

<u>SuperB and Super KEKB</u> <u>The "Precision Frontier"</u>

U. Wienands

SLAC, presently at CERN Former PEP-II Run Coordinator

I am indebted to M. Iwasaki and to M. Masuzawa, KEK, for providing me with material on Super KEKB

- Introduction
- The Crab Waist
- The SuperB proposals
- Conclusion

<u>B-Factories: Success Story</u>

- PEP-II: 1.2 10³⁴/cm²/s, about 0.5 ab⁻¹
- KEKB: 2.1 10³⁴/cm²/s, about 1 ab⁻¹
- PEP-II/BaBar together with KEKB-Belle:
 - Definitive measurement of $sin(2\beta)$, solid foundation for CKM formalism
 - Exceeded their physics goals
 - Proved that multi-ampere beam currents can be handled
 - up to 3.2 A @ 3.1 GeV; 2 A @ 9 GeV in PEP-II
 - Proved that background is manageable
 - s.r. background as well as lost-particle background
 - Proved that high overall efficiency can be maintained

U. Wienands, SLAC U. de Paris, 16-Sep-10 • PEP-II/BaBar reached >85% up time

Super B-Factories

- A growing momentum has built up to expand on the program and push for new reach on the "precision frontier"
- This physics reach is possible with 50...100 ab⁻¹ of data
- In order to gather such an amount in a reasonable time, a peak luminosity of ≈10³⁶ cm⁻²s⁻¹ is necessary

e⁺ e⁻ Luminosity Trend

• It then follows that, for fixed beam-beam parameter ξ , one needs higher beam current and/or lower β_v^* .

Strategies

- Head-on collisions (R_L =1): hourglass becomes important
 - $-\sigma_l \ge 2 \text{ mm}$
 - $> \beta^* \ge 2 \text{ mm} \Rightarrow \text{need O(10) A beam current}$
- Crossing angle (horizontal):
 - foreshortens the IP => $\beta^* \leq \sigma_l$ is possible
 - > synchro-betatron coupling due to beam-beam $\textcircled{\bigcirc}$
- "Crab Waist" can reduce or eliminate the effect of crossing angle 🕲
 - Raimondi, LNF, based on earlier work by Balakin, BINP
 - Successfully operated at DA Φ NE, Luminosity gain \approx *2.5.

SLAC High Beam Current/Short Bunches

• Problems of high beam current for short bunches:

BPM damage due to overheating

Rf seal damage

DAONE Luminosity

<u>Towards next-Generation</u> **B-Factories**

- Both *B*-Factory teams have proposed upgrades exploiting this scheme:
 - Super KEKB: Upgrade of existing KEKB
 - SuperB: New facility, to be built at LNF in a collaboration of LNF, SLAC, several European Laboratories and BINP Novosibirsk.
- While the challenges are similar for both facilities, they differ in the details:
 - Super KEKB: ≈3 km circumference (KEKB tunnel), no polarized beam, KEKB hardware
 - SuperB: 1.25 km circumference, polarized electrons,
 PEP-II hardware

Common Features

- Energy asymmetry: 4 on 7 GeV
- Crossing angle: 2* 41.5 mr, 2*30 mr
- Small beam emittances (nmr in x, pmr in y)
 - Beam aspect ratios $\approx 1/100$
- Beam currents up to ≈ 3.5 A or less
- Bunch length $\approx 5 \text{ mm}$
- Short beam lifetime ($\approx 5 \text{ min}$)
 - continuous injection ("trickle charge")

Super KEKB

Super KEKB Parameters

parameters		KEKB		SuperKEKB		
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	ε _x	18	24	3.2	5.0	nm
Emittance ratio	к	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	l _b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Small beam size & high current to increase luminosity

17

- Large crossing angle
- Change beam energies to solve the problem on LER short lifetime

≈100 0.89 m dipoles replaced with 4 m ones. U. Wienands, SLAC U. de Paris, 16-Sep-10

SuperB Parameters

- Energy:
- Half crossing angle:
- Horiz, emittance:
- Vertic. emittance:
- β_x/β_v at IP:
 - Beam currents: on 2.5 A 1.9
 - Beam-beam parameter ξ_{v} : 0.097
 - Beam lifetime: 4.2 on $4.5 \min$
 - Luminosity:

6.78 (e⁺) on 4.18 (e⁻) GeV 30 mr on 2.5 nmr 2 5 on 6 nmr

26/0.25 on 32/0.21 mm

- - $1 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

SuperB: Storage Ring Tunnel Occupanc

U. de Paris, 16-Sep-10

Detector Background

(b) 1/lifetime vs CDC current

35

- SR background
 - not worse than present
 B-Factories;
- Lost-particle background
 - Touschek factor 20-30 higher (SuperKEKB est.)
 - beam collimation can help (SuperB)
- Radiative Bhabhas (& Luminosity)
 - Shielding (n), optics (e^+, e^-) to deal with
 - SuperKEKB Study: can be reduced by factor 40 c.f.
 KEKB

Alternative QD0: Superferric (P. Vobly, BINP)

n

6 6.5 7 7.5

NoCW, v=0.523,0.548

Np (10¹⁰)

8 8.5 9 9.5 10 10.5

NoCW, v=0.523,0.548

Np (10¹⁰)

8 8.5 9 9.5 10 10.5

Ο

6 6.5 7 7.5

U. Wienands, SLAC U. de Paris, 16-Sep-10

Misalignments (Luzzio, SuperB) BEFORE CORRECTION event=50 mean= 6.4625e-11 AFTER CORRECTION , event=50 10⁻⁹ occurence average 5% 95% 10 vertical emittance [m rad] 1.5 2.5 emittance x 10 AFTER CORRECTION , event=50 mean= 1.8357e-13 occurences § 20 average -12 5% 95% ទ្ធី 10

0

200

O+Offset + 0+D

O+D+Offset

250

O+D+C+Offset Design 4 pm rad

300

O+D+C

Figure 2: Vertical emittance (m) for machine misalignment from 30 to 300μ m H and V for Sext and Quad and qudrupole Tilts of 30-300 μrad . Orbit (O), Dispersion (D) and Coupling and Beta-beating (C) Free Steering are compared

150

Misalignments variances [µm] and [µrad]

tolerance error $300 \ \mu m$ quadrupole Y quadrupole X $300 \ \mu m$ quadrupole tilt $300 \ \mu rad$ sextupole Y $150 \ \mu m$ $150 \ \mu m$ sextupole X BPM OFFSET $400 \ \mu m$ vertical emittance $< 1 \,\mathrm{pmrad}$

2

alignment and tilts from Table 1.

placements, tilts and monitor offsets.

3

4 5 emittance y

Figure 4: Vertical emittance for 50 simulation with mis-

Table 1: Tolerances: values of the combined tolerated dis-

8 x 10⁻¹³

U. Wienands. SLAC U. de Paris, 16-Sep-10

10⁻¹³.

10⁻¹⁴

10⁻¹⁵

50

100

Super KEKB uest for BSN

SLACE Super KEKB Chamber Prototypes

U. Wienands, SLAC U. de Paris, 16-Sep-10 38

