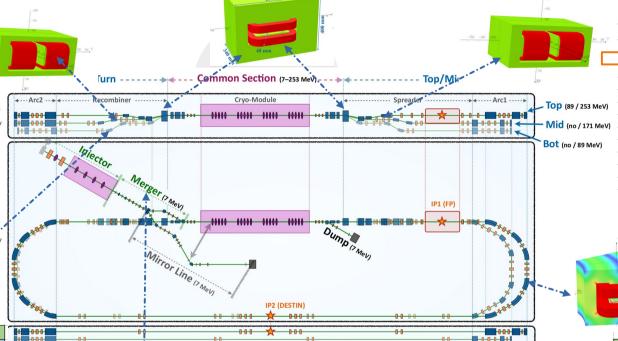


Project Progress Review (PPR) 3-2025

WP-04 H. Abualrob / L. Perrot

22 May 2025

Outline

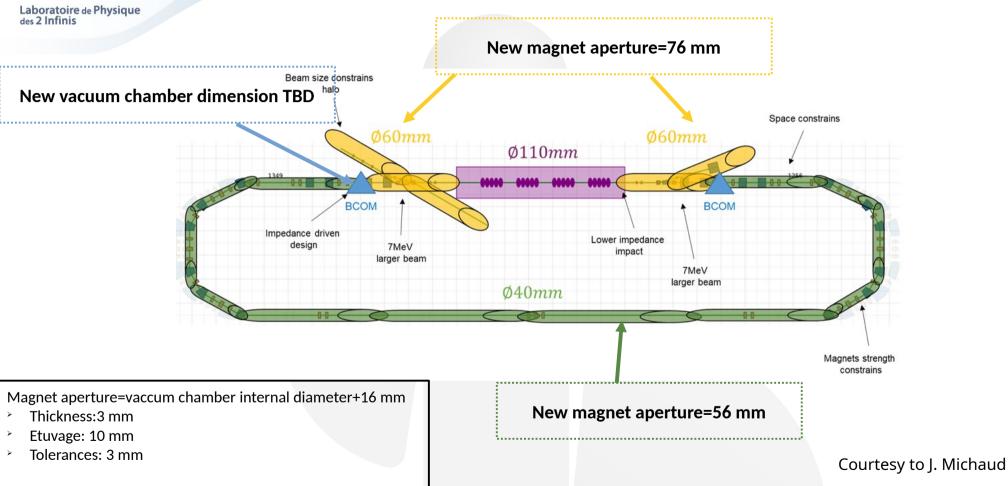

- Magnetic design
 - Status and upcoming actions
 - Interaction with other workpackeges
- Purchasement and donation
 - Reuse on-shelf magnets (Thom-X, PSI, CTF3, CERN)
 - Purchasement (SEF Technologies, Elytte Technology)
- Preparation of the SSW bench
- Human resources

Irène Joliot-Curie Laboratoire de Physique des 2 Infinis

Magnetic design status

raiailleteis	value	Offic
Yoke		
Aperture heigth	51	mm
Pole width	89	mm
Pole chamfer heigth	0	mm
Pole chamfer width	0	mm
Pole shim heigth	0	mm
Pole shim width	0	mm
Yoke back leg width	22.5	mm
External chamfers side	0	mm
Coil window width	24	mm
Coil window height (from X axis)	154.5	mm
Yoke overall width	182	mm

Parameters	Value	Unit
Voko		
Aperture heigth	49	mm
Pole width	80	mm
Pole chamfer heigth	0	mm
Pole chamfer width	0	mm
Pole shim heigth	0	mm
Pole shim width	0	mm
Yoke back leg width	22	mm
External chamfers side	0	mm
Coil window width	24	mm
Coil window height (from X axis)	153.5	mm
Yoke overall width	172	mm


	Parameters	Value
	Height	100 mm
	Yoke thickness	15 mm
2.57	Length	50 mm
age of the second secon	Aperture	40 mm
	Pole width	17 mm
	NI per coil	318.31 A.turn
	Gradient	3 T/m

Parameters	Value	Unit
Yoke		
Aperture heigth	49	mm
Pole width	162.5	mm
Pole chamfer heigth	0	mm
Pole chamfer width	0	mm
Pole shim heigth	0	mm
Pole shim width	0	mm
Yoke back leg width	77	mm
External chamfers side	0	mm
Coil window width	91	mm
Coil window height (from X axis)	88.5	mm
Yoke overall width	360.5	mm

New vacuum chamber diameter

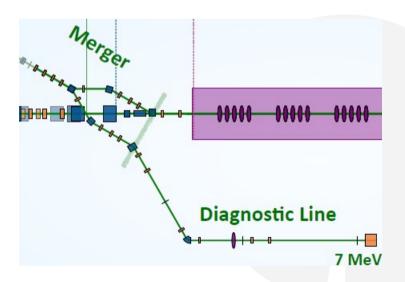
Recent decision on the vacuum chamber diameter

- Important impact on the magnetic field of all already-designed magnets
- Fifect evaluation by analytical calculation (OPTIMISTIC)
- > Study case: B com magnet

Parameter	Current design	Updated design	Relative change%
Aperture (mm)	40	72	+80%
Excitation current (A.turn)	15212	15212	0
Magnetic field (T)	0.47	0.26	-45%

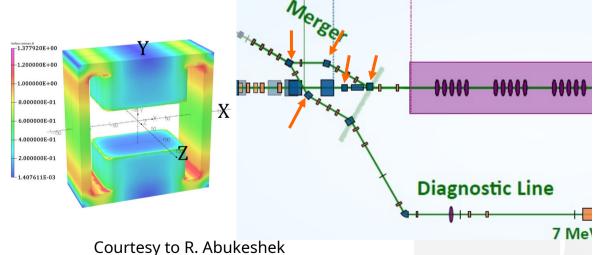
Two possibilities to adapt the new vacuum chamber

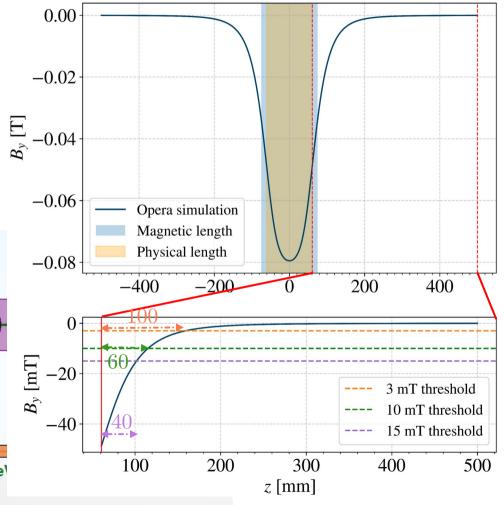
Parameter	Current design	New vacuum chamber consideration	Relative change %
Aperture	40 mm	72 mm	+80%
Magnetic field	0.47 T	0.47 T	0
Excitation current (A.turn)	15212	27382	+80%
Current density (A/mm²)	6.04	10.86	+80%
Power (kW)	1.1	3.4	+200%


Updated magnetic design should be foreseen to maintain the same magnetic field and minimize the power consumption

Magnetic design status: upcoming actions

- Design of the magnets of the temporary line considering the new vacuum chamber diameter
- Work already started remotely by a Palestinian student
- Intern will arrive jun 18th


Magnet type	Number
Dipole	1
Quad	4
Kicker	2
Dipole spectrometer	1



Current measurement and sensitivity to magnetic filed

- > ACCT for current measurement
- Sensitivity to the vertical magnetic field of the dipoles along the beam direction in the merger
- ➤ ACCT location TBC=> further investigation

- 1. Magnets from the PSI
- We are potentially interested in 25 quadrupoles for the straight section
- 4 can be used for the temporary line
- 2. Magnets of Thom-X
- Technical specification and magnetic measurement reports are provided by SOLEIL
- Conclusion: the magnets of ThomX can not be used for PERLE

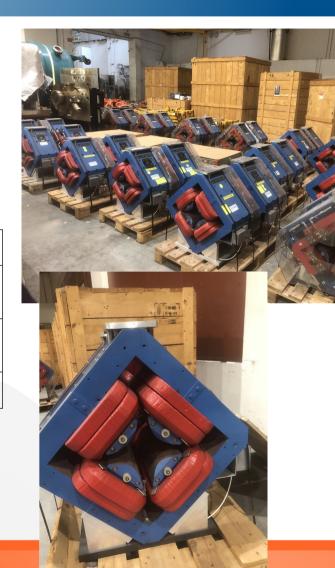
Parameter	ThomX	PERLE
Physical aperture	41 mm	~56 mm (min. value)
Gradient "for Qpoles"	5 T/m	4-23 T/m

3. Donation from CERN

Magnet code	Accepted/Not accepted	Potential location in PERLE	Available number	comments
1. PXMCCLAWAP	Not accepted	N.A	N.A	not convenient as a dipole
				too large if used as a steerer
2. PXMCXADWAP	Not accepted	N.A	N.A	max. field=0.043 T Vs 0.08 T needed
3. PXMCXAEWAP	Not accepted	N.A	N.A	max. field=0.043 T Vs 0.08 T needed
4. PXMCXAFWAC	Not accepted	N.A	N.A	max. field=0.043 T Vs 0.08 T needed
5. PXMCXAHWWP	Not accepted	N.A	N.A	Type 8a water
				Too big (transversely)
6. PXMBHBDCWP	Not accepted	N.A	2	Only 2 are available
7. PXMQNAGNAP	Not accepted	N.A	N.A	Inner diameter=58 mm vacuum chamber of PERLE is 60 mm
8. PXMQNAHNAP	Not accepted	N.A	N.A	Inner diameter=58 mm vacuum chamber of PERLE is 60 mm
9. PXMM_AAIAP	Not accepted	N.A	N.A	Exotic shape (does not fit anywhere)
10. PXMQNALNAP (D80/L104)	Accepted	TBC	1	Only one is available
11. PXMQNLINWP	Accepted	Straight section	2	Only 2 are available
12. PXMCCABWAP	Accepted	ERL	1	Only one is available
13. PXMCCAZWWC	Accepted	merger	2	Only 2 are available
14. PXMCXCAHWC	Accepted!	Arc single turn	35	Too big for PERLE 3 Turns but should work for Single Turn

3. Donation from CERN

Magnet code	Accepted/Not accepted	Type	Potential location in PERLE	Needed number for PERLE	Available number at CERN	comments
10. PXMQNALNAP (D80/L104)	Accepted	Quadrupole	TBC	N.A	1	Only one is available
11. PXMQNLINWP	Accepted	Quadrupole	Straight section	11	2	Only 2 are available
12. PXMCCABWAP	Accepted	Dipole	ERL	6	1	Only one is available
13. PXMCCAZWWC	Accepted	Quadrupole	Merger	8	2	Only 2 are available
14. PXMCXCAHWC	Accepted	Dipole	Arc single turn	22	35	Too big for PERLE 3 Turns but should work for Single Turn


4. Magnets of the CTF3

- Available at the IJCLab (Super ACO)
- Parameters are available on the data sheet of the magnets of CERN!

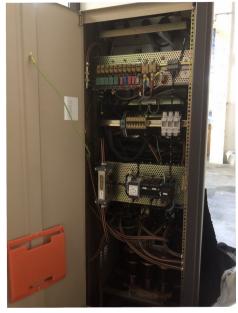
Parameter	CTF3	PERLE	Conclusion
Geometrical length (cm)	~ 50	5, 10, 15	Can only fit in the straight section and the Diag. Line
Integrated field gradient (T)	3.65	0.5	Reducing the current might help to reach 0.5 T
Current (A)	475	TBD	High current to field gradient ratio

- → For missing information the ideal is to measure the magnets
- → Power supplies are not found till now

Reusing on shelf magnets: summary

Location in PERLE	Туре	Needed number	Available number	Source	Comments
Merger	Quadrupoles	8	2	CERN	Only 2 out of 8
spreader/	Dipoles	8	0	None	Limited space
recombiner	Quadrupoles	13	U	None	Lifficed Space
Arcs	Dipoles	12	35	CERN	compatible with single turn
			2	CERN	Flexibility due to available
Straight	Quadrupoles	11	25	PSI	space
section	Quant apoles		32	CTF3	Conditioned by finding adequate power supplies!

PPR3-2025 12



Power supplies

- Packed power supplies (Bruker) from Trieste are available in the Super ACO
- Data sheet is unavailable
- E. Froidefond (LPSC)is joining the work on the power supplies
- Possibility to check their functionality?

Purchasement

- SEF technologies
 - We provide the magnetic design
 - SEF provides mechanical design
 - Define delivery date by priority :
 - Merger and diag line: rectangular dipoles (17 quadrupoles, and 2 kickers), delivery in mid-2027 for on-site installation by the end of 2027.
 - The magnets for the first the single turn phase: (24 dipoles, 71 quadrupoles, 7 chicanes and 9 kickers) delivery by mid-2028 for installation by the end of 2028
 - The remaining magnets for the three turns phase (34 dipoles, 94 quadrupoles and certain number of kickers TBD) delivery by mid-2029 for installation by the end of 2029.
- Elytt Energy
 - Slow reactivity
 - They can not secure the tender currently due to other heavy engagement
 - High cost estimation, to be followed...

Cost estimation from Elytt:

31 bending magnets, 6 types of dipoles = about 1.315.000 €

82 Quadrupoles magnets of 4 types is about 2.020.000 €.


22 steering magnets of 3 types is about 150.000 €


Preparation of the SSW bench

- Measurement automation will start on June 18th by a Palestinian intern.
- Discussion with Gael Le Bec (ESRF) during GDR/SciPac:
 - Changing the computer and update the software (ongoing)
 - Possibility of visiting the magnetic workshop at the ESRF (measurement automation is already done)
 - We will collaborate with ESRF on the project of migration towards Python
- Organization and arrangement of the room is mandatory
- Access to 209 and powering

Human resources

WP leaders

- H. Abualrob
- L. Perrot

Rasha

- Phd defense is planned for October 2025
- Post do fund is secured

Power supplies

E. Froidefone (LPSC)

June-August 2025 at the IJCLab (E+ fund)

- J. Souyani (L3 physics): Magnetic design of the magnets of the temporary line
- M. Salah (M1 mechatronics engineering): SSW bench

July- September 2025 remotely (other sources of fund)

- M. Rafiq (L3 physics): Magnetic design of the magnets of the merger
- T. Onalah (L3 physics): Magnetic design of the magnets of the merger

October-December 2025 (E+ fund)

- One intern will resume the design
- One intern will resume the SSW automation