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Inverse imaging problems

General inverse problem model

Y ~P(o(5)) linear case, y =& +n (1)

e Y=y cRM: Observations/Measurements.

. . € X C R" : Signal/image to reconstruct from a given signal set X

e & : Forward (measurement) model including the deterministic physical part.
e P : Probabilistic model encompassing stochastic aspects of the observation y, e.g. noise n.

. estimate (X) from [y given the model in Eq (1).
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Inverse problem examples

General model
Y -~ P(q)(.)) linear case y :Cb.-l—n

Radio interferometric imaging Magnetic Resonance Imaging
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Other inverse problems: cosmological mass-mapping, PSF modelling, computed tomography
imaging, deblurring, super-resolution, denoising, among others.
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lll-conditioned and ill-posed problems

The difficulty of inverse problems is that they are often or (in
Hadamard's sense):

1. The solution may not exist.
2. The solution may not be unique.

3. The solution may not be stable.
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e Inject prior information to regularise the problem.
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lll-conditioned and ill-posed problems

The difficulty of inverse problems is that they are often or (in
Hadamard's sense):

1. The solution may not exist.
2. The solution may not be unique.

3. The solution may not be stable.

We need to:
e Inject prior information to regularise the problem.

¢ Quantify the uncertainty of the reconstruction.

provides a principled framework to address these two aspects.
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Bayesian inference

Bayes’ theorem

likelihood prior likelihood  prior

) o)) 00

p(X | Y, M) - —
e Ay M) z
posterior
evidence evidence

for a model M, observation y and signal/parameters x.
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Bayesian inference

Bayes’ theorem

likelihood prior likelihood  prior

L) e )2 00

p(X | Y, M) - —
e Ay M) z
posterior
evidence evidence

for a model M, observation y and signal/parameters x.

We often only require the unnormalised probability (disregarding .) to compute a point

estimator or samples from the posterior distribution,
posterior likelihood prior

px |y M) = [ply [ M) p(x | M)

e We rely on Markov Chain Monte Carlo (MCMC) to estimate posterior samples,
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Point estimates and priors

We select a point estimate to use as reconstruction, for example:

e Minimum mean squared error (MMSE): Xp mmse = E[ x | y, M ] (posterior mean).

e Maximum-a-posteriori (MAP): Xy map = arg max,cpv  p(x | ¥, M) (posterior mode).
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Point estimates and priors

We select a point estimate to use as reconstruction, for example:

e Minimum mean squared error (MMSE): Xp mmse = E[ x | y, M ] (posterior mean).

e Maximum-a-posteriori (MAP): Xy map = arg max,cpv  p(x | ¥, M) (posterior mode).

Then,
1. The likelihood is based on the physics of the inverse problem.
2. We choose the prior based on our previous knowledge of X

3. We usually characterise the high-dimensional posterior through posterior samples.

However, MCMC sampling can be prohibitively expensive in some settings...
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Challenges

Challenges of high-dimensional Bayesian inference for inverse problems:
e High-dimensional parameter space, i.e., x € RN with large N.
e Large data volume, i.e,, y € RM with large M.

o Computationally expensive forward model, ¢ : RN — RM.
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Challenges

Challenges of high-dimensional Bayesian inference for inverse problems:
e High-dimensional parameter space, i.e., x € RN with large N.
e Large data volume, i.e,, y € RM with large M.

o Computationally expensive forward model, ¢ : RN — RM.

Additional challenges for inverse problems:
e The signals to reconstruct have more complex structure, x € X.

> Instruments are getting more powerful.
» Handcrafted priors (e.g., sparsity, smoothness) are not expressive enough.

* We need scalable ways to compare models without access to ground truth data.

» Only having access to the observations y.
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Motivation: SKA's radio interferometer

Artist’'s impression of the Square Kilometre Array (SKA) Observatory.
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SKA sites

SKA-mid - the SKA's mid-frequency instrument

157 terabytes

4.9 zettabytes

dto the JVLA, the current
imila instrument in the world:

4x 5x
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SKA sites

SKA1 LOW - the SKA's lowre

WA A
50 MHz .. | ~130,000 Ji !
350 MHz | 3

@O

126
tennis
courts

157 terabytes

Y
All 3 challenges: High-dimensional, large data volume, expensive forward model.
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Goals

We want our methodology for inverse problems:

. (optimisation over sampling)

. (robust and interpretable)

. (enhance reconstruction quality, reduce bias)
. (for scientific inference)
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Goals

We want our methodology for inverse problems:

. (optimisation over sampling)
. (robust and interpretable)
. (enhance reconstruction quality, reduce bias)
. (for scientific inference)
Bonus:
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1. Physics-informed Al
2. Physics-informed Al + UQ
3. Physics-informed Al + UQ + Calibration

4. Bonus: Model comparison in high dimensions
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Physics-informed Al



Physics-informed Al reconstructions

= - ¢ - & - K

Observation Pseudo Inverse Denoiser (Prior) Reconstruction

Learned post-processing
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Physics-informed Al reconstructio

Observation Pseudo Inverse Denoiser (Prior) Reconstruction Observation Data Fidelity Denoiser (Prior) Reconstruction

= . % . & @I%ﬂ%Jﬂ

Learned post-processing Plug-and-Play (PnP)
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Physics-informed Al reconstructions

Observation Pseudo Inverse Denoiser (Prior) Reconstruction Observation Data Fidelity Denoiser (Prior) Reconstruction
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s .8 LB L% LE - ¢ .

Observation Data Fidelity Denoiser (Prior) Data Fidelity Denoiser (Prior) Data Fidelity Denoiser (Prior) Reconstruction
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Physics-informed Al reconstructions

Observation Pseudo Inverse Denoiser (Prior) Reconstruction Observation Data Fidelity Denoiser (Prior) Reconstruction

G S A - IR B )

Learned post-processing Plug-and-Play (PnP)

I DU T D T N I .

Observation Data Fidelity Denoiser (Prior) Data Fidelity Denoiser (Prior) Data Fidelity Denoiser (Prior) Reconstruction

Trained End-to-End

Unrolled (nunrolled < nPnP)

Based on the review (McEwen & Liaudat, Liaudat 2026) on high-dimensional UQ with data-driven
TobiA I prigrgat 12



Learned post-processing

e Obtain a first reconstruction X using a physics-based method,e.g., the pseudo-inverse or
a classical method.

e Train a neural network to enhance %o, i.e., X = NNy(%o).
— Fast, but limited by the initial reconstruction quality.

— No guarantee of data-consistency.
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Plug-and-Play (PnP)

e Solve the inverse problem through an iterative scheme alternating between:

» A data-consistency step based on the physics model, -

» A denoising step using a neural network, D(-), as image prior, | Vp(x | M) .
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Plug-and-Play (PnP)

e Solve the inverse problem through an iterative scheme alternating between:

» A data-consistency step based on the physics model, -

» A denoising step using a neural network, D(-), as image prior, | Vp(x | M) .

X
— Under some constraints on D we can (Pesquet et al., 2021; Ryu
et al., 2019).

— An extension of a convex optimisation algorithm with a sparse wavelet prior.
— than learned post-processing.

— Large number of iterations until convergence.
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Plug-and-Play (PnP)

e Solve the inverse problem through an iterative scheme alternating between:

» A data-consistency step based on the physics model, -

» A denoising step using a neural network, D(-), as image prior, | Vp(x | M) .

X
— Under some constraints on D we can (Pesquet et al., 2021; Ryu
et al., 2019).

— An extension of a convex optimisation algorithm with a sparse wavelet prior.
— than learned post-processing.
— Large number of iterations until convergence.

The link between denoising and the prior is given by Tweedie’s formula.
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Plug-and-Play (PnP): Tweedie's formula

Tweedie's formula connects denoising with the gradient of the log-prior (Efron, 2011)

For a Gaussian denoising problem z = x + ow with z | x ~ N(x, 5?/) where w ~ N(0, ). We
assume x has a marginal distribution x ~ p,(-). Then, the MMSE denoiser E[x | z] satisfies:

E[x | z] = z+ 0® V. logp.(2) ,

where p,(z) = [ px(x)¢,(z — x)dx is the marginal density of z and ¢, is the Gaussian density
of w.
v

e We interpret a denoising neural network as the gradient of the log prior learned from
a dataset of images.

e One of the basis of diffusion models.
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Unrolled methods

e Unroll a fixed number of iterations nynrolied Of an iterative algorithm solving the inverse
problem.

e Use a neural network to represent the implicit prior from data.
e Learn the parameters, e.g., denoiser, step-sizes, etc.. end-to-end through backprop.
Forces convergeence in nyprolied iterations and than PnP since nynrolled < Npnp.-

End-to-end training adapts the model to the training set.

Ll

but less robust than PnP.
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Physics-informed Al + UQ



Direct UQ estimation

e Magnitude of residual: train a network to estimate residuals.
e Gaussian per pixel: train a network to estimate the standard deviation.

¢ Classification for regression ranges: train a classifier with softmax output to estimate
distribution of pixel values.

* Pixelwise quantile regression: train network to estimate lower/upper quantiles for 1 — «
uncertainty level, using quantile (pinball) loss.
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Direct UQ estimation

e Magnitude of residual: train a network to estimate residuals.
e Gaussian per pixel: train a network to estimate the standard deviation.

¢ Classification for regression ranges: train a classifier with softmax output to estimate
distribution of pixel values.

* Pixelwise quantile regression: train network to estimate lower/upper quantiles for 1 — «
uncertainty level, using quantile (pinball) loss.

Heuristic — no statistical guarantees.
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PnP UQ: convex probability concentration for UQ

Posterior credible region:

p(x € Guly) = / p(xly)lc,dx=1—a.
xERN

Consider the highest posterior density (HPD) region

C: = {x i —log p(x]y) < ya}, with v, € R, and p(x € Clly) =1 — « holds.
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PnP UQ: convex probability concentration for UQ

Posterior credible region:
p(x € Guly) = / p(xly)lc,dx=1—a.
xERN
Consider the highest posterior density (HPD) region
= {x — log p(x|y) < 'ya} with v, € R, and p(x € Clly) =1 — « holds.

Bound of HPD region for log-concave distributions (Pereyra, 2017)

Suppose the posterior log p(x|y) o log £(x) + log m(x) is on RN, Then, for any
a € (4exp[(—N/3)],1), the HPD region C} is contained by

C, = {x - log L(x) + log m(x) < 4o = log L(Xmap) + log m(Xmap) + VNt + N}

with a positive constant 7, = /16 log(3/c) independent of p(x|y).
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Leveraging the approximate HPD region for UQ

)

Observation y

A
v ¥

Approx HPD
—» Credible Regions

Reconstruction G
Xmap

vl

Local Credible Knockout
Intervals Hypothesis
(€,8) Tests

Img credit: Jason McEwen
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Leveraging the approximate HPD region for UQ

&
Observation y
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—» Credible Regions

Reconstruction G
Xmap
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Local Credible Knockout
Intervals Hypothesis
(€,8) Tests

Img credit: Jason McEwen
Tobias I. Liaudat

UQ techniques:
1. Hypothesis test with significance «

> e.g. with respect to a surrogate image
with an inpainted structure.

2. Local credible intervals (LCI)

» Test the approx HPD region for each
pixel or super-pixel in the image.

3. Fast LCls at different scales

» Test the approx HPD region from the
coefficients of a multi-resolution
decomposition of the image.

Refs: Cai et al. ( ), Liaudat et al. ( ), and
Pereyra ( )



Hypothesis test

Hypothesis testing of physical structure (Cai et al., 2018, August; Pereyra, 2017)

1. Remove the structure of interest from the MAP estimate Xmap.
2. Inpaint removed region to create a surrogate test image Xgy.
3. Test if xur € Co:

> If no, i.e., xgur ¢ Ca, reject hypothesis at significance a and conclude the structure
is most likely physical.

> If yes, i.e., Xsur € C., we cannot reject the hypothesis as uncertainty is too high to
draw conclusions.

Tobias I. Liaudat 21



Learned data-driven convex regulariser

We use the neural-network-based convex regulariser R : RN — R,
(Goujon et al., 2023; Liaudat et al., 2024)

Nc
R(x) =D > tn((hn*x)[K]),
n=1 k
e 1, are learned convex profile functions with Lipschitz continuous derivate

e There are N¢ learned convolutional filters h,,

* R is trained as a (multi-)gradient step denoiser
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Learned data-driven convex regulariser

We use the neural-network-based convex regulariser R : RN — R,
(Goujon et al., 2023; Liaudat et al., 2024)

Rx) =D > wn((hnxx) [K]),

n=1 k
e 1, are learned convex profile functions with Lipschitz continuous derivate
e There are N¢ learned convolutional filters h,,

* R is trained as a (multi-)gradient step denoiser

Properties:
1. + — leverage HPD approximation for UQ
2. — MAP convergence guarantees
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Reconstructed images

Ground truth Dirty image Reconstruction (classical)  Reconstruction (learned)
SNR = 3.39 dB SNR = 23.05 dB SNR = 26.85 dB

Ref: Liaudat et al. ( )

Error (classical) Error (learned)
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for structure in the reconstruction
0.0 0.0

-0.5

10 Is the blob physical? — Yes

2.0 -2.0

MAP reconstruction Inpainted surrogate

Ref: Liaudat et al. ( )
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Fast Local Credible Intervals

Results for M ~ 2.4 x 10° and N = 256 x 256.

0.0 0.0

Ground truth MAP ’ Oracle error

Fast pixel-wise UQ

0.00

Level 4 ) Level 3 ) Level 2 ) Level 1

e Computation wall-clock time: MAP estimation — 137.0s,

e Measurement operator evaluations: 28 — 10° times lower than MCMC sampling.
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QuantifAl code

License GPL arXiv 2312.00125

QuantifAl

quantifai is a PyTorch-based open-source radio interferometric imaging
reconstruction package with scalable Bayesian uncertainty quantification relying on
data-driven (learned) priors. This package was used to produce the results of

. The quantifai model relies on the data-driven convex regulariser from

e QuantifAl GitHub code: github.com/astro-informatics/quantifai
e Entirely implemented in Pytorch: automatic differentiation + GPU acceleration

e Ref: Liaudat et al. ( )
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Unrolled generative UQ estimation

We focus on two main approaches for generating approximate posterior samples
(X ~ p(x|y)) in a physics-informed manner:

¢ Denoising diffusion models.

¢ Regularized Conditional Generative Adversarial Networks (cGANSs).

Extra approach exploiting data symmetries:

e Equivariant Bootstrap.

Tobias I. Liaudat 27



Denoising diffusion models

Denoising diffusion models (DDMs) (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020)
are generative models that learn to sample from a data distribution, x ~ p,(-) by reversing a

gradual noising process.
Forward SDE (data — n0|se)
dx = f(x,t)dt + g(t —)@

score function
= [6,0) — £ ogx) -+ 509 @

Reverse SDE (noise — data)

e
ns
:

®

® Very expressive models generating high-quality posterior samples.
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Denoising diffusion models for inverse problems

We can adapt DDMs to solve inverse problems by incorporating the physics model (likelihood)
in the reverse diffusion process (Chung et al., 2022).
— Combine the expressive learnt prior with physical data-consistency.

e Likelihood is analytically intractable due to the dependence of the diffusion process on
time so approximations need to be made.

e Computationally expensive due to the large number of neural network evaluations
required.

» We need ngisfusion Steps per sample produced.

See Daras et al. ( ) for a review on the subject.

Tobias I. Liaudat 29



Generative Adversarial Networks (GANs)

Standard GANs achieve high-fidelity image generation.

They had some challenges:
e Difficult to train.

e Mode collapse.

These were recently addressed:
e Wasserstein GAN loss (Arjovsky et al., 2017).

* Regularisation to avoid mode collapse (Bendel et al., 2023).
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Regularized Conditional GANs

The rcGAN allows us to generate approximate posterior samples (X ~ p(x | y)) by
conditioning the generator on the observations y (Bendel et al., 2023).

— The novelty is a regularisation term in the training that rewards sampling diversity and
avoids mode collapse.
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Regularized Conditional GANs

The rcGAN allows us to generate approximate posterior samples (X ~ p(x | y)) by
conditioning the generator on the observations y (Bendel et al., 2023).

— The novelty is a regularisation term in the training that rewards sampling diversity and
avoids mode collapse.

Main points of the approach:

e Under a simplifying Gaussian assumption, the first two moments of the approximated
posterior (mean and covariance)

e We add a conditioning on other variables like the pseudo-inverse.

o sampling — One NN evaluation per sample.
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Regularized Conditional GANs

The rcGAN allows us to generate approximate posterior samples (X ~ p(x | y)) by
conditioning the generator on the observations y (Bendel et al., 2023).

— The novelty is a regularisation term in the training that rewards sampling diversity and
avoids mode collapse.

Main points of the approach:

e Under a simplifying Gaussian assumption, the first two moments of the approximated
posterior (mean and covariance)

e We add a conditioning on other variables like the pseudo-inverse.

o sampling — One NN evaluation per sample.

Exploited this approach for:
* Radio interferometric imaging (Mars et al., Liaudat 2025).

e Mass-mapping in cosmology (Whitney et al., Liaudat 2025).
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Regularised conditional GAN for Rl imaging

Ref: Mars et al. ( ).

Dirty Image

Generator
Telescope

True image Telescope  peasurements ﬂ\

Generated Image

Tobias I. Liaudat Discriminator 32



Equivariant bootstrap

Based on the work of Tachella and Pereyra ( ).

Given an observation model y = Ax + n, e.g., Rl imaging, group actions { T, }zcg such that
Tex € X ( ) and a reconstruction method X(y) = f(y):
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Equivariant bootstrap

Based on the work of Tachella and Pereyra ( ).

Given an observation model y = Ax + n, e.g., Rl imaging, group actions { T, }zcg such that

Tex € X ( ) and a reconstruction method X(y) = f(y):
Procedure:
Fori=1,..., N:

1. Draw transform g; from G and sample noise n; ~ N (0, o2/)

2. Build bootsrap measurement §; = ATz X(y) + ni == AgX(y) + ni
3.
4

Af~

Reconstruct X = T, '%(¥:)

. Collect error estimate e; = ||X(y) — %||? and bootstrap samples X;.
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Equivariant bootstrap

Based on the work of Tachella and Pereyra ( ).

Given an observation model y = Ax + n, e.g., Rl imaging, group actions { T, }zcg such that
Tex € X ( ) and a reconstruction method X(y) = f(y):

Procedure:
Fori=1,..., N:

1. Draw transform g; from G and sample noise n; ~ N (0, o2/)

2. Build bootsrap measurement j; = ATz %(y) + nj := AgX(y) + n;
3. Reconstruct % = T, 'X(¥i)
4

. Collect error estimate e; = ||X(y) — %||? and bootstrap samples X;.

Pixel-wise UQ maps: From the collection of N bootstrap samples, {>"<,},N:1 we build
confidence regions, C,, for x* (ground truth) using g, the top a-quantile of the samples
{I%(y) = %[}y, with Co = {x: [x = X(¥)| < ga}-
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Equivariant bootstrap

Main idea: Assuming that X is G-invariant, we can have access to multiple virtual forward
operators, AT, 1= Ag,. If T, is properly chosen based on X, A and X(-),

helping to probe the variability of the estimator X(y)
and characterize its uncertainties with respect to x* (ground truth).
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Equivariant bootstrap

Main idea: Assuming that X is G-invariant, we can have access to multiple virtual forward
operators, AT, 1= Ag,. If T, is properly chosen based on X, A and X(-),

helping to probe the variability of the estimator X(y)
and characterize its uncertainties with respect to x* (ground truth).

Motivation:
e Unsupervised method —
¢ Independent of the reconstruction method and

e Well-suited to fast reconstruction methods, e.g. deterministic unrolled algorithms

We applied this framework to the Rl imaging problem (Cherif et al., Liaudat 2024).
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UQ overview

1. Direct UQ estimation

» Fast
» Heuristic, no statistical guarantees
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UQ overview

1. Direct UQ estimation
» Fast
» Heuristic, no statistical guarantees
2. PnP UQ: convex probability concentration for UQ

» Fast

» Statistical guarantees under model convexity
» Restricted to HPD-related UQ

3. Unrolled generative UQ estimation

» rcGANs: fast, and Diffusion models: slow
» Target posterior sampling but no statistical guarantees as approximations are made
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UQ overview

1. Direct UQ estimation
» Fast
» Heuristic, no statistical guarantees
2. PnP UQ: convex probability concentration for UQ

» Fast
» Statistical guarantees under model convexity

» Restricted to HPD-related UQ
3. Unrolled generative UQ estimation

» rcGANs: fast, and Diffusion models: slow

» Target posterior sampling but no statistical guarantees as approximations are made
4. Equivariant bootstrap

» Method-agnostic (including deterministic methods) and unsupervised
» Well adapted for fast reconstruction methods
» Even if it shows that it reduces the error estimation biases

— No statistical guarantees on the uncertainties

Tobias I. Liaudat 35



Physics-informed Al + UQ + Calibration



Coverage test

We have studied ways to estimate uncertainty, but not if the uncertainty estimated is
. Coverage plots allows us to validate the uncertainties.

e We want to compare the model's Bayesian probability with a frequentist interpretation.
e Compute a credible interval with the model.

e Check the empirical frequency at which the ground truth falls within the credible interval.

Y Test of statistical coverage
. } T T T T

)
T

o
T

Empirical coverage

Z I
0.0 0.2 0.4 0.6 0.8 1.0

Confidence level
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Calibration with conformal prediction

The estimated uncertainties can be calibrated using conformal prediction with
Risk-Controlling Prediction Sets (RCPS) (Angelopoulos et al., 2022) by exploiting an
exchangeable calibration dataset.

Given an estimator (y), and lower and upper interval lengths, /(y) and d(y), we define the
uncertainty interval for pixel (m, n) as:

7-)\(y)(m,n) = [f(y)(m,n) - )‘/(y)(m,n)7 f(y)(m,n) + )‘ﬁ(y)(m,n)]
The RCPS procedure finds the smallest A such that the interval T,(y) guarantees a desired
« (exploiting an upper confidence bound, i.e., Hoeffding's).
Main points:
¢ Distribution-free uncertainty calibration with statistical guarantees.
— We still need good initial uncertainties estimates.

We applied this calibration on top of the equivariant bootstrap UQ method (Cherif et al.,
Liaudat 2024).
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MMGAN coverage test

Coverage plot and conformal prediction of MMGAN (Whitney et al., Liaudat 2025) for
mass-mapping in cosmology.

e Extremely good coverage (without RCPS)
e Optimal coverage after RCPS calibration

o

-- Ideal
—e— Uncalibrated
—=— Calibrated

° ° °
S S o

Pixel-wise Empirical Coverage Probability
o
N

°
>

0.‘0 0.‘2 0.‘4 0.‘6 0.‘8 1.‘0
Credible Interval

Tobias I. Liaudat 39



Summary



Inverse problem in imaging are often ill-posed and ill-conditioned and require
— Injecting prior information, and quantifying uncertainties — Bayesian framework.

MCMC sampling is computationally prohibitive for many problems. Some goals are

o (optimisation-based)

] (robust and interpretable)

o (enhance reconstruction quality and reduce bias)
o (scientific inference)

PnP UQ with convexity (Liaudat et al., 2024) points towards these directions.
— Unrolled methods are more expressive.

It is important to validate the estimated uncertainties (coverage test) and calibrate them if
necessary (conformal prediction - RCPS).

Calibration helps to provide statistical guarantees on the model uncertainties.
— A deterministic reconstruction mehod can be equipped with statistically valid UQ by exploiting
equivariant bootstrap + RCPS as was done in (Cherif et al., Liaudat 2024).
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Bayesian model selection and misspecification testing

Based on (Sprunck et al., Liaudat 2025) (arXiv:2510:27663).

e The Bayesian evidence under model M is pr(y) = [ pm(y | x)Pa(x)dx, and provides a
principled way for model selection through the Bayes factor.

e The evidence is often intractable, but clever algorithms like Nested Sampling (Skilling,
2006) allow us to estimate it.

— Still computationally expensive and typically only used for low-dimensional problems.

The goal of the method is:
1. Carry out Bayesian model selection in high-dimensions.

2. Detect if the model works on an out-of-distribution (OOD) regime — important for
Al-based methods.

3. Only work from a single observation y.
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We will rely in the data fission procedure (Leiner et al., 2025) to create statistically
independent data splits from a single observation y.

Data fission procedure for Gaussian noise model (Leiner et al., 2025)

We partition a single y = y from y ~ P(A(x.)) into two synthetic measurements y* and y~
that are conditionally independent given x,. Suppose that y ~ N (A(x), ) and let
w ~ N(0,%). Then, for any a € (0,1),

yr =1 (y.w) =y +caw,

y_ = fa_(yv W) =Yy W/Ca )

with ¢, = a/(1 — ).

The o parameter controls the information split between y™ and y~.

Equivalent splitting strategies are available for other noise models from the natural exponential
family Monroy et al., 2025.
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Proposed metric: Bayesian cross validation through data fission

We evaluate a model M, comprising a prior and likelihood, by computing a summary of the
form

(M) =Ey - [S(paaly ™y, ¥ ")) /5 pr(Yly =y )y )pmly ™y )y dy”
where S : P x R™ — R, is a scoring rule (Gneiting & Raftery, 2007) that takes a predictive

density p € P, with P being a probability measure, and a realization mapping it to a numerical
assessment of that prediction.

For the previous data fission procedure we can write our metric as

O(M) = Ew |Eyje-(ywyan [Om(F (v X))]] :/¢M(ﬁf(y, w), x) pm(x | £y (y, w))p(w)dxdw,

where ¢ : R™ x R" — R, quantifies the discrepancy between a possible x and y™, leading to
a scoring rule B, -~y v [om(fS (v, w), x))] for the prediction of y* from y~.
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Intuition and link with the Bayesian evidence

For a given choice of scoring rule, i.e., the log score (log likelihood), we obtain a regularised
version of the Bayesian evidence,

(M) = Eyy [Py X)) = paalytly™) = /PM(y+|X)PM(X|y_)dX7 (3)
which in the limit of & — 0 we obtain the Bayesian Evidence as follows,
lim O2(M) = Exyaa [oar(y10] = paa() = [ paalybe)pas(x)dx, (4)

due to y™ — y and y~ tending to an independent noise realisation.
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Likelihood-based metric for model selection

e Misspecified likelihood scenario.

Examples of blurred measurements, generated by using the
blur kernel kg (2).

‘ Single Shot | Few Shot

Ours (w. ®1) 86.7% 100%
Bayes Res. [55] 40.0% 40.0%
EB Res. [55] 46.7% 60.0%

Table 1: Accuracy of likelihood model selection, using
the the proposed summary 3! and two variants of the
baseline method [55], from a single measurement (sin-
gle shot) or three measurements (few shot).
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Posterior-based metric for model OOD detection

Detect if the model is working on out-of-distribution (OOD) data.

0. =05|0,=2|0,=5
Type I FFHQ 0% 6.7% | 6.7%
Error - Celeb 6.7% 6.7% | 6.7%
Moderate OOD | 86.7% | 73.3% | 60%
Power
Strong OOD 100% | 100% | 100%
Table 2: Type I error rate (incorrect rejection of ID

samples from FFHQ, Celeb) and Power (correct rejec-
tion of moderate OOD (Met) and strong OOD (bed-
rooms, CBSD68, AFHQ) examples).
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Posterior-based metric for model OOD detection

— Impressive detection performance for only relying the observations y.

FFHQ-trained
~ samples from z|y™ samples from z|y~

samples from z|y

AFHQ-trained

samples from z|y™

0, =0.5 0 =2 e =5
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