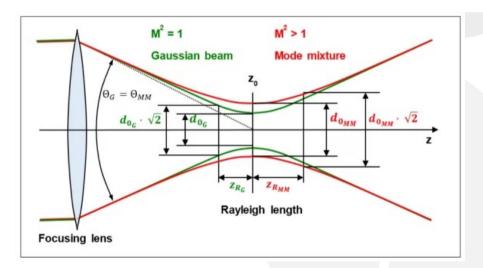
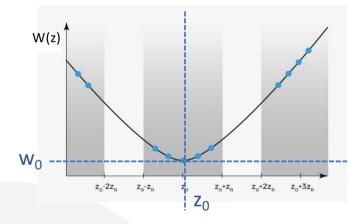


IR Laser test bench status

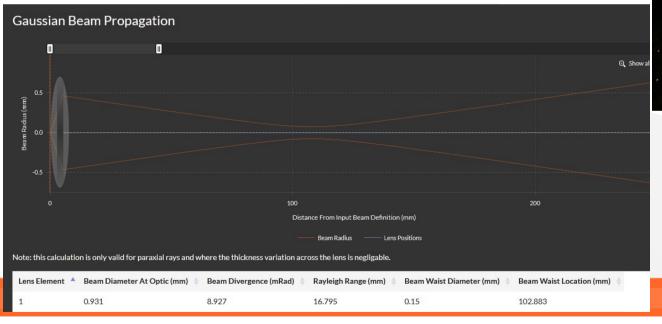

O. Brand-Foissac, V. Chaumat, T. Cornet, D. Marchand, A. Sharma, L. Serin, A. Torrentó

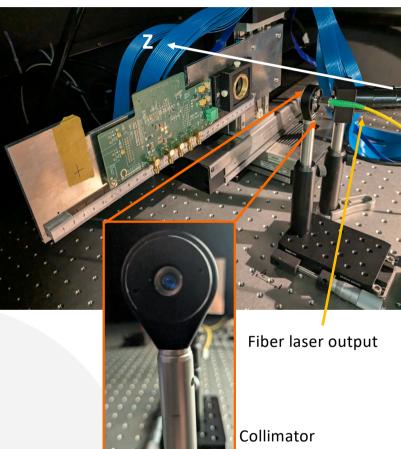

Measurement of laser beam quality M²

- Ideally, a laser beam has a Gaussian profile (TEM_{00} propagation), but in reality there is a slight non-gaussianity which has to be measured to get the real size of the waist
 - \rightarrow M² beam-quality parameter: M² > 1 (M² = 1 for a Gaussian beam)

- Waist (w_0) = minimum radius at $1/e^2$ of intensity
- Rayleigh distance (Z_R) = spot surface doubles / radius increases $\sim \sqrt{2}$

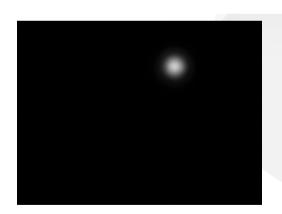
Measure spot size at \pm 5 Z_R from waist then fit a hyperbolic function (ISO11146-1)

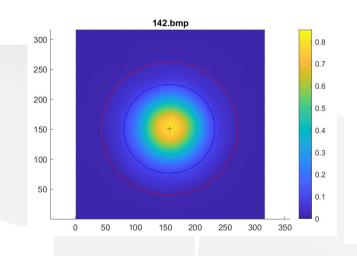

$$w^{2}(z) = w_{0}^{2} + \left(\frac{\lambda M^{2}}{\pi w_{0}^{2}}\right)^{2} (z - z_{0})^{2}$$

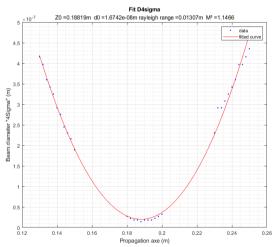


Measurement of laser beam quality M²

- In LGAD scan configuration (2 lenses), the spot is too small $o(10\mu m)$ to make a good measurement (pixel size CMOS = 3.75 μm)
- We use a onfiguration with only a collimator lens (f = 4.5 mm) to have a bigger waist (r = 75 μ m \sim 20 pixels), at a distance that allows us to scan \sim 5 Z_R (distance CMOS lens & table range 17*5 mm = 85 mm, ok)




Measurement of laser beam quality M²



- 33 images, 3 zones in range z = 130 250 mm, with $\Delta z = 2$ mm (waist around 180 mm)
- Image treatment and analysis with Matlab (V. Chaumat)
 - Try different intensity thresholds
 - ROI at ±5σ from barycenter
 - Determination of spot diameter D4sigma (ISO 11146-1) for X and Y (spot not perfectly circular)
 - Plot radius vs. Z hyperbolic function to obtain waist diameter (d₀) and position (z₀), M² and Rayleigh (z_R)
 distance

Analysis ongoing !!!

 $D_0 = 167 \mu m, M^2 = 1.14$

Future work

Still some issues to solve:

- Get rid of aberrations / diffraction effects that distort the beam image, making it difficult to well determine the 4Dsigma diameter.
- Fix the analysis procedure (esp. threshold)

DAQ software:

- Ongoing work to have a state machine for acquisition: save configurations, record data, ...
 - Gather all relevant variables: XYZ, timestamp, photodiode power, AC-LGAD + EICROC signals
 - Save ACQ configuration (to recall later), record data in a file
 - Define measurement sequence

• To be done:

- Include photodiode, ACQ chain
- Vertical translation table : fix IP problem, home definition