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[llustration with X-ray spectroscopy

Parameters
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Traditional Bayesian interence

Sampling {0} . ~ P(0|X) Variational ¢(0) ~ P(0| X)
Monte Carlo Markov Chain (HMC, Minimize Evidence Lower Bound for a

NUTS, AIES), Nested Sampling parametric and analytical approximation
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e Use simulations of the observable to train a neural density
estimator to either learn the posterior distribution P(@|X), the

likelihood P(X|6) or Bayes ratios.

e Draw many @ parameters, simulate X(6) accordingly, train a
network to learn the mapping, and voila.

e \\Norks with intractable likelihood functions and transformed
representations of the observable
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ﬂlustratmn with X- ray SPECITOSCOPY

® Repeat this for many values
of parameters 6 anad

Expected photons

-~ each channel generate pairs of {H,X}l.

® Train a neural network to
learn the distribution of
parameters and observables

X 9|geAIasqo oyl JOj JoIe|NWIS |




Normalizing tflows




Normalizing tflows

e Parametric transformations that are fast to compute and easy to invert




Normalizing tflows

e Parametric transformations that are fast to compute and easy to invert

e Universal approximators for well behaved probability distributions



Normalizing tflows

e Parametric transformations that are fast to compute and easy to invert
e Universal approximators for well behaved probability distributions

® |earn any distribution as the transformation of a Gaussian latent variable



Normalizing tflows

e Parametric transformations that are fast to compute and easy to invert
e Universal approximators for well behaved probability distributions
® | earn any distribution as the transformation of a Gaussian |latent variable

e \Works by stacking reversible blocks of e.g. Masked Auto-Encoders

Learned
distribution

Latent
distribution

Zl Fy(Z2) Z2 Fy(Z2) Z3 F3(Z) Z4
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Buillding the transtorm pIocks
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With "1
U= (u,...u) Dense network  x  Masks

The determinant of the Each z; is a function of the
Jacobian is the bottleneck previous entries only

Ingeneral : z; = 0y X u; + 6, Masked Autoencoder
where

6,,6) = O_y, ..., up) for Density Estimation

— Make it triangular z=fu,u_q,...,uy)

Om,_q,...,Uy) is the neural network we train



T'wo flavors of SBI

Single round for Multiple round for
amortized inference fast convergence



T'wo flavors of SBI

Single round for
amortized inference

Many simulations for the training set (~ 100k)

Multiple round for
fast convergence

10



T'wo flavors of SBI

Single round for
amortized inference

Many simulations for the training set (~ 100k)

v

Training of the normalizing flow

Multiple round for
fast convergence

10



T'wo flavors of SBI

Multiple round for
fast convergence

Single round for
amortized inference

Many simulations for the training set (~ 100k)

v

Training of the normalizing flow

\ 4

Posterior parameters for multiple

observations using the same network

10



T'wo flavors of SBI

Multiple round for
fast convergence

Single round for
amortized inference

Many simulations for the training set (~ 100k)

v

Training of the normalizing flow

\ 4

Posterior parameters for multiple

observations using the same network

Fast inference for
multiple observations

10



T'wo flavors of SBI

Single round for
amortized inference

Many simulations for the training set (~ 100k)

v

Training of the normalizing flow

\ 4

Posterior parameters for multiple

observations using the same network

Fast inference for
multiple observations

Multiple round for
fast convergence

Few simulations for the training set (~ 5k)

10



T'wo flavors of SBI

Single round for
amortized inference

Many simulations for the training set (~ 100k)

v

Training of the normalizing flow

\ 4

Posterior parameters for multiple

observations using the same network

Fast inference for
multiple observations

Multiple round for
fast convergence
Few simulations for the training set (~ 5k)

v

Training of the normalizing flow

10



T'wo flavors of SBI

Multiple round for
fast convergence

Single round for
amortized inference

Many simulations for the training set (~ 100k) Few simulations for the training set (~ 5k)
Training of the normalizing flow Training of the normalizing flow
Posterior parameters for multiple Posterior parameters for a

observations using the same network single fine-tuned observation

Fast inference for
multiple observations -



T'wo flavors of SBI

Single round for
amortized inference

Multiple round for
fast convergence

Many simulations for the training set (~ 100k) Few simulations for the training set (~ 5k)

U)
* i *
-
Training of the normalizing flow 3 Training of the normalizing flow
G
* O *
Q
. . Z .
Posterior parameters for multiple Posterior parameters for a
observations using the same network single fine-tuned observation

Fast inference for
multiple observations -



T'wo flavors of SBI

Single round for
amortized inference

Multiple round for
fast convergence
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Comparison with .

Nnference

Direct comparison between SBI ana
traditional Bayesian Inference for a
XMM-Newton source

Green and : two flavors ot SBI
. reference (MCMC)

SBI performs similarly as

MCMC in X-ray spectroscopy
while being much faster
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What SBI is good at 7

e Speeding up slow inference : If a likelihood is available, it is
straightforward to implement a simulator and use it. Example : any fit
with XRISM data and a model with +5 parameters

e Bulk inference : You have numerous similar observables that you
would want to fit at once. Example : time-resolved spectroscopy

e Automatic marginalization : You have nuisance parameters or extra
noise but analytical marginalization in unfeasible. Example :
calibration uncertainties

e Likelihood free inference: The maths are too hard and you can't
derive a satistactory likelihood for your observable Example :
compressed representation
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Most important thing for SBI users

Line parameters
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SBI and the
dynamic assemply
Of galaxy clusters

Adapted from Zhuravleva & al. 2015
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Galaxy clusters in a nutsnell

Largest gravitationally bound structures in the Universe

Galaxies (1%), significant amount of baryonic gas (10%) and mostly dark matter (89%)

The baryonic gas deviates from hydrostatic equilibrium, probably due to turbulent motion

Better understanding this motion is key to use galaxy clusters as cosmological
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Direct view

Adapted from Hitomi Collaboration (2016)

Gas motion has a direct effect on
emission lines

Centroid shift & Bulk motion

Broadening & Integrated motion

XRISM results in Dominique’s talk
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nairect view

Gas motions induce thermodynamical
fluctuations

Thermodynamical tfluctuations
translate in observable fluctuations

(i.e. X-ray or SZ)

Correlations between the fluctuations
and the gas motions are quantified
with numerical simulations

Amplitude

Adapted from Gaspari +2014
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Proping the turpulent motion with tluctuations
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Proping the turbulent motion with tluctuations

TFLIJe image " Assume that fluctuations are a GRF
with Kolmogorov-like spectrum
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Proping the turbulent motion with tluctuations

Assume that fluctuations are a GRF
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Crafting an opservaple rtor the tluctuation map
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Crafting an opservaple rtor the tluctuation map
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e SBIl can learn a likelihood function for many clusters using simulated fluctuation spectra
° Doing so, it automatically marginalize over the fluctuation variance

° These likelihoods can be combined to perform survey over cluster samples
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e SBIl can learn a likelihood function for many clusters using simulated fluctuation spectra
o Doing so, it automatically marginalize over the fluctuation variance

° These likelihoods can be combined to perform survey over cluster samples

Apply it to two cluster samples '
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CHEX-MATE sample (N=118)




Openings on SBI & Clusters

* Direct Observations
e SBl has been successtully applied on true XRISM data in

the Coma Cluster (Eckert & al 2025)
o X-IFU prospective analyses (see Alexei’s talk!)

 SZ Fluctuations
e Work leaded by R. Adam on NIKAZ2 clusters (check PITSZI)

e Coma fluctuations with Planck revisited (B. Sigal)

23



Conclusions

SBI can solve inference problems where the likelihood is
intractable while being much faster than regular inference.
't turns inference problems in feature engineering problems.

e \We achieved high-resolution spectroscopy with SBI using

ohysically motivated summary statistics for the X-ray spectra from

XRISM/Resolve and newAthena/X-IFU.
Relevant

use cases e \We successfully used SBI to probe turbulence in the ICM. [t

enabled large scale study of the X-ray fluctuations in both the X-
COP and CHEX-MATE cluster samples.
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SBI can learn a likelihood function using simulated tluctuation images

Doing so, it automatically marginalize over the fluctuation variance

These likelihoods can be combined to perform survey over cluster samples
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SBI can learn a likelihood function using simulated tluctuation images

Doing so, it automatically marginalize over the fluctuation variance

These likelihoods can be combined to perform survey over cluster samples

ckert & al. 2017) CHEX-MATE
N v (CHEX-MATE Collaboration, 2021)
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Plos!

cVO

lution in X-CO.
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Plos!

e Profile : the normalisation increases with
radius = the overall disturbance
increases in external regions

e Global: .Z ~ 0.1, subsonic

cVO

Tiilenn e . C 00

dans Rs500
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Radial evo

e Profile : the normalisation increases with

radius — the overall disturbance

Increases in external

regions

e Global: .Z ~ 0.1, subsonic

e Profile : the injection scale increases
with radius — transition between
feedback, sloshing a

e Global : dominated

nd merging

oy central region

Tiilenn e . C 00

dans Rs500
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Radial evo

e Profile : the normalisation increases with
radius = the overall disturbance
increases in external regions

e Global: .Z ~ 0.1, subsonic

e Profile : the injection scale increases
with radius — transition between
feedback, sloshing and merging

e Global : dominated by central region

e Profile : the spectral slope decreases
with radius — transition between
structured and noisy fluctuations

e Global : Kolmogorov-like!

Tiilenn e . C 00

dans Rs500
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sample study with CHEX-MATE
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% &8
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8 B 0.010 = properties and turbulence
B Masse (I) ~
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Bl Redshift (1) 0.005 Cq)% 5 |
Redshift (I1) |  Subdivide in three sub-samples in
Redshift (I1I) mass, redshift and dynamic state
© Tierl
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. | 0.001
0.4 0.6
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B Relaxed (w < 0.005) B [ ow mass( < 4 X 1014M@)

B In-between (w < 0.01) B In-between
- Disturbed (w < 0.02) - High mass ( > 5 X 1014M®)
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[urbulence & nhydrostatic mass nias
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Sans le coeur Msp Dturb
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[urbulence & nhydrostatic mass nias

©-  Avec le coeur
Sans le coeur Msp Dturb

Etat dynamique (I)

Moy~ 03— 0.5

Etat dynamique (III)
~ =1
Masse (II) bm”b (O £6) 7

M I11 ‘ '
asse (IIT) Coherent with direct

Redshift (I1) and indirect

Redshift (I11)

Halo radio confirmé

observations, and
numerical simulations
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Whatisit to

it -

U cube 7/

X-IFU : high resolution spectrometer in X-ray (~2038)

Mock X-IFU mosaic of a close cluster (z<0.1)

1000 ~ 10 000 spectra
with ~ 25 000 bins each
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Bl =1g 04

Whatisitto:

X-IFU : high resolution spectrometer in X-ray (~2038)
Mock X-IFU mosaic of a close cluster (z<0.1)

1000 ~ 10 000 spectra
with ~ 25 000 bins each

U cube 7/

Oxygen

Temperature

Spatial binning
Model fitting

—————————————

~ 100k CPU Hours

Bulk motion
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Segment 1, Start Time: 266724591.10 - duration 1011.8 seconds

Segment 3, Start Time: 266731242.10 - duration 209.8 seconds

Segment 4, Start Time: 266753911.06 - duration 884.9 seconds
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1000

nce with true data

Example : time-resolved spectroscopy
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le round inference with true data

Segment 1, Start Time: 266724591.10 - duration 1011.8 seconds

Segment 3, Start Time: 266731242.10 - duration 209.8 seconds

Segment 4, Start Time: 266753911.06 - duration 884.9 seconds

600
Time since start (s)

Example : time-resolved spectroscopy

e Split observation of bright sources in
hundreds/thousands of smaller
observations and study the variability

1000
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Single round interence with true data

Restricted prior coverage with 100089 simulated spectra

3R3e7feremce spectrum (2343 counts) Example : time-resolved spectroscopy
spectra

100% coverage
957 coverage e Split observation of bright sources in

68% coverage
hundreds/thousands of smaller

observations and study the variability

e Prior setto cover all the observations

Counts/keV

et
-
\V)

6.0

0.3 04 0506 08 1.0 2.0
Energy (keV)
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eround in

erence with true data

Restricted prior coverage with 100089 simulated spectra

Reference spectrum (2343 counts)

337 spectra

100% coverage

95% coverage

68% coverage

0.4 0.5 0.6

0.8 1.0

2.0
Energy (keV)

Example : time-resolved spectroscopy

e Split observation of bright sources in
hundreds/thousands of smaller
observations and study the variability

e Prior setto cover all the observations

* Training a 3 parameter model using

10°simulations (absorbed thermal
emission from an accretion disk)

6.0
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Single round interence with true data

Example : time-resolved spectroscopy

cstat_dev

e Split observation of bright sources in
hundreds/thousands of smaller
observations and study the variability

e Prior setto cover all the observations

>
+
v
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+
=
-
Q
-
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=
@

* Training a 3 parameter model using

10°simulations (absorbed thermal
emission from an accretion disk)

e 2min of training + 40sec of inference

200
pectrum number 34




Single round interence with true data

Example : time-resolved spectroscopy

cstat_dev

e Split observation of bright sources in
hundreds/thousands of smaller
observations and study the variability

e Prior setto cover all the observations
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* Training a 3 parameter model using

10°simulations (absorbed thermal
emission from an accretion disk)

e 2min of training + 40sec of inference

Up to 3 orders of magnitude faster
than comparable methods if applied

on a full X-IFU FOV

100 250
pectrum number




Multiple round inference with X-

— SIXSA MRI + Summary stats
® True parameters
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e Two components spectrum with X-IFU on a low-count regime (7 parameters)
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Multiple round inference with X-1F

— SIXSA MRI + Summary stats —

® True parameters ——— Total
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e Two components spectrum with X-IFU on a low-count regime (/ parameters)
e MRI on high resolution data is equally performant as SOTA for Bayesian Interence
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Multiple round inference with X-1F
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e Two components spectrum with X-IFU on a low-count regime (7 parameters)

MRI on high resolution data is equally performant as SOTA for Bayesian Inference

t requires ~250 few simulations than SOTA and is ~2 order of magnitude taster
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Training for tbabs* (comptt+powerlaw)

Training loss
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