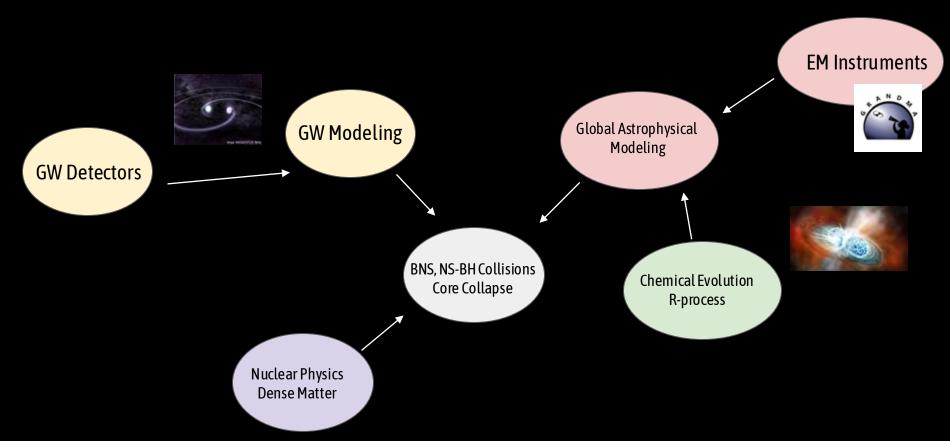
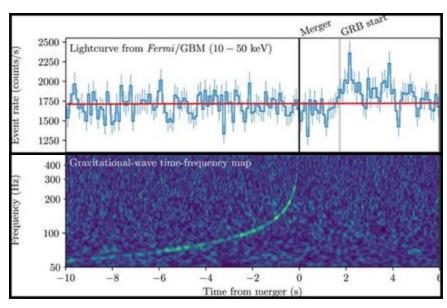
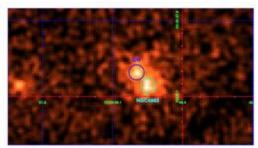


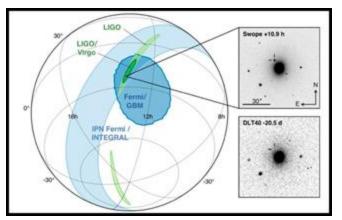
GRANDMA KILONOVA-CATCHER

S. ANTIER

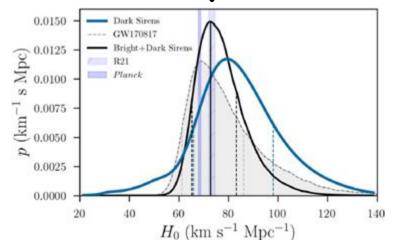

CNAP ATSRONOME ADJOINTE OBSERVATOIRE DE LA CÔTE D'AZUR IJCLAB, ORSAY

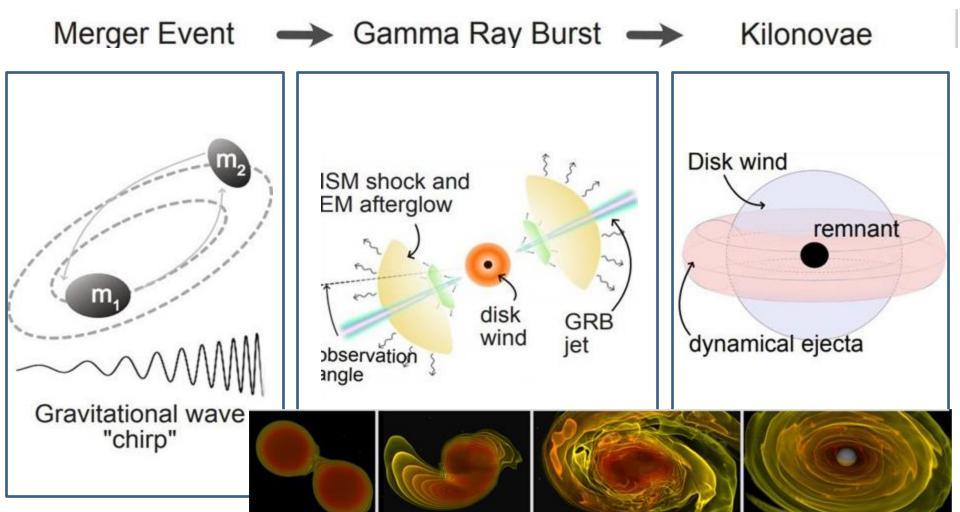


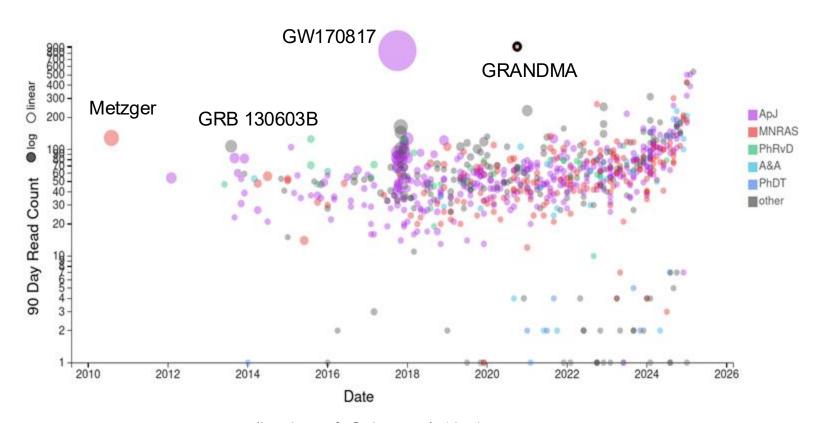

MULTI-MESSENGER STUDIES WITH GWS



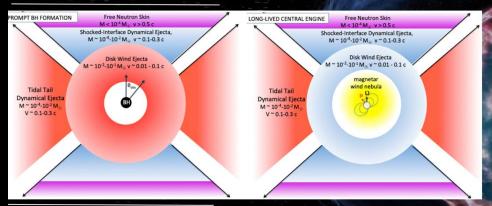
GW170817 - GRB 170817A: MULTI-MESSENGER RAINBOW







MANY IMPLICATIONS, EX: COSMOLOGY

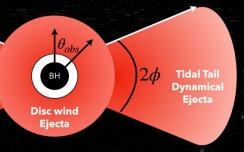

A RECENT FIELD KILONOVA

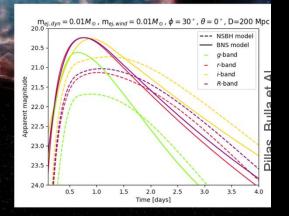
(Lattimer & Schramm) 1974

KILONOVA: PROBE OF NEUTRON STAR MERGER ENVIRONMENT

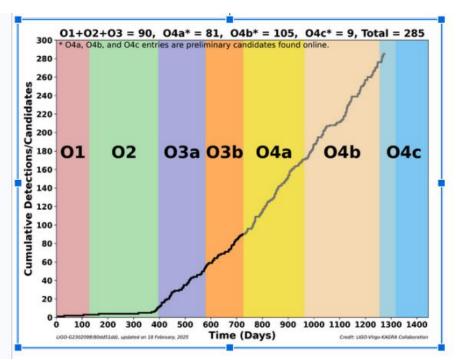
BN5

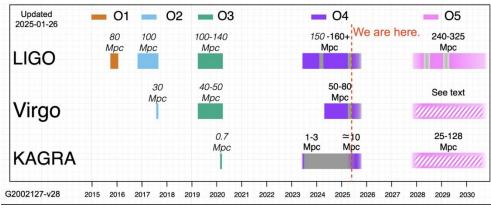
Dynamical ejecta:


- Equatorial (Neutron rich): High fraction of Lanthanide
- Polar (Neutron poor): Blue kilonova
- Disc wind ejecta (equatorial, blue and red)

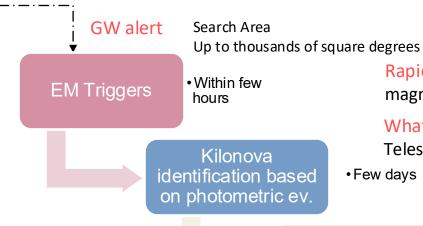

$$M_{ej,rem} = m_{dyn} + m_{wind}$$

NSBH


Favorable conditions:


- Small mBH/mNS
- High spin BH
- Also depends on EOS

OY GRAVITATIONAL WAVE CAMPAIGN



About 2.3 triggers per week (at the public nominal threshold)

OBSERVATIONAL CHALLENGES

Rapid brightness decay of the kilonova ~200 Mpc, magnitude 22 to reach after 22h.

What is mission « chaînon manquant »

Telescope network of small and mid-size telescopes

Few days

Spectral and temporal characterization

Few weeks

Deep Sky

	2015	2016-2017	2019-2020	2023	2028	> 2035
GW	2 BBHs	1 BNS – 8 BBHs LIGO-Virgo	1 alert / week	< 2 BNS/NSBH / month + KAGRA	1 BNS / week + LIGO INDIA	> 1 BNS / day Einstein Teles
EM		GW170817	+ ZTF GRANDMA	SVOM LSST?	+ SKA CTA	+ Athena

FOLLOW-UP 15 HARD ©

WHEN AN ALERT COMES

AS AN ASTRONOMER ...

WAKE UP

Do you have shifters / a rota ?
Do you have automatic
processing ?

Araa

FOCUS

Is it Important ?
Is it Urgent ?
Can I solve it myself ? Do I need
a team ?

Pass or reject based on automated criteria

Read manual to understand the

Process

Similar situation as before, can solve Don't know!

Is it worth it for the experts !!!

GW ASTRONOMY REQUIRES LOTS OF OBSERVATIONS

Everyone is looking at the same region of the search area to find the counterpart of GW events

Our proposition - Coordination

Professionals + Amateurs

Global Rapid Advanced Telescopes Devoted to Multi-messenger Addicts

GRANDMA

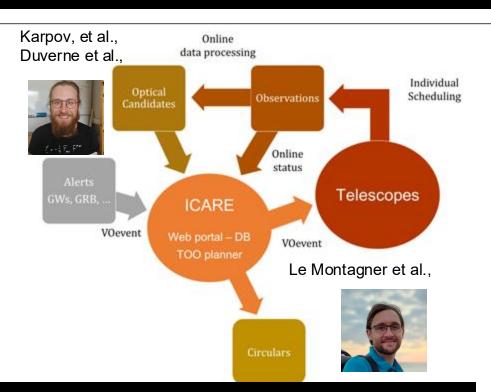
37 telescopes - 26 observatories - ToO time guaranteed - 40 institutes/groups - Born in 2018 at LAL

Coordination on multiple axis

- Observations
- Data reduction
- Interpretation

PI. S. Antier
Co-PI. P.

Scientific programs of GRANDMA and Kilonova-catcher



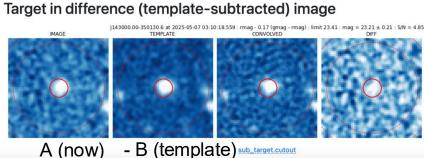
- I. Binary neutron stars Kilonovae GW counterparts
 GRANDMA Observations of LIGO-Virgo O3 run, MNRAS, 2020, Antier
- I. Relativistic jets Gamma-ray bursts

 GRANDMA and HXMT Observations of GRB 221009A, ApJ, 2023, Kann et al.
- III. Vera-Rubin Fast transients

 GRANDMA Observations of ZTF/Fink Transients, 2022, MNRAS, Agayeva
- IV. Continuous Training with other opportunistics sources (SNIa, ...) ...

GRANDMA E-INFRASTRUCTURE: ICARE

- **X** Communication with telescopes
- X Central Manager


Reception of any type of alert and sender

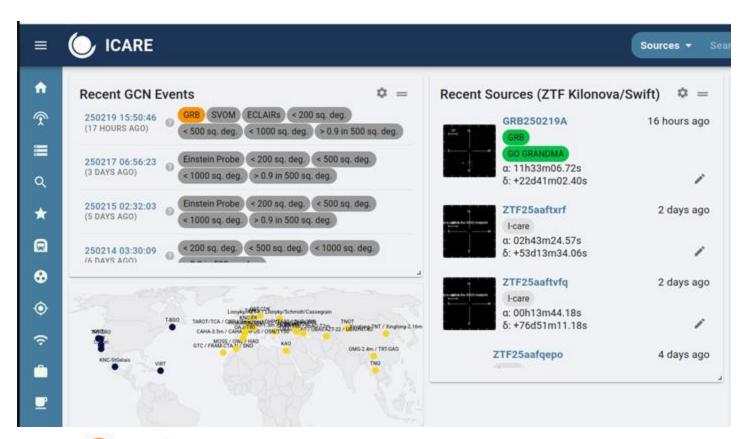
X Time domain Web portal

Monitor of GW/GRB observations and candidates

Candidates from online pipelines

Automatic report

SCIENCE PORTAL: SKYPORTAL THE KEY TOOL FOR TIME DOMAIN


Open to Europe in 2027 via ACME

Receive alerts
Scheduling
Annotation
Scanning candidates
Basic analysis

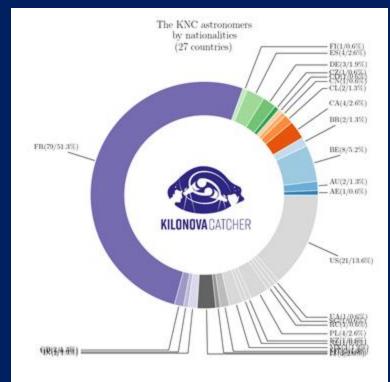
Hosted at IJCLAB

C. Douzet

KILONOVA CATCHER

SF2A citizen price 2025!!

kilonovacatcher.in2p3.fr



The amateur network KILONOVA CATCHER

- ~ 5% provided photometric results
 - ~ 10% can reach 21 mag in r-band
 - ~ 50% provided images once

~ 100 accounts

Since 2019, +700 images uploaded and 70% science valid (for 30 alerts)

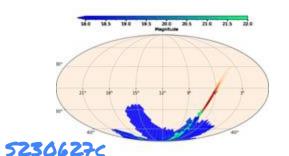
We have provided sloan filters g, r, i, z to 6 amateur astronomers

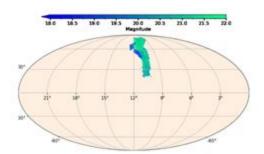
GW ASTRONOMY / RESULTS

Filter	0 - 1 day		1 - 2 day		2 - 6 day		Instruments	
	See.	upper	% cr	upper	% ex	upper		
				S23051	8h			
600 - 1000 nm	25%	16	25%	16	25%	16	TESS	
R	21%	21.6	18%	21.6	40.00		GECKO	
o-band	44%	17.9	-		25%	18.8	ATLAS	
e-band			25%	19.5	47%	19.5	ATLAS	
cours on U	Control			GW230	529		A A RESIDE	
L-band	10%	19.7	2%	19.4	2%	19.2	COTO	
g-band	16%	20.6	-				ZTF	
r-band	12%	20.6	-	2	-		ZTF	
-band	5%	20.1	-			+11	ZTF	
o-band	2%	17.8	4%	18.9	23%	17.6	ATLAS	
				S23062	7c			
L-band	45%	19.1	84%	19.0	23%	19.1	GOTO	
g-band	88%	21	2000			4	ZTF	
R-band	4%	18.5	2%	20.7	2%	20.7	GRANDMA - GECKO	
r-band	88%	21	-		-		ZTF	
o-band		+	18%	18.6	17%	18.0	ATLAS	
				S24042	2ed			
g-band	53%	19.5	83%	19.7	<1%	22.5	GRANDMA, ZTF	
Liband	9655.55	19.1	96%	19.6	94%	20.1	COTO	
G-band	19% %	19.5	-		-		CSS/SAGUARO	
R-band	69 %	16.7	67%	21.6	22%	21.3	GRANDMA - GECKO	
o-band	99%	18.9	7%	18.7	99 %	18.6	ATLAS	
z-band	75%	22.6	81%	22.4	71%	23.0	DECam	
J-band	16%	16.5	-			2000	WINTER	

Meerlich, BlackGEM, Magellan

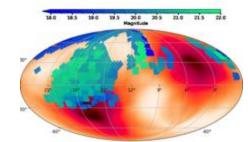
Pillas, Antier et al., PRD, 2025


M. Pillas

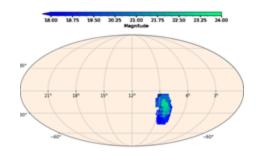

Summary of the coverage from 0 to 6 days post T0

5230518H

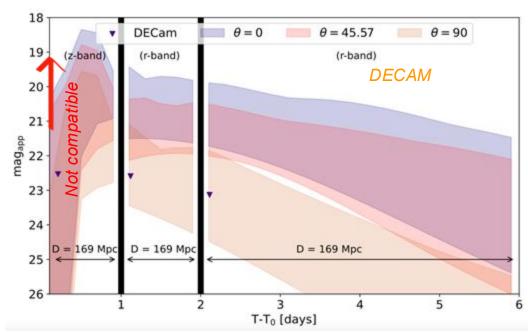
81% cr. coverage from 14.5 to 23.3 mag upper limit

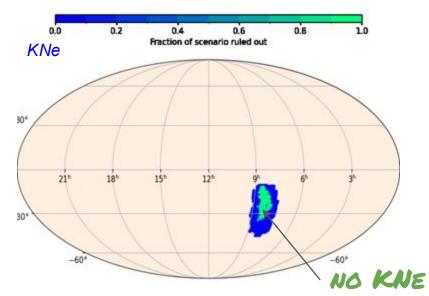


96% cr. coverage from 16.3 to 21.3 mag upper limit


GW230529

37% cr. coverage from 13.2 to 21.7 mag upper limit


524042ZED


> 99% cr. coverage from 14.1 to 23.5 mag upper limit

GW ASTRONOMY / RESULTS: 524042ZED

One mocked KN (ArnandBulla) projected at distance and T0 from S240422ed

OBSERVATIONS TAKEN ONE DAY AFTER

5240422ED RULED OUT TOTALLY KNE

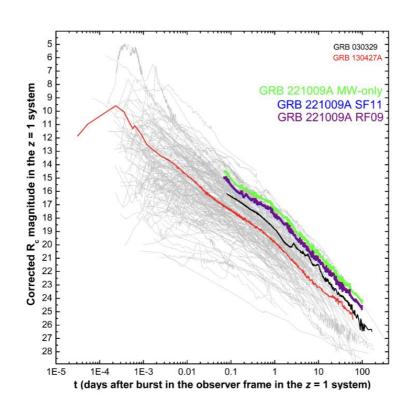
SIGNAL IN SKY COVERAGE OF 180 DEG² FROM

NS-BH MERGERS

Pillas, Antier et al., PRD, 2025

GRB 221009A _ THE MOST ENERGETIC GRB

GRANDMA and HXMT Observations of GRB 221009A: The Standard Luminosity Afterglow of a Hyperluminous Gamma-Ray Burst-In Gedenken an David Alexander Kann, Apj, ApJL, 948. L12. 2023


Dataset: GRANDMA (Optical) X-ray - HXMT-LE+XRT data used for analysis

Extinction studies from both Milky Way and along the line of sight

Synchrotron radiation from forward external shock **fits** observations moderately well

Afterglow not extremely bright

Questions: Uniform CSM? Wind-like profile? Structure of the jet? Efficiency of the magnetic field to power the synchrotron radiation efficiency?

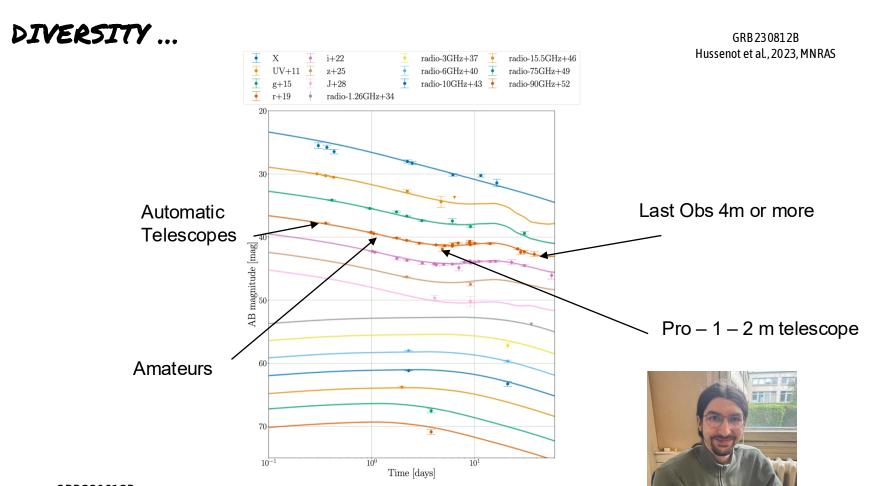
INCLUSION AND DIVERSITY

The inclusion of diversity requires effort, but the fruits of this endeavor are well worth the investment.

BE INCLUSIVE, KEEP OUR DIVERSITY IDENTITY

BUILDING NEW INSTRUMENTS, TOOLS IMPROVING MODELING

GRANDMA undergrad crew



S. Brunier Amateur On C2PU-1m, FR ~22 mag

GRB 230812B Hussenot et al., 2023, submitted MNRAS

Figure 7. Best-fit light curves of the Power-law+SN model. Datapoints are reported in the observer frame.

T. Hussenot

TOWARD LSST - GET GRANDMA READY

- Filtering the LSST stream (in partnership with Fink and Boom)
- Telescope Ressources in south hemisphere
- Dedicated follow-up strategies
- Automatisation of the data analysis
- Enrichment filtering with LSST + GRANDMA
- Scientific interpretation

ROLE OF IA

Host of the infrastructures

LAB founder

MM tools
Schuling
Science portal
Data Analysis

Kilonovae

LSST follow-up

Multimessenger analysis

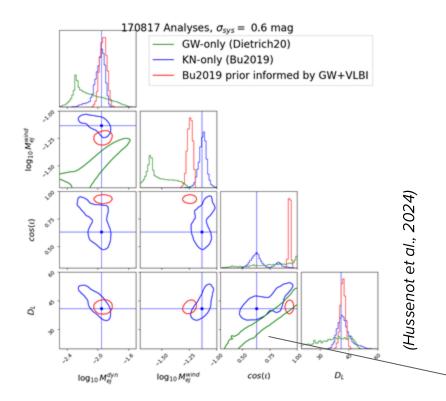
Connection to OSUPS projects SVOM / Euclid

HOW TO FIND THE EM COUNTERPART?

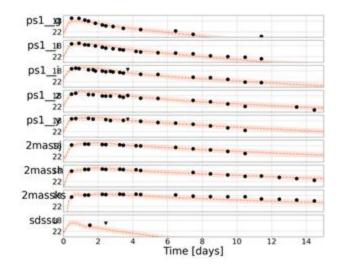
FOLLOW-UP DECISION MAKING

MULTI-BAND FOLLOW-UP

DISCOVERY (



ONLINE CHARACTERIZATION



EVENT PROPERTIES EXTRACTION

ATZOITGFO, NOT WELL EXPLAINED BY PREVIOUS-GEN MODELS

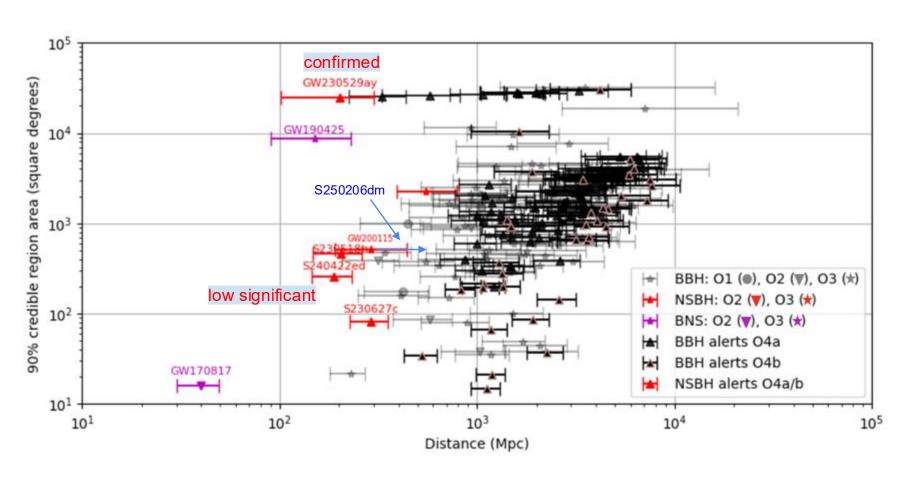
The Bulla 2019 model best-fit is not within incidence angle and distance constraints

Bulla19 only approximates the AT2017gfo lightcurve up to a 0.4 mag error margin

Other models struggle too: Breschi 2021 best fit implies distance >50 Mpc, too large

Discrepancies between separate GW-only and KN-only analyses

NEW ASTRONOMY WITH GRAVITATIONAL WAVES


Transient astronomy - A race with time

Faint and not well-known sources - Only one event found in 2017!

Poor localizations - needle in a haystack problem

Giving a "View" to the "sound" of the Universe

BNS AND NS-BH GW EVENTS FOR OY A AND B

