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Inverse imaging problems

General inverse problem model

Y ∼ P(Φ( x ))
linear case−−−−−→ y = Φ x + n (1)

• Y = y ∈ RM : Observations/Measurements.

• x ∈ X ⊂ RN : Signal/image to reconstruct from a given signal set X .

• Φ : Forward (measurement) model including the deterministic physical part.

• P : Probabilistic model encompassing stochastic aspects of the observation y , e.g. noise n.

• Objective: estimate x from y given the model in Eq (1).
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Inverse problem examples

General model

Y ∼ P(Φ( x ))
linear case−−−−−→ y = Φ x + n
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Magnetic Resonance Imaging

y

inverse problem
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Other inverse problems: cosmological mass-mapping, PSF modelling, computed tomography
imaging, deblurring, super-resolution, denoising, among others.
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Ill-conditioned and ill-posed problems

The difficulty of inverse problems is that they are often ill-conditioned or ill-posed (in
Hadamard’s sense):

1. The solution may not exist.

2. The solution may not be unique.

3. The solution may not be stable.

We need to:

• Inject prior information to regularise the problem.

• Quantify the uncertainty of the reconstruction.

Bayesian inference provides a principled framework to address these two aspects.
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Bayesian inference

Bayes’ theorem

p(x | y ,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y | x ,M)

prior︷ ︸︸ ︷
p(x | M)

p(y | M)︸ ︷︷ ︸
evidence

=

likelihood︷ ︸︸ ︷
L(x)

prior︷ ︸︸ ︷
π(x)

Z︸︷︷︸
evidence

for a model M, observation y and signal/parameters x .

We often only require the unnormalised probability (disregarding Z ) to compute a point

estimator or samples from the posterior distribution,
posterior︷ ︸︸ ︷

p(x | y ,M) ∝

likelihood︷ ︸︸ ︷
p(y | x ,M)

prior︷ ︸︸ ︷
p(x | M)

• We rely on Markov Chain Monte Carlo (MCMC) to estimate posterior samples,
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Point estimates and priors

We select a point estimate to use as reconstruction, for example:

• Minimum mean squared error (MMSE): x̂M,MMSE = E[ x | y ,M ] (posterior mean).

• Maximum-a-posteriori (MAP): x̂M,MAP = argmaxx∈RN p(x | y ,M) (posterior mode).

Then,

1. The likelihood is based on the physics of the inverse problem.

2. We choose the prior based on our previous knowledge of X .

3. We usually characterise the high-dimensional posterior through posterior samples.

However, MCMC sampling can be prohibitively expensive in some settings...
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Challenges

Challenges of high-dimensional Bayesian inference for inverse problems:

• High-dimensional parameter space, i.e., x ∈ RN with large N.

• Large data volume, i.e., y ∈ RM with large M.

• Computationally expensive forward model, Φ : RN → RM .

Additional challenges for inverse problems:

• The signals to reconstruct have more complex structure, x ∈ X .

▶ Instruments are getting more powerful.
▶ Handcrafted priors (e.g., sparsity, smoothness) are not expressive enough.

• We need scalable ways to compare models without access to ground truth data.

▶ Only having access to the observations y .
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Motivation: SKA’s radio interferometer

Artist’s impression of the Square Kilometre Array (SKA) Observatory.
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SKA sites

All 3 challenges: High-dimensional, large data volume, expensive forward model.
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Goals

We want our methodology for inverse problems:

• Computationally efficient (optimisation over sampling)

• Physics-informed (robust and interpretable)

• Expressive data-driven AI priors (enhance reconstruction quality, reduce bias)

• Quantify uncertainties (for scientific inference)

Bonus:

• Fast model comparison in high dimensions
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Outline

1. Physics-informed AI

2. Physics-informed AI + UQ

3. Physics-informed AI + UQ + Calibration

4. Bonus: Model comparison in high dimensions
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Physics-informed AI



Physics-informed AI reconstructions

Denoiser (Prior)Pseudo Inverse ReconstructionObservation Denoiser (Prior)Data Fidelity ReconstructionObservation

Denoiser (Prior)Data Fidelity ReconstructionObservation Denoiser (Prior)Data Fidelity Denoiser (Prior)Data Fidelity

Trained End-to-End

Learned post-processing
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Based on the review (McEwen & Liaudat, Liaudat 2026) on high-dimensional UQ with data-driven
AI priors.Tob́ıas I. Liaudat 12



Learned post-processing

• Obtain a first reconstruction x̂0 using a physics-based method,e.g., the pseudo-inverse or
a classical method.

• Train a neural network to enhance x̂0, i.e., x̂ = NNθ(x̂0).

→ Fast, but limited by the initial reconstruction quality.

→ No guarantee of data-consistency.
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Plug-and-Play (PnP)

• Solve the inverse problem through an iterative scheme alternating between:

▶ A data-consistency step based on the physics model, ∇p(y | x ,M)

▶ A denoising step using a neural network, D(·), as image prior, ∇p(x | M) .

x

→ Under some constraints on D we can guarantee convergence (Pesquet et al., 2021; Ryu
et al., 2019).

→ An extension of a convex optimisation algorithm with a sparse wavelet prior.

→ More robust and interpretable than learned post-processing.

→ Large number of iterations until convergence.

The link between denoising and the prior is given by Tweedie’s formula.
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Plug-and-Play (PnP): Tweedie’s formula

Tweedie’s formula connects denoising with the gradient of the log-prior (Efron, 2011)

For a Gaussian denoising problem z = x + σω with z | x ∼ N (x , σ2I ) where ω ∼ N (0, I ). We
assume x has a marginal distribution x ∼ px(·). Then, the MMSE denoiser E[x | z ] satisfies:

E[x | z ] = z + σ2 ∇z log pz(z) ,

where pz(z) =
∫
px(x)φσ(z − x)dx is the marginal density of z and φσ is the Gaussian density

of ω.

• We interpret a denoising neural network as the gradient of the log prior learned from
a dataset of images.

• One of the basis of diffusion models.
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Unrolled methods

• Unroll a fixed number of iterations nunrolled of an iterative algorithm solving the inverse
problem.

• Use a neural network to represent the implicit prior from data.

• Learn the parameters, e.g., denoiser, step-sizes, etc.. end-to-end through backprop.

→ Forces convergeence in nunrolled iterations and faster than PnP since nunrolled ≪ nPnP.

→ End-to-end training adapts the model to the training set.

→ Better performance but less robust than PnP.
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Physics-informed AI + UQ



Direct UQ estimation

• Magnitude of residual: train a network to estimate residuals.

• Gaussian per pixel: train a network to estimate the standard deviation.

• Classification for regression ranges: train a classifier with softmax output to estimate
distribution of pixel values.

• Pixelwise quantile regression: train network to estimate lower/upper quantiles for 1− α
uncertainty level, using quantile (pinball) loss.

Heuristic → no statistical guarantees.
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PnP UQ: convex probability concentration for UQ

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cα
dx = 1− α.

Consider the highest posterior density (HPD) region

C∗
α =

{
x : − log p(x|y) ≤ γα

}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds.

Bound of HPD region for log-concave distributions (Pereyra, 2017)

Suppose the posterior log p(x|y) ∝ logL(x) + log π(x) is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : logL(x) + log π(x) ≤ γ̂α = logL(x̂MAP) + log π(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√
16 log(3/α) independent of p(x|y).

We only need to evaluate logL(x) + log π(x) on the MAP estimation x̂MAP!
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Ĉα =
{
x : logL(x) + log π(x) ≤ γ̂α = logL(x̂MAP) + log π(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√
16 log(3/α) independent of p(x|y).

We only need to evaluate logL(x) + log π(x) on the MAP estimation x̂MAP!
Tob́ıas I. Liaudat 19



PnP UQ: convex probability concentration for UQ

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cα
dx = 1− α.

Consider the highest posterior density (HPD) region

C∗
α =

{
x : − log p(x|y) ≤ γα

}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds.

Bound of HPD region for log-concave distributions (Pereyra, 2017)

Suppose the posterior log p(x|y) ∝ logL(x) + log π(x) is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by
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Leveraging the approximate HPD region for UQ

Img credit: Jason McEwen
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Leveraging the approximate HPD region for UQ

Img credit: Jason McEwen

UQ techniques:

1. Hypothesis test with significance α

▶ e.g. with respect to a surrogate image
with an inpainted structure.

2. Local credible intervals (LCI)

▶ Test the approx HPD region for each
pixel or super-pixel in the image.

3. Fast LCIs at different scales

▶ Test the approx HPD region from the
coefficients of a multi-resolution
decomposition of the image.

Refs: Cai et al. (2018), Liaudat et al. (2024), and
Pereyra (2017)
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Hypothesis test

Hypothesis testing of physical structure (Cai et al., 2018, August; Pereyra, 2017)

1. Remove the structure of interest from the MAP estimate x̂MAP.

2. Inpaint removed region to create a surrogate test image xsur.

3. Test if xsur ∈ Ĉα:

▶ If no, i.e., xsur /∈ Ĉα, reject hypothesis at significance α and conclude the structure
is most likely physical.

▶ If yes, i.e., xsur ∈ Ĉα, we cannot reject the hypothesis as uncertainty is too high to
draw conclusions.
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Learned data-driven convex regulariser

We use the neural-network-based convex regulariser R : RN 7→ R,
(Goujon et al., 2023; Liaudat et al., 2024)

R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

• ψn are learned convex profile functions with Lipschitz continuous derivate

• There are NC learned convolutional filters hn

• R is trained as a (multi-)gradient step denoiser

Properties:

1. Convex + explicit potential → leverage HPD approximation for UQ

2. Smooth regulariser with known Lipschitz constant → MAP convergence guarantees
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Reconstructed images
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Hypothesis test

Scalable hypothesis testing for structure in the reconstruction
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Fast Local Credible Intervals

Results for M ≈ 2.4× 105 and N = 256× 256.
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• Computation wall-clock time: MAP estimation → 137.0s, fast pixel UQ → 1.84s

• Measurement operator evaluations: 28 → 106 times lower than MCMC sampling.
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QuantifAI code

• QuantifAI GitHub code: github.com/astro-informatics/quantifai

• Entirely implemented in Pytorch: automatic differentiation + GPU acceleration

• Ref: Liaudat et al. (2024)

Tob́ıas I. Liaudat 26

https://github.com/astro-informatics/quantifai


Unrolled generative UQ estimation

We focus on two main approaches for generating approximate posterior samples
(x̂ ∼ p̂(x | y)) in a physics-informed manner:

• Denoising diffusion models.

• Regularized Conditional Generative Adversarial Networks (cGANs).

Extra approach exploiting data symmetries:

• Equivariant Bootstrap.
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Denoising diffusion models

Denoising diffusion models (DDMs) (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020)
are generative models that learn to sample from a data distribution, x ∼ px(·) by reversing a
gradual noising process.

• Very expressive models generating high-quality posterior samples.
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Denoising diffusion models for inverse problems

We can adapt DDMs to solve inverse problems by incorporating the physics model (likelihood)
in the reverse diffusion process (Chung et al., 2022).
→ Combine the expressive learnt prior with physical data-consistency.

• Highly expressive models.

• Likelihood is analytically intractable due to the dependence of the diffusion process on
time so approximations need to be made.

• Computationally expensive due to the large number of neural network evaluations
required.

▶ We need ndiffusion steps per sample produced.

See Daras et al. (2024) for a review on the subject.
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Generative Adversarial Networks (GANs)

Standard GANs achieve high-fidelity image generation.

They had some challenges:

• Difficult to train.

• Mode collapse.

These were recently addressed:

• Wasserstein GAN loss (Arjovsky et al., 2017).

• Regularisation to avoid mode collapse (Bendel et al., 2023).
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Regularized Conditional GANs

The rcGAN allows us to generate approximate posterior samples (x̂ ∼ p̂(x | y)) by
conditioning the generator on the observations y (Bendel et al., 2023).
→ The novelty is a regularisation term in the training that rewards sampling diversity and
avoids mode collapse.

Main points of the approach:

• Under a simplifying Gaussian assumption, the first two moments of the approximated
posterior (mean and covariance) match the true posterior.

• We add a conditioning on other variables like the pseudo-inverse.

• Extremely-fast sampling → One NN evaluation per sample.

Exploited this approach for:

• Radio interferometric imaging (Mars et al., Liaudat 2025).

• Mass-mapping in cosmology (Whitney et al., Liaudat 2025).
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Regularised conditional GAN for RI imaging

Ref: Mars et al. (2025).
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Equivariant bootstrap

Based on the work of Tachella and Pereyra (2023).

Given an observation model y = Ax + n, e.g., RI imaging, group actions {Tg}g∈G such that
Tgx ∈ X (known symmetries) and a reconstruction method x̂(y) = f (y):

Procedure:
For i = 1, . . . ,N:

1. Draw transform gi from G and sample noise ni ∼ N (0, σ2I )

2. Build bootsrap measurement ỹi = ATgi x̂(y) + ni := Agi x̂(y) + ni

3. Reconstruct x̃i = T−1
gi x̂(ỹi )

4. Collect error estimate ei = ∥x̂(y)− x̃i∥2 and bootstrap samples x̃i .

Pixel-wise UQ maps: From the collection of N bootstrap samples, {x̃i}Ni=1, we build
confidence regions, Cα, for x⋆ (ground truth) using qα the top α-quantile of the samples
{|x̂(y)− x̃i |}Ni=1, with Cα = {x : |x − x̂(y)| < qα}.
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Equivariant bootstrap

Main idea: Assuming that X is G-invariant, we can have access to multiple virtual forward
operators, ATgi := Agi . If Tgi is properly chosen based on X , A and x̂(·), the composition
ATgi can have different null spaces than A helping to probe the variability of the estimator x̂(y)
and characterize its uncertainties with respect to x⋆ (ground truth).

Motivation:

• Unsupervised method → No ground truth or training required

• Independent of the reconstruction method and each sample trivially can run in parallel

• Well-suited to fast reconstruction methods, e.g. deterministic unrolled algorithms

• Carefully selected group transforms allow us to explore the big nullspace of the RI imaging
forward operator and better characterise the errors

We applied this framework to the RI imaging problem (Cherif et al., Liaudat 2024).
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UQ overview

1. Direct UQ estimation

▶ Fast
▶ Heuristic, no statistical guarantees

2. PnP UQ: convex probability concentration for UQ

▶ Fast
▶ Statistical guarantees under model convexity
▶ Restricted to HPD-related UQ

3. Unrolled generative UQ estimation

▶ rcGANs: fast, and Diffusion models: slow
▶ Target posterior sampling but no statistical guarantees as approximations are made

4. Equivariant bootstrap

▶ Method-agnostic (including deterministic methods) and unsupervised
▶ Well adapted for fast reconstruction methods
▶ Even if it shows that it reduces the error estimation biases

→ No statistical guarantees on the uncertainties
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Physics-informed AI + UQ + Calibration



Coverage test

We have studied ways to estimate uncertainty, but not if the uncertainty estimated is
well-calibrated. Coverage plots allows us to validate the uncertainties.

• We want to compare the model’s Bayesian probability with a frequentist interpretation.

• Compute a credible interval with the model.

• Check the empirical frequency at which the ground truth falls within the credible interval.
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Calibration with conformal prediction

The estimated uncertainties can be calibrated using conformal prediction with
Risk-Controlling Prediction Sets (RCPS) (Angelopoulos et al., 2022) by exploiting an
exchangeable calibration dataset.

Given an estimator f̂ (y), and lower and upper interval lengths, l̂(y) and û(y), we define the
uncertainty interval for pixel (m, n) as:

Tλ(y)(m,n) = [f̂ (y)(m,n) − λl̂(y)(m,n), f̂ (y)(m,n) + λû(y)(m,n)].

The RCPS procedure finds the smallest λ such that the interval Tλ(y) guarantees a desired risk
level α (exploiting an upper confidence bound, i.e., Hoeffding’s).

Main points:

• Distribution-free uncertainty calibration with statistical guarantees.

• Guaranteed to be valid but not necessarily useful

→ We still need good initial uncertainties estimates.

We applied this calibration on top of the equivariant bootstrap UQ method (Cherif et al.,
Liaudat 2024).
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MMGAN coverage test

Coverage plot and conformal prediction of MMGAN (Whitney et al., Liaudat 2025) for
mass-mapping in cosmology.

• Extremely good coverage (without RCPS)

• Optimal coverage after RCPS calibration
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Summary

Inverse problem in imaging are often ill-posed and ill-conditioned and require
→ Injecting prior information, and quantifying uncertainties → Bayesian framework.

MCMC sampling is computationally prohibitive for many problems. Some goals are

• Computationally efficient (optimisation-based)

• Physics-informed (robust and interpretable)

• Expressive data-driven AI priors (enhance reconstruction quality and reduce bias)

• Quantify uncertainties (scientific inference)

PnP UQ with convexity (Liaudat et al., 2024) points towards these directions.
→ Unrolled methods are more expressive.

It is important to validate the estimated uncertainties (coverage test) and calibrate them if
necessary (conformal prediction - RCPS).

Calibration helps to provide statistical guarantees on the model uncertainties.
→ A deterministic reconstruction mehod can be equipped with statistically valid UQ by exploiting
equivariant bootstrap + RCPS as was done in (Cherif et al., Liaudat 2024).
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Bayesian model selection and misspecification testing

Based on (Sprunck et al., Liaudat 2025) (arXiv:2510:27663).

• The Bayesian evidence under model M is pM(y) =
∫
pM(y | x)pM(x)dx , and provides a

principled way for model selection through the Bayes factor.

• The evidence is often intractable, but clever algorithms like Nested Sampling (Skilling,
2006) allow us to estimate it.

→ Still computationally expensive and typically only used for low-dimensional problems.

The goal of the method is:

1. Carry out Bayesian model selection in high-dimensions.

2. Detect if the model works on an out-of-distribution (OOD) regime → important for
AI-based methods.

3. Only work from a single observation y .
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Data fission

We will rely in the data fission procedure (Leiner et al., 2025) to create statistically
independent data splits from a single observation y .

Data fission procedure for Gaussian noise model (Leiner et al., 2025)

We partition a single y = y from y ∼ P(A(x⋆)) into two synthetic measurements y+ and y−

that are conditionally independent given x⋆. Suppose that y ∼ N (A(x⋆),Σ) and let
w ∼ N (0,Σ). Then, for any α ∈ (0, 1),

y+ = f −α (y,w) := y + cαw ,

y− = f −α (y,w) := y − w/cα ,
(2)

with cα =
√
α/(1− α).

The α parameter controls the information split between y+ and y−.

Equivalent splitting strategies are available for other noise models from the natural exponential
family Monroy et al., 2025.
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Proposed metric: Bayesian cross validation through data fission

We evaluate a model M, comprising a prior and likelihood, by computing a summary of the
form

Ψ(M) = Ey+,y−
[
S(pM(y+|y−, y+)

]
, =

∫
S(pM(y+|y = y−), y+)pM(y−, y+)dy− dy+ ,

where S : P × Rm 7→ R+ is a scoring rule (Gneiting & Raftery, 2007) that takes a predictive
density p ∈ P, with P being a probability measure, and a realization mapping it to a numerical
assessment of that prediction.

For the previous data fission procedure we can write our metric as

Φ(M) = Ew

[
Ex|f −α (y ,w),M

[
ϕM(f +α (y ,w), x))

]]
=

∫
ϕM(f +α (y ,w), x) pM(x | f −α (y ,w))p(w)dxdw ,

where ϕM : Rm ×Rn 7→ R+ quantifies the discrepancy between a possible x and y+, leading to
a scoring rule Ex|f −α (y ,w),M [ϕM(f +α (y ,w), x))] for the prediction of y+ from y−.
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Intuition and link with the Bayesian evidence

For a given choice of scoring rule, i.e., the log score (log likelihood), we obtain a regularised
version of the Bayesian evidence,

Φ3
y (M) = Ex|y−,M

[
pM(y+|x)

]
= pM(y+|y−) =

∫
pM(y+|x)pM(x |y−)dx , (3)

which in the limit of α→ 0 we obtain the Bayesian Evidence as follows,

lim
α→0

Φ3
y (M) = Ex|M [pM(y |x)] = pM(y) =

∫
pM(y |x)pM(x)dx , (4)

due to y+ → y and y− tending to an independent noise realisation.
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Likelihood-based metric for model selection
I1 I2 I3

Examples of blurred measurements, generated by using the
blur kernel κG(2).

• Misspecified likelihood scenario.
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Profile of the considered blur kernels, their
similarity makes model selection difficult.

Excellent performance selecting the correct model even for very similar blur kernels.
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Posterior-based metric for model OOD detection

Detect if the model is working on out-of-distribution (OOD) data.
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Posterior-based metric for model OOD detection

→ Impressive detection performance for only relying the observations y .
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