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X-ray spectro-imager data acquisition

Pulsar B1259 observation

events=15

Chandra

Measure each photon one
by one:

* X, Y, energy (and time)



Hyperspectral images
* For each Apixel, a spectrum
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Hyperspectral images

* Rich literature Qf “i Single Band Multisectral Hyperspectral
methods in remote:-
sensing : |

oSource separation

GMCA (see talk by ~' & -0
L Godinaud), SUSHI - ' il 0 o 'g;'
(seetalkbyD @ | . .
Bogensberger) g g g
oFusion (this talk) 5 5 5
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X_ray Perseus galaxy cluster

telescopes ﬂ :

CCD cameras: - .

Good spatial

resolution -
XMM—NeWton

Micro-calorimeters: {

Good spectral

resolution
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FUSION

XMM-Newton,

1999

XRISM,
2023

" NewAthena

-XIFU,

2037
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Chandra
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Existing Methods

. Rich‘literature
* Two important elements:
* Regularization
» Spectral subspace
"« For the James Webb Space Telescope

* Guilloteau et al, 2020 & 2022: PCA

spectral subspace

* Pineau et al, 2024: Deep learning
based prior




XMM

FUSION FORWARD MODEL

Observed data

_ 8 L | . .
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FUSION FORWARD MODEL

Rl( k 0/ @ )><
~ Spatial 2D |
‘ .p : ealel 1 D Effective
Convolution . Convolution
: Area

‘ Kernel Kernel ’

Zy=R(PSFx®Z®RMFx)EA

—7Z, degraded by the response of instrument X



POSING THE INVERSE PROBLEM

min Cost (Xdata |ZX) + Cost (Ydata‘zy) + P‘P(Z) '

RN A

‘Poisson noise: ‘Choice of regularisation is
the cost function is the very important '
Poisson log-likelihood
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Regularization

* Three methods were 1mp1emented and tested
* 11 norm of Wavelet 2D-1D coefficients (space- energy]

* Low rank Approx1mat10n (using PCA) with Sobolev
Regularization |

(inspired by Guilloteau 2020 work on JATAYY,

 Low rank Approximation with 2D Wavelet
Regularization

11



HI-FReD: Hyperspectral Image Fusion via
Regularized Deconvolution - i

* Proximal gradierit.descent . coded with Jax
Calculate FFT of convolution kernels

while stopping criterion is not reached:

for each instrument x:
Calculate gradient part that depends on x

Gradient descent update on Z
Proximal operator to regularize Z 12



Results



Gaussian Spatial responses

Toy model

* Hydro 51mulat10n of SNR (Orlando 2016)
« XMM and XRISM mock data

» Method was tested on toy-models of | '
~varying complex1ty -

Spectral responses 0=3 px XRISM

0=1 px XMM
14




Spectral Variability at different ranges

Mean Angular Distance between neighbouring pixels

Gaussian (0.5,1.4 keV) Gaussian (6.19-6.91 keV) Realistic Model (0.5-2.3 keV)

< 2y, Ly >

0(Z) = STk 7
) Z;N e (< izdB ~ 1z )
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Fusion result
---- ground truth
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RESULT:

Fusion result
---- ground truth
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~ GROUND TRUTH
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Between 0.5- 1.4 keV (low Spectral variation)

W2D1D LRWZD

Error Percentage

spectral angle mapper ' 20




Between 6.2-6.9 keV (high spectral variation)

-ﬂ'-.. ;-

e o g

Mean angular
distance between
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pixels
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spectral angle mapper ' 21



Perspectives

-+ Including spectral modelling.

* ML Surrogate model

» Use a non-ML based model (jaxspec, Dupourqué 2024)
* Tackle the problem dlfferently (more task-oriented)

R More realistic hyperspectral fusion
* Include varying spectral and spatlal blur
-+ Realistic rebinning / alligning data
~ + Objective: Applying on real XRISM data
- Test other spatial regularisations
* Plug and play denoisers for example
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Thank you!

* Publications in.Astr-onomy & Astrophysics:
* Lascar, Bobin, Acero 2025 /s |

/HIFReD_Fusion — hyperspectral fusion

/Jax_Convolution — jax-compiled convolution
toolbox (including non-stationary)
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