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This is a philosophical question, rather than a scientific one.

Some methods are more robust than others, and you can use
them wether you're Bayesian or frequentist



Not the Frequentist vs Bayesian depate

Adapted from Tutone & al. (2025)
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O Methods | personally find funny



Landscape of X-ray spectral fitting

SPEX (1996)

SIS (2000)

wraps models

XSPEC (1986) Sherpa (2001)

fully wraps

BXA (2013)

XSPEC is an extremely powerful and convenient

software, but 40 years of monolithic development

make it hard to maintain and extend
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XSPEC SPEX BXA Sherpa ISIS

It you want to
contribute to
the survey
(N=18 currently)

« Statistiques de Sardine » (D. Barret)



HOW STANDARDS PROUFERATE:

(EE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

1?' RIDICULOUS!
WE NEED To DEVELOP

|| ONE UNIVERSAL STANDARD |
SITUATION: || i covere svervonee | | SITUATION:

THERE ARE USE. CASES. VERH THERE ARE
4 COMPETING \ O @? hk 5 COMPETING

STANDARDS. STANDARDS.










A brief introduction to JAX

A numpy-like library with

e Just-in-time compilation
e Automatic differentiation

e Accelerators (GPUs, TPUs)
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Rewrite the existing stack using JAX ﬁg

Autodifferentiation

Differentiable algorithms

e Adam for minimization
e HMC/NUTS for MCMC
e \/ariational Inference




Software and haraware acceleration

Rewrite the existing stack using JAX &g

Transparent on

Autodifferentiation
accelerators

Differentiable algorithms GPU/TPU acceleration
SE— —

e Adam for minimization ‘ ,\% 0:
* HMC/NUTS for MCMC ~ l-@n

e \/ariational Inference




What does jaxspec pring?

Sampled values (AIES)

Cumulative distribution

750 1000 1250 1500 1750 2000

Sampled values (NUTS)

¢ Inference on the GPU
* New algorithms

e A promise of full Python

Cumulative distribution

development
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= elzpale  NILEES

THE OPERATIONS DEPICTED IN THIS FEATURE
WERE PERFORMED BY
HIGHLY TRAINED PROFESSIONALS
OPERATING UNDER CONTROLLED CONDITIONS.

X| WARNING
DO NOT TRY THIS AT HOME
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Some performances rom the jaxspec paper

e NGC 7793 ULX-4 (XMM-Newton)

e Absorbed powerlaw anc

blackbody emission model

Posterior predictive - PN
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jaxspec with NUTS (i) or AIES (ii) gives much better -
mixing than XSPEC with AIES (iii




Some performances [rom the jaxspec paper
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SOMe Per:
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= 102 - A
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10 order of magnitude speedup

e Equivalent results, no approximation
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* Run on equivalent material, no GPU



Intro to Variational inference

q(0) ~ P(0|X)

1. Chose a variational distribution g(6)

e.g. 'my posterior could be approximatea
with a multivariate Gaussian distribution”

2. Minimize the Evidence Lower Bound
Turn Bayesian inference into an
optimisation problem. Best if performed
with gradient guided minimiser (Adam)

14
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Kullback-Leipler divergence

Divergence (not distance!)

between two probability

distributions

— €T Op
DKL@Hq)—/p( ) log

Minimise the divergence between
the variational distribution and
the posterior distribution

We maximise the Evidence
Dk1.(q(9) || p(0]|2)) # Lower Bound (ELBO)

Extra maths

15



Kullback-Leipler divergence

Divergence (not distance!)

between two probability

distributions

— €T Op
DKL@Hq)—/p( ) log

Minimise the divergence between
the variational distribution and
the posterior distribution

We maximise the Evidence
Dk1.(q(9) || p(0]|2)) # Lower Bound (ELBO)

Extra maths

15



VI Tor high-resolution spectroscopy

—®— No-U-Turn sampler —O— Random walk Metropolis

—@— Differential evolution Metropolis —&— ADVI S“ited for hig h-reSOIUtiOn X-ray
SpeCtrOSCOpy
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® Requires less gradient evaluation
compared to NUTS

® Scales better with high number of
Pparameters
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e Fully profits from GPU acceleration,
where NUTS is less efficient tor

N multiple chains on the same device

Length of simulated streamflow sequence (days)

Adapted from Krapu & al. (2019)

\* VS
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Example : application to Hitomi

See Dupourqué & al . 2024

e 28 parameter model

Obs40 Data Folded model
Obsb50 Data Folded model

* [ron complex with 3 Hitomi F Obe60 Data === Folded model

pointings on Perseus

-

-

[

-
|

e 10° steps of adamw
e / minutes on a A2 GPU

Countrate (Counts/s

Residuals

6.54 6.06
Energy (keV)

20000 40000 60000 80000 100000
Number of iteration




Example : application to Vela X-1

See Diez & al . 2025

; R | | R NuSTAII{ FPI\"‘[IA Z5—7'8 k(‘)V] E
e 38 parameter model + 10 -erl/sﬁ NuSTAR FPMB 55—781@";%
thousands of background : : :
parameters E 1_ _
e Powerlaw continuum, cyclotron Tg 0.1 e . 1
ines, 10 keV features, emission 50 015— :/\:: : —:0 _
ines ... SR A 32
o 4 instruments (XRISM/Resolve, 107 [, N S — £
NuSTAR/FPMA, NuSTAR/FPMB, 104, _ N -
XMM/Epic-PN) . 1.2 i
e Cross calibration SE o R | | l
0.8 [

* 50 minutes inference on a N s

H100 GPU Energy [keV]



Example : application to Vela X-1
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With great power comes greét res’sponsibility.

e Nothing here is magic, every algorithm can fail
* There is no single test or statistic that will give you 100% confidence

e There must be a human in the loop questioning the results
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* There is no single test or statistic that will give you 100% confidence

e There must be a human in the loop questioning the results



Conclusion

® jaxspec is in early development stage

* Yet it starts to be science ready, as it passes cross
calibration tests with existing software with
increasingly complex case studies

e Extending jaxspec with complex physical models
(APEC, relxill) is horrendously hard

* |s surrogate modeling a good solution ?



Backup slides



Surrogate modelling in a nutshell

Continuum with Emission lines

bremsstrahlung | with atomic DBs

Parameters
1.2,z v

Redshift and Extra physics |

oroadenings forgot :skull:

\—\/—_J

Replace this with a neural network!

e Same wild machinery with reflexion models, obscuration models etc.
e Models of this kind are usually tabulated to speed things up

e Tabulation has its own issues and scales poorly with the number of parameters

23
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e Same wild machinery with reflexion models, obscuration models etc.
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e Tabulation has its own issues and scales poorly with the number of parameters
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Example : RTFAST

Parameters

SR T 5 = = 2 2 2 2 2 D D A B
T P

P ) 5 A

— RTFAST

RTDIST

24



Parameters
[17 dims]

Standard Scaling

Example : RTFAST

) ) 0 A O
) T O

P ) 5 A

— RTFAST
RTDIST
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Example : RTFAST

Emulation for X-ray reverberation spectra : check Ricketts & al. (2024)

Parameters Ensemble of 7 Dense MLP (GelU activation)

ST I 12 e = 2 2 2 2 2 2 D D A B A
T P

Linear combination
of 200 fixed PCA

Standard Scaling components

buibelany

FE ) 5 A

Standard
Unscaling +

Exponential
transform

e Emulation with O(3%) accuracy

e 200 times faster calls

o [ imited to XMM resolution

—— RTFAST
RTDIST

24



rrom KL to ELBO

Let's compute the KL-divergence between our variational distribution and the target posterior

Dic. (a(8) | (0J2) = | a(6) log £

. o, 10)p(2)
= /9 q(0) log

p(z,0)
— [ 4(6) oga(®) + [ a(6) oga(z) - [ 4(6) logp(s,0)
Negative entropy Constant wrt @ Expectation of the
of the variational joint probability

distribution



rrom KL to ELBO

Dk1.(q(0) || p(0]z)) =Eq(e) [logq(8)] + log p(x) — Eyp) [log p(z, 0)]

Rearrange the terms '
log p(z) = Eq(g) [log p(z, )] — Eq(g) [log ¢(0)] —Dxr(q(0) || p(0]x))

L(q)

logp(z) = L(q) — Dxr(q(0) || p(8|x))

\—\/~J

Divergence > 0




Bayesian interence

0 : parameters

X: observation(s)
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0 : parameters

X: observation(s)

P(X10)

POIX) = —r

Prior

A priori probability
of the parameters



Bayesian interence

|'AM ONCEAGAIN/PRESENTING\YOU

0 : parameters Likelihood

X: observation(s) Probability of the

observation(s) given the
parameters

Prior

A priori probability
of the parameters
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Bayesian interence

|'AM ONCEAGAIN/PRESENTING\YOU

0 : parameters Likelihood

X: observation(s) Probability of the

observation(s) given the
parameters

Posterior Prior

A posteriori of the A priori probability
parameters given the of the parameters

observation(s)
27



Bayesian interence

|'/AM ONCE AGAIN PRESENTING\YOU

0 : parameters Likelihood

X: observation(s) N Probability of the

observation(s) given the
parameters
P(X|0)
o P(H P E
Posterior Prior

P(X)

A posteriori of the / A priori probability

parameters given the Reason Why Bayegian of the parameters
observation(s)

2]

inference is hard to perform



Reminders of X-ray Spectroscopy
S(E,0) =R x M(E,0)



Reminders of X-ray Spectroscopy
S(E, 0

Observed data
Spectra measured by the instrument

Fe XXV He«a

Raies ajustées
+ Données

6.52 6.54 6.56 6.58
Energie (keV)
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Reminders of X-ray Spectroscopy
S(E,0)|= E.0

Observed data Model

Spectra measured by the instrument Spectral model and instrumental
Fe XXV Hea convolution
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Reminders of X-ray Spectroscopy
S E7 9 — E7 AbunTEEE;FEEm..

Observed data Model

Spectra measured by the instrument Spectral model and instrumental
Fe XXV Hea convolution

Raies ajustées 'lhl‘ .
<+ Données \I » -~ ) \QLM‘J |
g S N : T 10t ] L ‘M' Il'”

“frn.
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Reminders of X-ray Spectroscopy
S E7 0 — E7 AbunTE}EEgr:FEEHﬁ...

Observed data Model

Spectra measured by the instrument Spectral model and instrumental

Expe(:ted phOtOnS Fe XXV Hea convolution

Raies ajustées

INn each channel +_Domée , S LD ;\“‘“*“L'*m“‘udhl',m

A= S(E, )

6.52 6.54 6.56
Energie (keV)
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Reminders of X-ray Spectroscopy

Parameters

Temperature,
Abundance, Redshift...

Observed data Model

Spectra measured by the instrument Spectral model and instrumental

Expected phOtOnS Fe XXV Hea convolution

Raies ajustées

INn each channel +_ Dounees jﬂ\

) Yo <\ . - 2 | 4
T v ‘Q‘-‘::'\#N\\\‘\ ‘\.‘ \ B A . 8, g 10 4 _§ I
l‘k\‘ K‘V“; ;:\\“*;\ 0 Y WY 9 é 10_5'; i [

L f b + + }' % :;\\ PN A S ; o 1076 .
N -h'*-.._ ITHRTY bt I 2 b by it > g f
:‘ L £ N \’{ C%‘ 1077 4
=—— P s B W E

- . \\,\, ,\ %‘%& _ — 1.5 keV

, T T ?/ . // w ) 10 keV

e 10!

6.52 6.54 6.56 6.58 e}
‘ 10°
Energle (keV) Energie [keV]

Counting process : Poisson likelihood

PLI. Turn the likelihood into

P(X =k|0) = T a posterior distribution
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ITraditional Bayesian interence

Evaluate

P(X|0)




ITraditional Bayesian interence

Sampling {0} . ~ P(0|X)

Monte Carlo Markov Chain (HMC,
NUTS, AIES), Nested Sampling

Evaluate

P(X|0)
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Traditional Bayesian interence

Sampling {0} . ~ P(0|X) Variational ¢(0) ~ P(0| X)
Monte Carlo Markov Chain (HMC, Minimize Evidence Lower Bound for a

NUTS, AIES), Nested Sampling parametric and analytical approximation

Evaluate of the posterior distribution
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Sampled values (NUTS)
I X 9 gradient
ascent

Q¢(Z) p(z| D)

0 250 500 750 1000 1250 1500 1750 2000
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