosion (a)symmetries (3D)
® Connection with neutron stars/pulsars i 1 arcmir
® Study last stellar phases CCSNe: CSM interactions
® Collissionless shock physics:
® cosmic-ray acceleration & magnetic fields
(X-rays: synchrotron radiation)
® non-equilibration electrons/ions

® Non-equilibrium ionization




X-ray nucleosynthesis studies
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® Young core-collapse SNRs: prominent O, Ne, Mg
® beware: ~0.1Mg,n of may provide strong Fe-K features
® alpha-rich freeze out products
® |arge diversity
® Young Type la SNRs: prominent Fe/Ni, strong Fe-L complex, also IME
® expect high Mn/Cr ratio for Chandrasekhar explosions

® Additional diversity: how much did reverse shock move into ejecta?



Non-equilibrium ionization
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® Not(?)-encountered in other optically thin hot plasmas:
® |onization state determined by kT. & nct (time and electron density)
® Most SNRs: plasma is underionized (hotter than indicated by ionization)
® not enough time to reach equilibrium
® Some mature SNRs: underionized
® Flectrons must have cooled, ionization lagged behina

® Unclear what caused cooling: adiabatic expansion, heat condution?



Collisionless shocks & electron/ion non-equilibrium
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® Shock heating: preserving mass/momentum/energy flux accross shock

3 % -
Strong shock: p, = 4p,, kT = —um_V? ~ 30 > keV
o JHONS F2 =1 T3 (5000 km/s)

® Collisionless heating: not by particle-particle collisions, but collective effects

® Fast collisionless shocks: kT, = pkT. ., P <1 (typically # <10 %)
® Subsequently slow Coulomb equilibration kTe & kTion

on?
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e Cosmic-ray acceleration may drain more energy: kT, T Mion Vs



Further complications: pure metal plasmas

Oshiro+ 24

Pure-iron case
V_ =1000 km s and 3 = 0.01

Temperature (keV)

® Young massive core collapse/Type la: no hydrogen in plasma
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® Reverse shock velocity poorly known
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® As ionization progresses:

® more electrons -> divide same energy over more particles
+ ionization losses

[on fraction

® Coulomb exchanges enhance due to Z2 dependence

® need to keep track of ionizations




XRISM observations of SNRs and what we learned
la SNRs

Giuffrida

Agarwal
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® Concentrate on Resolve:
o AF ~ 4.5¢V

® Bummer! Gate-valve closed: Borrowed from

® No X-rays below 2 keV R T [ Kyoto ‘25
® PV phase changea: hard spectra e




XRISM First light: LMC N132D
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® ~2500 oxygen-rich core collapse SNR
® “"Older cousin Cas A"

® very energetic ~5x10°" erg (bright gamma-ray source)

® Optical gjecta
® X-ray appears CSM rather than ejecta dominated, except Fe-K



N132D: Evidence for thermal ion broadening
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® Rich Fe-K physics:
® H-like Doppler shift 200 km/s different from
He-like
® Fe-K Hea broadened, ¢, = 1670 £ 170 km/s

® Most likely explanation:
® Strong reverse shock
® | ikely dominated by thermal ion broadening

Vush or o (kms)

® Only possible for pure metal plasma
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beautiful spectra of puzzling SNRs: W49B & SGR Aeast
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Two beautiful spectra of puzzling SNRs: W49B & SGR Aeast

® Both are mixed-morphology SNRs

® not much line broadening

® They have over-ionized plasmas W49B
® W49B: nt = (1 — 6)10" cm™s, kT, ¥ 4 — 1.5 keV
® SGR Ae: nt = 7.7x 10! cm™s, kT, ~ 10(fixed) — 1.7 keV
® Origin of over-ionization not known

® Explosion origin uncertain: |
® \W49B: core collapse, GRB explosion, or Type la? (abundances favor o ‘ o

Type la) B, oo

® SGR A-east: Type laX SNR? (Zhou+ 21) SGR Aeast
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Bipolarity in W49B
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® \W49B has a bar along which velocities change
® Suggests bipolar outtlow
® A jet? -> but if explosion created jet it, shouldnt still be center?

® Funnel created by reverse shock interaction?



XRISM/Resolve observations Cassiopeia A

® Youngest known Galactic core-collapse SNR
® ~350 yrold, d=3.4 kpc, D=5.5 pc
® stripped SN (~2-4 My, of ejecta)
® cvolves in dense wind

® oxygen-rich -> pure metal plasmas

® X-ray synchrotron emission forward & rev. shock

® XRISM observations: = e iy "Super pixels"
® 182 ks (SE) + 167 ks (NW)

® Papers: Plucinsky+ ‘25, Sato+ ‘25, Vink+ ‘25, Bamba+ '25
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Challenge 1: intrinsic complexity

isavljevic '24)
® Cas A's X-ray spectrum has many different components: e ‘
® pure metal plasma: Si-rich and Fe-rich knots e -
® e overtaken Si-rich maretial 3 |
® strong synchroton continuum
® thermal emission from shocked CSM
® is there, but difficult to disentangle
® dense CSM: “green monster”
® Many lines, and lines intrinsically broadenea:
® overlapping lines (e.g. satellite lines)
® superposition of ionization stages

® high-resolution is only of partial use

® (but lineshapes are interesting as well!)



Challenge 2: Spectral-spatial mixing

Plucinsky, Agarwal, et al. 2025
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® Spectral-spatial mixing a large concern
® Model: montecarlo Chandra events with Resolve PSF
® |n Cas A regions with very specific compositions: SSM energy dependent
® Super-pixel fraction from sky-region <50%! (<30% for physical pixels) 15



Challenge 3: spectral analysis: what model(s) to use?

® Multiple NEI to cover temperature range?

® vpshock model: intrinsic net gradients, but is it the correct one?

® \What to do with multiple ejecta components? full metal plasma or not?

® \What are the effects ot clumping?
® Full mapping:
® \What to do with spectral/spatial mixing?

® for now larger “super” pixels

® future: combine with Chandra?
® Response matrices are very large: calculations are slow!
® Adding complexity = adding degeneracies + adding CPU time
® Uncertainties about ARFs to use
® Approach by Agarwal+ '25:
® Using Bayesian approach with SPEX
® Two full metal plasmas (vpshock: intermediate mass elements + Fe/Ni )+ X-ray synchrotron

® Assume O,Ne,Mg part of IME group -> but O dominates thermal continuum

® ignore for now thermal CSM plasma
16



Chlorine & Potassium in Cas A
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® Odd-Z element nucleosynthesis poorly understood (underpredicted) Sato+ ‘25
® Study of P, Cl, K'in Cas A:

® P: not signiticantly detected
® Cl, K: detected > 5 sigma
® \ariation accross the SNR

® Abundances higher than models
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Cas A drives updates to XSPEC & SPEX

mmm= AtomDB 3.1.3

SPEX v3.08.00 SPEX 3.08.1%

SPEX v3.08.01"

n>16 transitions S XV
necessary & updated

Counts/s/keV
Counts/s/keV

discrepancy Ni-K
SPEX vs XSPEC
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Energy [keV]

® Thanks to team members and spectroscopy wizzards Adam Foster & Liyi Gul!
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Methods for mapping radial velocities and line shapes

SE pixel e (cstat/dof = 3789.8/2854)
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1.Fit with gaussians, requires well defined lines: Si & S K lines 1.9-2.9 keV (Vink+ '25)

® [ast, less sensitive to atomic code omissions

® Coupled subselections: He- vs H-like lines
2.Use full spectral non-equilibrium ionization code on partial spectrum (Bamba+ '25)

® Slow, potential degeneracies in kTe/net, but necessary for many lines Fe-K complex
3.Fit total spectrum with multicomponent non-equilibrium ionization code (Agarwal+ '26)

e CPU intensive, requires modeling choices
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Radial velocities

(c) Fe Doppler shift
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® Two-sided: SE blueshifted (frontside) and NW redshifted (backside)

® Known since 1980s, but mostly from line centroids

® Fe has broader distribution (tfaster) than Si/S: overtaken Si/S in three dimensions!
o Fe: |V .| S4000 km/s : Si/S: | V.4 < 2600 km/s

20



Line broadening

(d) Fe Doppler broadening
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angular distance (arcsec)

® Unique to XRISM Resolve
® Causes: 1. variations in bulk motions along LoS; 2. ion thermal broadening

® General: 6, & 1000 — 2500 km/s, but some narrow Fe-K lines in some pixels
® For Si/S: thermal broadening o, < 1000 km/s

V ~

A
o Reverse shock: V= \/_ 6, 1 S 2300 km/s
3 21



SE/NW dichotomy due to uneven mix frontside backside?

Relatively blue-shifted component Relatively red-shifted component

He-like Si/S O He-like Si/S 0

® [t 2 gaussians:
® Only for “clean” lines (H-like, He)
® Full sampling, Bayesian approach
— UltraSPEX

® 2 gaussians only it it improves the fit [[EG_g- | Holike SIS

® Surprise:
® Both components on same side!

® Exception: pixel a NW (He)
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Results of full modeling with UltraSPEX

Agarwal+ '26: see talk!

V..; (km/s) flux fraction (4-6 keV) ——. Fe 1800 km/s IMEs SE

Fe group nonthermal component _ ?e 1980(Z)Okljnm/és :SE iEN

Si 900 km/s

net (x101! cm~3s)

® Confirmation of velocity/broadening structures
® Nonthermal component: >50% of continuum is synchrotron!

® Anti-correlation of kTe vs net:
® disagrees with kT equilibration process (electrons heat as function of net)!

® kT, to low for reverse shock velocity

® best explanation: emission dominated by clumps-— boost n.t, lowers V, \/,5
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Conclusions

® Supernova remnants provide rich, interesting but complex astrophysics
® nucleosynthesis
® dynamics
® non-equilibrium physics
® XRISM provides the first hints at what can be achieved with hi-res X-ray spectroscopy

® new elements, rich velocity structures, thermal line broadening

® XRISM also shows the challenges
® intrinsic complexity associated with variety of radiation components
® oroblems of spectral-spatial mixing

® |arge matrices, long computation times

25



