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Illustration with X-ray spectroscopy

4

Observed data 
Spectra measured by the instrument 

Parameters  
Temperature, 

Abundance, Redshift…

Model 
Spectral model and instrumental 

convolution Expected photons 
in each channel

P(X = k |θ) =
λke−λ

k!

Counting process : Poisson likelihood
Turn the likelihood into 
a posterior distribution

λ ≡ S(E, θ)
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Sampling  {θ}i ∼ P(θ |X)
Monte Carlo Markov Chain (HMC, 

NUTS, AIES), Nested Sampling

Variational  q(θ) ≃ P(θ |X)
Minimize Evidence Lower Bound for a 

parametric and analytical approximation 
of the posterior distribution

P(X |θ)
Evaluate
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Simulation-based inference (SBI)

6

•Use simulations of the observable to train a neural density 
estimator to either learn the posterior distribution , the 
likelihood  or Bayes ratios.

P(θ |X)
P(X |θ)

•Draw many  parameters, simulate  accordingly, train a 
network to learn the mapping, and voilà.

θ X(θ)

•Works with intractable likelihood functions and transformed 
representations of the observable
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Illustration with X-ray spectroscopy

7

Expected photons 
in each channel

X ≡ 𝒫 {λ}

λ ≡ S(E, θ)

Counting process : Apply Poisson noise

• Repeat this for many values 
of parameters  and 
generate pairs of 

θ
{θ, X}i

• Train a neural network to 
learn the distribution of 
parameters and observables

Sim
ulator for the observable X
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Normalizing flows



• Parametric transformations that are fast to compute and easy to invert
• Universal approximators for well behaved probability distributions
• Learn any distribution as the transformation of a Gaussian latent variable
• Works by stacking reversible blocks of e.g. Masked Auto-Encoders

Latent 
distribution

Learned 
distribution

8Z1 Z2 Z3 Z4F1(Z) F2(Z) F3(Z)

Normalizing flows



Building the transform blocks

9

Z = F(U)
pZ(z) = pU(u) |det JF(u) |−1

Single block

With 
 Z = (z1, . . . zi)

U = (u1, . . . ui)



Building the transform blocks

9

Z = F(U)
pZ(z) = pU(u) |det JF(u) |−1

Single block

The determinant of the 
Jacobian is the bottleneck

 Make it triangular→

With 
 Z = (z1, . . . zi)

U = (u1, . . . ui)



Building the transform blocks

9

Z = F(U)
pZ(z) = pU(u) |det JF(u) |−1

Single block

The determinant of the 
Jacobian is the bottleneck

 Make it triangular→ zi = f(ui, ui−1, . . . , u0)

Each  is a function of the 
previous entries only 

zi

With 
 Z = (z1, . . . zi)

U = (u1, . . . ui)



Building the transform blocks

9

Z = F(U)
pZ(z) = pU(u) |det JF(u) |−1

Single block

The determinant of the 
Jacobian is the bottleneck

 Make it triangular→ zi = f(ui, ui−1, . . . , u0)

Each  is a function of the 
previous entries only 

zi In general :  
where 

zi = θ1 × ui + θ2

(θ1, θ2) = Θ(ui−1, . . . , u0)

With 
 Z = (z1, . . . zi)

U = (u1, . . . ui)



Building the transform blocks

9

Z = F(U)
pZ(z) = pU(u) |det JF(u) |−1

Single block

The determinant of the 
Jacobian is the bottleneck

 Make it triangular→ zi = f(ui, ui−1, . . . , u0)

Each  is a function of the 
previous entries only 

zi In general :  
where 

zi = θ1 × ui + θ2

(θ1, θ2) = Θ(ui−1, . . . , u0)

 is the neural network we trainΘ(ui−1, . . . , u0)

With 
 Z = (z1, . . . zi)

U = (u1, . . . ui)



Building the transform blocks
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Z = F(U)
pZ(z) = pU(u) |det JF(u) |−1

Single block

The determinant of the 
Jacobian is the bottleneck

 Make it triangular→ zi = f(ui, ui−1, . . . , u0)

Each  is a function of the 
previous entries only 

zi In general :  
where 

zi = θ1 × ui + θ2

(θ1, θ2) = Θ(ui−1, . . . , u0)

 is the neural network we trainΘ(ui−1, . . . , u0)

With 
 Z = (z1, . . . zi)

U = (u1, . . . ui) Dense network Masks MADEx = 

Masked Autoencoder 
for Density Estimation
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Multiple round for 
fast convergence 

Many simulations for the training set (~ 100k)

Training of the normalizing flow

Posterior parameters for multiple 
observations using the same network

Few simulations for the training set (~ 5k)

Training of the normalizing flow

Posterior parameters for a 
single fine-tuned observation

N
b 

of
 ro

un
ds

Fast inference for 
multiple observations

Fast inference for 
single observation



Comparison with Bayesian Inference

Direct comparison between SBI and 
traditional Bayesian Inference for a 

XMM-Newton source

Green and Red : two flavors of SBI
Blue : reference (MCMC)

SBI performs similarly as 
MCMC in X-ray spectroscopy 

while being much faster
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What SBI is good at ?
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• Speeding up slow inference : If a likelihood is available, it is 
straightforward to implement a simulator and use it. Example : any fit 
with XRISM data and a model with +5 parameters

• Bulk inference : You have numerous similar observables that you 
would want to fit at once. Example : time-resolved spectroscopy

• Automatic marginalization : You have nuisance parameters or extra 
noise but analytical marginalization in unfeasible. Example : 
calibration uncertainties

• Likelihood free inference: The maths are too hard and you can’t 
derive a satisfactory likelihood for your observable Example : 
compressed representation
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Most important thing for SBI users

13

Look for meaningful representation of your observables (Feature Engineering)

Reduce high dimension 
observables to small and 
weakly covariant statistics

Global summaries 
correlate with the 

total photon 
information

Shape summaries 
correlate mostly 

with global shape 
parameters

Line parameters 
correlate with the 

motion and 
composition of the 

plasma

Sensitivity of summaryX-IFU ~ 24k dimensions mapping a 10 parameter space

Physically motivated & 
handcrafted statistics
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There is room for improvement  
• Improve the compression  
• Use the likelihood information 

 Check Didier’s talk!→
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SBI and the 
dynamic assembly 
of galaxy clusters 

Adapted from Zhuravleva & al. 2015
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Galaxy clusters in a nutshell
• Largest gravitationally bound structures in the Universe 📈
• Galaxies (1%), significant amount of baryonic gas (10%) and mostly dark matter (89%)
• The baryonic gas deviates from hydrostatic equilibrium, probably due to turbulent motion
• Better understanding this motion is key to use galaxy clusters as cosmological probes

Galaxies only Galaxies + gas + dark matter



Direct view

Gas motion has a direct effect on 
emission lines 

Centroid shift  Bulk motion  
Broadening  Integrated motion

⇔
⇔
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Adapted from Hitomi Collaboration (2016)

Energy [keV]Energy [keV]

Energy [keV]

Sp
ec

tru
m

 [p
h 

/ s
 / 

ke
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 [p
h 

/ s
 / 

ke
V] Model

Data

XRISM results in Dominique’s talk



Indirect view

Gas motions induce thermodynamical 
fluctuations 

Thermodynamical fluctuations 
translate in observable fluctuations 

(i.e. X-ray or SZ) 

Correlations between the fluctuations 
and the gas motions are quantified 

with numerical simulations

1.
2.
3.

19

Adapted from Gaspari +2014

Speed 
Density 
Temperature 
Pressure

Am
pl

itu
de

Spatial scale [kpc]
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Probing the turbulent motion with fluctuations
True image

Best-fit model

Residual map

20

The structures in this map 
are linked to turbulence

Mach number

Injection scale

Cascading rate

 hydrostatic 
bias

→

 turbulence 
driver

→

 gas physics→
No likelihood because of 

sample variance (and masking)

Assume that fluctuations are a GRF 
with Kolmogorov-like spectrum
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Crafting an observable for the fluctuation map

21

Residual map

• Low interpretability 
• High-dimension

• High interpretability 
• Low-dimension

Power spectrum (-ish)

Fourier transform 
with Mexican Hats 
(Arévalo + 2012)
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• SBI can learn a likelihood function for many clusters using simulated fluctuation spectra  
• Doing so, it automatically marginalize over the fluctuation variance 
• These likelihoods can be combined to perform survey over cluster samples

Apply it to two cluster samples

X-
CO

P 
sa

m
pl

e 
(N

=1
2)

CH
EX

-M
AT

E 
sa

m
pl

e 
(N

=1
18

)
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Openings on SBI & Clusters 

• Direct Observations 
• SBI has been successfully applied on true XRISM data  in 

the Coma Cluster (Eckert & al 2025) 
• X-IFU prospective analyses (see Alexei’s talk!)  

• SZ Fluctuations 
• Work leaded by R. Adam on NIKA2 clusters (check PITSZI)  
• Coma fluctuations with Planck revisited (B. Sigal)



Conclusions
SBI can solve inference problems where the likelihood is 
intractable while being much faster than regular inference. 
It turns inference problems in feature engineering problems.

24

• We achieved high-resolution spectroscopy with SBI using 
physically motivated summary statistics for the X-ray spectra from 
XRISM/Resolve and newAthena/X-IFU. 

• We successfully used SBI to probe turbulence in the ICM. It 
enabled large scale study of the X-ray fluctuations in both the X-
COP and CHEX-MATE cluster samples.

Relevant 
use cases 



Backup
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• SBI can learn a likelihood function using simulated fluctuation images  
• Doing so, it automatically marginalize over the fluctuation variance 
• These likelihoods can be combined to perform survey over cluster samples

CHEX-MATE  
(CHEX-MATE Collaboration, 2021)

Apply it to two cluster samples

X-COP (Eckert & al. 2017) 

12 massive, nearby clusters observed 
up to  ( , )R200 z < 0.07 M ∼ 1015M⊙

• 118 clusters in the 
local Universe 

• Homogeneous 
measurements up 

to  

,  

R500

z < 0.6
[2 ∼ 20] 1014M⊙
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Split the analysis in 4 regions

Surface brightness fluctuations

Region Radius
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Radial evolution in X-COP
• Profile : the normalisation increases with 

radius → the overall disturbance 
increases in external regions 

• Global : , subsonicℳ ∼ 0.1

• Profile : the injection scale increases 
with radius → transition between 
feedback, sloshing and merging 

• Global : dominated by central region

• Profile : the spectral slope decreases 
with radius → transition between 
structured and noisy fluctuations 

• Global : Kolmogorov-like!



Sample study with CHEX-MATE

29

• Study on 64 cluster, after cleaning the 
sample from the most irregular ones 

• Subdivide in three sub-samples in 
mass, redshift and dynamic state 

Investigate the link between cluster 
properties and turbulence
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Relaxed ( )w < 0.005

In-between ( )w < 0.01

Disturbed ( )w < 0.02

Low mass ( )< 4 × 1014M⊙

In-between

High mass ( )> 5 × 1014M⊙

z < 0.2

z < 0.4

z < 0.6

Splitting on dynamical state Splitting on mass Splitting on redshift

Kolmogorov



Turbulence & hydrostatic mass bias 
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Turbulence & hydrostatic mass bias 

 

 

Coherent with direct 
and indirect 

observations, and 
numerical simulations

ℳ3D ∼ 0.3 − 0.5

bturb ∼ (9 ± 6) %

31
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What is it to fit an X-IFU cube ?

1 000 ~ 10 000 spectra 
with ~ 25 000 bins each

33

X-IFU : high resolution spectrometer in X-ray (~2038)  
Mock X-IFU mosaic of a close cluster (z<0.1)



What is it to fit an X-IFU cube ?

Temperature

Oxygen

Bulk motion

1 000 ~ 10 000 spectra 
with ~ 25 000 bins each

33

Spatial binning 
Model fitting

~ 100k CPU Hours

X-IFU : high resolution spectrometer in X-ray (~2038)  
Mock X-IFU mosaic of a close cluster (z<0.1)
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Single round inference with true data
Example : time-resolved spectroscopy

• Split observation of bright sources in 
hundreds/thousands of smaller 
observations and study the variability 

• Prior set to cover all the observations 

• Training a 3 parameter model using 
simulations (absorbed thermal 

emission from an accretion disk) 
105
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• Split observation of bright sources in 
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• Training a 3 parameter model using 
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emission from an accretion disk) 
105

• 2min of training + 40sec of inference
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Single round inference with true data
Example : time-resolved spectroscopy

• Split observation of bright sources in 
hundreds/thousands of smaller 
observations and study the variability 

• Prior set to cover all the observations 

• Training a 3 parameter model using 
simulations (absorbed thermal 

emission from an accretion disk) 
105

• 2min of training + 40sec of inference

Up to 3 orders of magnitude faster 
than comparable methods if applied 
on a full X-IFU FOV
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Multiple round inference with X-IFU

• Two components spectrum with X-IFU on a low-count regime (7 parameters)
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Multiple round inference with X-IFU

• Two components spectrum with X-IFU on a low-count regime (7 parameters)
• MRI on high resolution data is equally performant as SOTA for Bayesian Inference
• It requires ~250 few simulations than SOTA and is ~2 order of magnitude faster



36


