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The XRISM revolution

XRISM brings unique constraints on several fields of galaxy cluster science

- Chemical
Stirrl: gltjucreedf(r)r:renratellcr)n AGN feedback  enrichment history Plasma diagnostics
E €19 dynamics and and abundance of and temperature
ynamics thermalization rare elements structure




The velocity field of galaxy clusters
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Random gas motions in galaxy clusters
» Afraction of the energy injected A5, SENEESSNEP # 7
by structure formation B AN A
processes Is not thermalized o D aee

e Simulations predict that the
majority of the unvirialized
energy should be in the form of
random/turbulent motions

* High spectral resolution is
required to study the velocity
field !

Miniati et al. 2014



The XRISM Revolution

e X-ray micro-calorimeters provide for the first time sufficient energy resolution
to detect gas motions in the ICM
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What are we really measuring ?

 The measured line widths and line shifts are weighted by the gas emissivity
along the line of sight

| [EM,,v,,dV
Vbulk =
Emissivity . VEM,pdV
’
A
Velocity - 1 il fEMsp(Vm_Vbulk)de 3
{ - oy |EM, dV
s :



What are we really measuring ?

The measured line widths and line shifts are weighted by the gas emissivity
along the line of sight
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Velocity dispersions are low !

* Velocity dispersions in the range 100-200 km/s are lower than predictions
from hydrodynamical simulations !
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AGN-Iinduced gas motions

« XRISM revealed large l.o.s. dispersion close to the AGN but steeply
decreasing with radius
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AGN-Iinduced gas motions

* The SW arm seems to be moving towards us, whereas the E is receding...
but beware of energy gain calibration !
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Gas sloshing

turber the gas will oscillate (slosh) at the

is per

In the presence of an off-ax
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Bulk velocities in Centaurus

* XRISM detects large bulk velocities associated with sloshing features
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Perseus cluster

* Bulk velocity pattern in Perseus follows sloshing spiral
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Radial velocity profile in A2029

* Velocity measurements out to ~650 kpc in A2029

XRISM Collabh. 2025e, CA : Miller Energy (keV)
XRISM Collab. 2025f, CA : Ota




Abell 2029 non-thermal pressure

Non-thermal energy in A2029 is low (<2 %) at least out to 650 kpc
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Merging clusters : the case of Coma

* One of the best studied clusters. Major merger at z=0.023. Prototypical giant

radio halo

16

See also :

A2319, XRISM 2025¢g
CA : Nakazawa
A3667, Omiya+25



Large bulk velocities in Coma

* The gas is blue-shifted by >700 km/s with respect to the galaxies !
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Characterizing turbulence

* The statistical properties of the velocity field are characterized by the
fluctuation power spectrum P(k)
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Turning XRISM data into power spectrum constraints

* Challenge : the same power spectrum corresponds to very different looking
velocity fields

Vazza & Brunetti 2025

* We can ) fit for a summary statistic, e.g. the velocity structure function ; ii)
forward model the measurements given a model power spectrum
19



Implications for the velocity power spectrum

* We observe high bulk velocities, but low dispersions... how can this be ?
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* Large-scale motions must dominate, i.e. the PS must be steep !
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Simulation based inference (SBI)

Model parameters

Simulator

Parameter inference

Neural Network
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See also talks by Molin, Barret, Buchner
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Power spectrum constraints from SBI

e To fit the data we require very large injection scales ( >2 Mpc)
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Chemical enrichment

High spectral resolution data constrain the metallicity of rare elements

Centaurus (RGS)
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Metal enrichment pattern

* Metal abundance pattern constrains the total contribution of SN la and SN
cc to chemical enrichment... but beware of uncertainties on SN yields !
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See also :
Ophiuchus, Fujita+25
A2029, Sarkar+25a




Temperature structure

* Various line ratios constrain multi-temperature structure along the line of sight
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Search for unidentified lines

No evidence for unknown emission lines (in particular 3.5 keV) in stacked
data, although the depth is still insufficient to exclude previous claims
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Summary : XRISM results on clusters

Perseus . Abell 2029
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Summary : XRISM results on clusters

Perseus . ;. LR e Abell 2029
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